1. 浠庣粏鑳炲煿鍏绘恫涓鎬庝箞鍒嗙昏泲鐧借川
铔嬬櫧璐ㄦ祿缂╂妧鏈鏄鍏嶇柅瀛︿腑甯哥敤鐨勬墜娈,鐜颁粙缁嶅嚑绉嶅父鐢ㄧ殑娴撶缉鎶鏈.
1銆侀忔瀽琚嬫祿缂╂硶
鍒╃敤閫忔瀽琚嬫祿缂╄泲鐧借川婧舵恫鏄搴旂敤鏈骞跨殑涓绉.灏嗚佹祿缂╃殑铔嬬櫧婧舵恫鏀惧叆閫忔瀽琚嬶紙鏃犻忔瀽琚嬪彲鐢ㄧ幓鐠冪焊浠f浛锛,缁撴墡,鎶婇珮鍒嗗瓙锛6 000锛12 000锛夎仛鍚堢墿濡傝仛涔欎簩閱囷紙纰宠湣锛夈佽仛涔欑儻鍚″挴銆佺兎閰绛夋垨钄楃硸鎾掑湪閫忔瀽琚嬪栧嵆鍙.涔熷彲灏嗗惛姘村墏閰嶆垚30锛咃紞40锛呮祿搴︾殑婧舵恫,灏嗚呮湁铔嬬櫧娑茬殑閫忔瀽琚嬫斁鍏ュ嵆鍙.鍚告按鍓傜敤杩囧悗,鍙鏀惧叆娓╃变腑鐑樺共鎴栬嚜鐒跺共鐕ュ悗,浠嶅彲鍐嶇敤.
2銆佸喎鍐诲共鐕ユ祿缂╂硶
杩欐槸娴撶缉铔嬬櫧璐ㄧ殑涓绉嶈緝濂界殑鍔炴硶,瀹冩棦浣胯泲鐧借川涓嶆槗鍙樻,鍙堜繚鎸佽泲鐧借川涓鍥烘湁鐨勬垚鍒.瀹冩槸鍦ㄥ啺鍐荤姸鎬佷笅鐩存帴鍗囧崕鍘婚櫎姘村垎.鍏蜂綋鍋氭硶鏄灏嗚泲鐧芥恫鍦ㄤ綆娓╀笅鍐板喕,鐒跺悗绉荤疆骞茬嚗鍣ㄥ唴锛堝共鐕ュ櫒鍐呰呮湁骞茬嚗鍓,濡侼aOH銆丆aCl2鍜岀呰兌绛夛級.瀵嗛棴,杩呴熸娊绌,骞剁淮鎸佸湪鎶界┖鐘舵.鏁板皬鏃跺悗鍗冲彲鑾峰緱鍚鏈夎泲鐧界殑骞茬嚗绮夋湯.骞茬嚗鍚庣殑铔嬬櫧璐ㄤ繚瀛樻柟渚,搴旂敤鏃跺彲閰嶆垚浠绘剰娴撳害浣跨敤.涔熷彲閲囩敤鍐诲共鏈鸿繘琛屽喎鍐诲共鐕.
3銆佸惞骞叉祿缂╂硶
灏嗚泲鐧芥憾娑茶呭叆閫忔瀽琚嬪唴,鏀惧湪鐢甸庢墖涓嬪惞.姝ゆ硶绠鍗,浣嗛熷害鎱,涓旀俯搴︿笉鑳借繃楂,鏈濂戒笉瑕佽秴杩15 鈩.
4銆佽秴婊よ啘娴撶缉娉
姝ゆ硶鏄鍒╃敤寰瀛旂氦缁寸礌鑶滈氳繃楂樺帇灏嗘按鍒嗘护鍑,鑰岃泲鐧借川瀛樼暀浜庤啘涓婅揪鍒版祿缂╃洰鐨.鏈変袱绉嶆柟娉曡繘琛屾祿缂╋細涓绉嶆槸鐢ㄩ唻閰哥氦缁寸礌鑶滆呭叆楂樺帇杩囨护鍣ㄥ唴,鍦ㄤ笉鏂鎼呮媽涔嬩笅杩囨护锛涘彟涓绉嶆槸灏嗚泲鐧芥恫瑁呭叆閫忔瀽琚嬪唴缃浜庣湡绌哄共鐕ュ櫒鐨勯氶庡彛涓,璐熷帇鎶芥皵,鑰屼娇琚嬪唴娑蹭綋娓楀嚭.
5銆佸嚌鑳舵祿缂╂硶
閫夌敤瀛斿緞杈冨皬鐨勫嚌鑳,濡係ephadexG25鎴朑50,灏嗗嚌鑳剁洿鎺ュ姞鍏ヨ泲鐧芥憾娑蹭腑.鏍规嵁骞茶兌鐨勫惛姘撮噺鍜岃泲鐧芥恫闇娴撶缉鐨勫嶆暟鑰岀О鍙栨墍闇鐨勫共鑳堕噺.鏀惧叆鍐扮卞唴,鍑濊兌绮掑瓙鍚告按鍚,閫氳繃绂诲績闄ゅ幓.
6銆佹祿缂╄兌娴撶缉娉
娴撶缉鑳舵槸涓绉嶉珮鍒嗗瓙缃戠姸缁撴瀯鐨勬湁鏈鸿仛鍚堢墿,鍏锋湁寰堝己鐨勫惛姘存ц兘.姣忓厠骞茶兌鍙鍚告按120 ml-150 ml.瀹冭兘鍚告敹浣庡垎瀛愰噺鐨勭墿璐,濡傛按銆佽憽钀勭硸銆佽敆绯栥佹棤鏈虹洂绛,閫傚疁娴撶缉10000鍒嗗瓙閲忎互涓婄殑鐢熺墿澶у垎瀛愮墿璐.娴撶缉鍚,铔嬬櫧璐ㄧ殑鍥炴敹鐜囧彲杈80锛咃綖90锛.姣旀祿缂╄兌搴旂敤鏂逛究,鐩存帴鍔犲叆琚娴撶缉鐨勬憾娑蹭腑鍗冲彲.蹇呴』娉ㄦ剰,娴撶缉婧舵恫鐨刾H鍊煎簲澶т簬琚娴撶缉鐗╄川鐨勭瓑鐢电偣,鍚﹀垯鍦ㄦ祿缂╄兌琛ㄩ潰浜х敓闃崇诲瓙浜ゆ崲,褰卞搷娴撶缉鐗╄川鐨勫洖鏀剁巼.
7銆侀樋娉曟媺浼愮诲績鎶鏈
闃挎硶鎷変紣(Alfa Laval)涓娆℃ц繛缁娴佺熺墖绂诲績鏈篊ultureOne™绯诲垪锛屽彲浠ュ府鍔╁湪鍒嗙昏繃绋嬩腑杩炵画鎺掑嚭楂樻祿搴︾殑缁嗚優锛屾彁楂樼诲績娑插洖鏀剁巼鍜岀诲績娑查忔槑搴
鐗圭偣:
CultureOne™绯诲垪鍏ㄧ悆棣栧垱閫傜敤浜50L鑷2000L澶勭悊瑙勬ā鐨勪竴娆℃ц繛缁娴佺诲績鏈
鍗虫彃鍗崇敤鐨勭Щ鍔ㄦā鍧楄捐★紝鏃犻渶宸ョ▼閰嶅楋紝鍙鍦ㄤ笉鍚屼骇绾块棿鐏垫椿鍒囨崲
鍏ㄥ瘑闂涓嬭繘鏂欒捐′笌鍥虹浉杩炵画甯﹀帇鎺掓斁锛岄潪甯搁傚悎楂樺浐鍚閲忕墿鏂欙紝淇濇姢缁嗚優瀹屾暣锛屽緱鐜囬珮
鏃犻渶杩涜孋IP鍜孲IP锛屾瀬澶х缉鐭鎵规¢棿鍒囨崲鏃堕棿锛屾棤钂告苯銆佹按绛夊伐绋嬮厤濂楋紝浠220V鐢垫簮锛屾棤鑿屽揩閫熷规帴锛屽崰鍦伴潰绉浠1骞崇背澶氾紝鍦ㄤ笉鍚岀敓浜х嚎闂寸伒娲诲垏鎹㈣浆绉汇
鍦ㄥ疄璺典腑锛岄氬父浣跨敤宸閫熺诲績鍜屽瘑搴︽搴︾诲績锛屽嵆閫氳繃涓绯诲垪宸閫熺诲績姝ラゅ拰瀵嗗害姊搴︾诲績灏嗗潎璐ㄥ寲浜х敓鐨勭粏鑳炶傝В鐗╀笌缁嗚優鍣ㄥ拰鍏朵粬棰楃矑鍒嗙汇
2. 蛋白质的分离方法有哪些它们各依据蛋白质的什么性质或特点
(一)水溶液提取法
稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解.提取的温度要视有效成份性质而定.一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间.但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作.为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等).
下面着重讨论提取液的pH值和盐浓度的选择.
1、pH值
蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH
范围内.用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液.
2、盐浓度
稀浓度可促进蛋白质的溶,称为盐溶作用.同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔.升浓度为宜.缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液.
(二)有机溶剂提取法
一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液.但必须在低温下操作.丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活.另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料.
二、蛋白质的分离纯化
蛋白质的分离纯化方法很多,主要有:
(一)根据蛋白质溶解度不同的分离方法
1、蛋白质的盐析
中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出.盐析时若溶液pH在蛋白质等电点则效果更好.由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀.
影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行.一般温度低蛋白质溶介度降低.但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析.(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低.(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象).因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%.
蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等.
其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性.硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节.
蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行.此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短.
2、等电点沉淀法
蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用.
3、低温有机溶剂沉淀法
用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行.
(二)根据蛋白质分子大小的差别的分离方法
1、透析与超滤
透析法是利用半透膜将分子大小不同的蛋白质分开.
超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质.
2、凝胶过滤法
也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一.柱中最常用的填充材料是葡萄糖凝胶(Sephadex
ged)和琼脂糖凝胶(agarose gel).
(三)根据蛋白质带电性质进行分离
蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开.
1、电泳法
各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开.值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质.
2、离子交换层析法
离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM-纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE?FONT
FACE="宋体"
LANG="ZH-CN">纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来.(详见层析技术章)
(四)根据配体特异性的分离方法-亲和色谱法
亲和层析法(aflinity
chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高.这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合.其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)
和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用.
细胞的破碎
1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度.此法适用于动物内脏组织、植物肉质种子等.
2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织.
3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施.对超声波敏感和核酸应慎用.
4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎.
5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好.
无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取.
浓缩、干燥及保存
一、样品的浓缩
生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩.常用的浓缩方法的:
1、减压加温蒸发浓缩
通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩.
2、空气流动蒸发浓缩
空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩.
3、冰冻法
生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的.如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液.
4、吸收法
通过吸收剂直接收除去溶液中溶液分子使之浓缩.所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开.常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积.
5、超滤法
超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点.应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用.另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响.Diaflo
超滤膜的分子量截留值:
膜名称分子量截留值孔的大的平均直径
XM-300300,000140
XM-200100,00055
XM-5050,00030
PM-30 30,00022
UM-2020,00018
PM-1010,00015
UM-21,00012
UM05500 10
用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动.然后将纤维管浸入待透析的蛋白质溶液中.当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能.这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍.
二、干燥
生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥.真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素.在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体.操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去.此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存.
三、贮存
生物大分子的稳定性与保存方法的很大关系.干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持0-4度冰箱即可,液态贮藏时应注意以下几点.
1、样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性.
2、一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等.蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性.此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用.核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中.
3、贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求更低,应视不同物质而定.
3. 超滤率是什么意思
问题一:什么是超滤率 是指在稳定的单位跨膜压下,透析膜对水的清除能力,其大小决定脱水量。
单位是ml/h.mmHg
问题二:透析超滤率和超滤系数有什么区别 透析是生物化学实验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。 透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液中的大分子量的生物大分子被截留在袋内,而盐和小分子物质不断扩散透析到袋外,直到袋内外两边的浓度达到平衡为止。保留在透析袋内未透析出的样品溶液称为“保留液”,袋(膜)外的溶液称为“渗出液”或“透析液”。 透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜, 商品透析袋制成管状,其扁平宽度为23 mm~50 mm不等。为防干裂,出厂时都用10%的甘油处理过,并含有极微量的硫化物、重金属和一些具有紫外吸收的杂质,它们对蛋白质和其它生物活性物质有害,用前必须除去。洗净凉干的透析袋弯折时易裂口,用时必须仔细检查,不漏时方可重复使用。 超滤是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000分子量之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质。在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、与浓缩的目的。 超滤膜一般分为板框式(板式)、中空纤维、管式、卷式等多种结构。
问题三:什么是超滤系数 超滤系数:是指在单位跨膜压下,水通过透析膜的流量,反映了透析器的水通过能力。不同超滤系数值透析器,在相同跨膜压下水的清除量不同。
问题四:超滤的自用水率一般在多少 超滤是粗过滤,tds值他测不出来的。
超滤基本属于生活用水,不能直接饮用
问题五:超滤膜的去除大肠杆菌率是多少 大肠杆菌(Escherichia coli,E.coli) 革兰氏阴性短杆菌,大小0.5×1~3微米。超滤膜的截留分子量为1000~500000道尔顿或者截留溶质尺寸大小为0.005~0.1微米左右。因此,超滤膜几乎能截留溶液中所有的细菌、病毒及胶体微粒、蛋白质、大分子有机物。
问题六:超滤膜和反渗透膜的回收率各是多少? 中空纤维超滤膜肯定有回收的,由于超滤膜是 纯物理的过滤筛分的原理
回收率范围是非常广的,10%-90%
因为超滤膜功能,除了过滤,还有提纯,浓缩。每个功能系统设计的回收率都不一样
设计回收率主要是为了控制膜内的液体流动速度,减缓膜污染的时间。。
一般浊度小于5以下的,唬量50T/H以上,可以设计90-95%的回收率
反渗透膜,比较标准了。一般是50――75%
问题七:UFR是什么意思 你好,很高兴在这里回答你的问题:
.UFR
abbr.urine flow rate 尿流速;ultrafiltration rate 超滤率;undefined format record 不确定格式记录;under frequency relay 低于额定频率中继[传播];
4. 超滤原理的超滤
⑴原理
超滤膜筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。
⑵超滤膜与超滤装置
①超滤膜的种类:
常用的超滤膜有:醋酸纤维素膜,聚砜膜,聚酰胺膜
②超滤装置:主要有板框式、管式、卷式和中空纤维式等,与反渗透装置类似。
Ⅰ板框式超滤装置
优点:装置牢固,适合在广泛的压力范围内工作;流道间隙大小可调,原水流道不易被杂物堵塞;具有可拆性,清洗方便;通过增减膜及支撑板的数量可处理不同水量。
缺点:装置较笨重;单位体积内的有效膜面积较小;膜的强度要求较高,一般做在无纺布上,以增强膜的机械性能。
Ⅱ管式超滤装置
优点:原液流道截留面积较大,不易堵塞;膜面的清洗比较容易,可化学清洗或擦洗。
缺点:单位体积内膜的充填密度较低,占地面积大;膜管的弯头及连接件多,设备安装费时。
Ⅲ卷式超滤装置
优点:单位体积内的有效膜面积较大,水在膜表面流动状态比较好,结构紧凑,占地面积较小。缺点:进水预处理要求严格,对所用的膜强度要求较高,使用过程中,一旦发现膜破损须更换新的膜元件。
Ⅳ中空纤维式超滤装置:
优点:单位体积内有效膜面积最大,工作效率最高,占地面积小。中空纤维无须支撑物。
缺点:膜的清洗较困难,只能用水力冲洗或化学清洗,不能用机械清洗,另外,中空纤维膜损坏后要更换整个组件。
③超滤工艺参数
主要参数有膜通量、膜清洗和膜寿命。
在操作压力为0.11~0.6Mpa,温度小于60℃时,超滤膜的膜通量以1~500L/m2h为宜。影响膜通量的因素有:进水流速、操作压力、温度、进水浓度和原水预处理等。
膜必须定期清洗,以延长膜的寿命,正常使用的膜的寿命为12~18个月。
④超滤在废水处理中的应用
如今已应用在汽车制造行业喷漆废水、金属加工废水以及食品工业废水的处理及有用物质的回收。
超滤原理也是一种膜分离过程原理,超滤利用一种压力活性膜,在外界推动力(压力)作用下截留水中胶体、颗粒和分子量相对较高的物质,而水和小的溶质颗粒透过膜的分离过程。通过膜表面的微孔筛选可截留分子量为3x10000—1x10000的物质。当被处理水借助于外界压力的作用以一定的流速通过膜表面时,水分子和分子量小于300—500的溶质透过膜,而大于膜孔的微粒、大分子等由于筛分作用被截留,从而使水得到净化。也就是说,当水通过超滤膜后,可将水中含有的大部分胶体硅除去,同时可去除大量的有机物等。
超滤原理并不复杂。在超滤过程中,由于被截留的杂质在膜表面上不断积累,会产生浓差极化现象,当膜面溶质浓度达到某一极限时即生成凝胶层,使膜的透水量急剧下降,这使得超滤的应用受到一定程度的限制。为此,需通过试验进行研究,以确定最佳的工艺和运行条件,最大限度地减轻浓差极化的影响,使超滤成为一种可靠的反渗透预处理方法。
a. 超滤与传统的预处理工艺相比,系统简单、操作方便、占地小、投资省、且水质极优,可满足各类反渗透装置的进水要求。
b. 合理地选择运行条件和清洗工艺,可完全控制超滤的浓差极化问题,使此预处理方法更可靠。
c.超滤对水中的各类胶体均具有良好的去除特性,因而可以考虑扩大到凝结水精处理及离子交换除盐系统的预处理中。
在超滤过程中,水深液在压力推动下,流经膜表面,小于膜孔的深剂(水)及小分子溶质透水膜,成为净化液(滤清液),比膜孔大的溶质及溶质集团被截留,随水流排出,成为深缩液。超滤过程为动态过滤,分离是在流动状态下完成的。溶质仅在膜表面有限沉积,超滤速率衰减到一定程度而趋于平衡,且通过清洗可以恢复。
超滤是以压力为推动力的膜分离技术之一。以大分子与小分子分离为目的,膜孔径在20-1000A°之间。中空纤维超滤器(膜)具有单位溶器内充填密度高,占地面积小等优点。
超滤技术的优缺点
与传统分离方法相比,超滤技术具有以下特点:
1. 滤过程是在常温下进行,条件温和无成分破坏,因而特别适宜对热敏感的物质,如药物、酶、果汁等的分离、分级、浓缩与富集。
2. 滤过程不发生相变化,无需加热,能耗低,无需添加化学试剂,无污染,是一种节能环保的分离技术。
3. 超滤技术分离效率高,对稀溶液中的微量成分的回收、低浓度溶液的浓缩均非常有效。
4. 超滤过程仅采用压力作为膜分离的动力,因此分离装置简单、流程短、操作简便、易于控制和维护。
5. 超滤法也有一定的局限性,它不能直接得到干粉制剂。对于蛋白质溶液,一般只能得到10~50%的浓度。
超滤装置是在一个密闭的容器中进行,以压缩空气为动力,推动容器内的活塞前进,使样液形成内压,容器底部设有坚固的膜板。小于膜板孔径直径的小分子,受压力的作用被挤出膜板外,大分子被截留在膜板之上。超滤开始时,由于溶质分子均匀地分布在溶液中,超滤的速度比较快。但是,随着小分子的不断排出,大分子被截留堆积在膜表面,浓度越来越高, 自下而上形成浓度梯度,这日才超滤速度就会逐渐减慢,这种现象称为浓度极化现象。为了克服浓度极化现象,增加流速,设计了几种超滤装置:
1. 无搅拌式超滤
这种装置比较简单,只是在密闭的容器中施加一定压力,使小分子和溶剂分子挤压出膜外,无搅拌装置浓度极化较为严重,只适合于浓度较稀的小量超滤。
2. 搅拌式超滤
搅拌式超滤是将超滤装置位于电磁搅拌器之上,超滤容器内放人一支磁棒。在超滤时向容器内施加压力的同时开动磁力搅拌器,小分子溶质和溶剂分子被排出膜外,大分子向滤膜表面堆积时,被电磁搅拌器分散到溶液中。这种方法不容易产生浓度极化现象,提高了超滤的速度。
4. 中空纤维超滤
由于膜板式超滤装置,截留面积有限,中空纤维超滤是在一支空心柱内装有许多的,中空纤维毛细管,两端相通,管的内径一般在0.2mm左右,有效面积可以达到1平方厘米每一根纤维毛细管像一个微型透析袋,极大地增大了渗透的表面积,提高了超滤的速度。纳米膜表超滤膜也是中空超滤膜的一种。
5. 透析技术与超滤技术在生物制品中去除杂质的优缺点对比
透析和超滤技术均基于半透膜分离不同分子量物质的基本原理。然而,它们的应用领域各有侧重。透析技术在生物化学实验室中应用广泛,用于生物大分子的除盐、除有机溶剂、去除小分子杂质及浓缩样品等。透析过程主要依赖扩散压,即横跨膜两侧的浓度梯度。透析速率与膜厚度呈反比,与膜内外小分子溶质的浓度梯度、膜面积和温度成正比。透析袋通常使用纤维素制成,截留分子量约为1万,常用规格为23mm~50mm,出厂前需用甘油处理并清洗,以去除有害杂质。
超滤技术则是通过加压膜分离实现的,它能有效去除大分子溶质。超滤分为微孔过滤、超滤和反渗透三种,分别适用于不同的操作压力和膜孔径。超滤的优点在于操作简便、成本低廉,无需添加化学试剂,实验条件温和,不引起相变,防止生物大分子变性、失活或自溶。在生物制品制备中,超滤主要用于生物大分子的脱盐、脱水和浓缩。
超滤膜的选择至关重要,早期的膜为均匀的微孔薄膜,近年来发展出各向异的不对称膜,如皮肤层和海绵层组合的膜,皮肤层决定了膜的选择性,海绵层增加了机械强度,提高了膜的通透性和耐久性。超滤装置包括板框式、管式、螺旋卷式和中空纤维式四种类型,适用于处理含有生物大分子、有机胶体、多糖及微生物的液体,这些物质容易粘附和沉积于膜表面,造成浓差极化和堵塞。
超滤技术在生物制品中的应用显示出显著的经济效益,例如在制备供静脉注射的25%人胎盘血白蛋白时,改用超滤工艺后,平均回收率可达97.18%,吸附损失为1.69%,透过损失为1.23%,截留率为98.77%,大幅提高了白蛋白的产量和质量,每年可节省大量资源。
尽管超滤技术在生物制品中的应用前景广阔,但其局限性也不容忽视,如无法直接获得干粉制剂,对于蛋白质溶液只能达到10~50%的浓度。因此,未来的研究应着重于提高膜的质量和稳定性,以及开发更高效的膜材料。
6. 超滤设备和抽滤机有什么不同
理论上来是可以,但是超滤膜的孔源径很小,所以很快就会堵塞,而且会“非常”慢。如果你想抽滤的目不是节约时间,用透析袋做透析就好了,省时省力。
如果追求分离效果,推荐你用脱盐柱做层析。如果体积大,可以先浓缩。
7. PEG聚乙二醇浓缩的原理
蛋白质浓缩
浓缩
生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。常用的浓缩方法的:
减压加温蒸发浓缩
通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。
空气流动蒸发浓缩 空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。
冰冻法 生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液。
吸收法 通过吸收剂直接收除去溶液中溶液分子使之浓缩。所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。
超滤法 超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。Diaflo 超滤膜的分子量截留值
膜名称
分子量截留值
孔的大的平均直径
XM -300
300,000
140
XM-200
100,000
55
XM-50
50,000
30
PM-30
30,000
22
UM-20
20,000
18
PM-10
10,000
15
UM-2
1,000
12
UM05
500
10
用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。然后将纤维管浸入待透析的蛋白质溶液中。当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能。这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍。
8. 有蛋白质和食盐的混合物。有什么办法吧食盐除掉
要看是什么性质的蛋白质,如果是可溶的蛋白质,可以用透析的办法:将混合物溶解,用超滤膜包进行浓缩透析,在这个过程中,盐会被逐渐分离出去,而蛋白质会被纯化。如果量很少的话,可以用透析袋进行透析,将混合物溶解后放入透析袋中,将袋口扎紧,放入注射水中,隔一段时间更换注射水,数次之后就可以完全分离。如果是不可溶解的蛋白质,过滤就可以分离了。哈哈,我是做蛋白质纯化的。