A. 测发热量时,为什么加10ml蒸馏水
加入10毫升水为吸收生成硫酸,硝酸生成热!缺点是对于部分煤质落入水中容易熄灭燃烧的样品!造成测量结果偏低!博云天科技煤炭化验设备部
B. 求计算:已知电动压缩机参数,大概算出配套的蒸发器的制冷量和冷凝器的散热量
根据压缩机的制冷量来制作蒸发器和冷凝器:
压缩机制冷量=蒸发器制冷量
冷凝器散热量=压缩机制冷量+压缩机轴功率
蒸发器是制冷四大件中很重要的一个部件,低温的冷凝“液”体通过蒸发器,与外界的空气进行热交换,“气”化吸热,达到制冷的效果。
主要由加热室和蒸发室两部分组成。加热室向液体提供蒸发所需要的热量,促使液体沸腾汽化;蒸发室使气液两相完全分离。加热室中产生的蒸气带有大量液沫,到了较大空间的蒸发室后,这些液体借自身凝聚或除沫器等的作用得以与蒸气分离。通常除沫器设在蒸发室的顶部。
蒸发器按操作压力分常压、加压和减压3种。按溶液在蒸发器中的运动状况分有:①循环型。沸腾溶液在加热室中多次通过加热表面,如中央循环管式、悬筐式、外热式、列文式和强制循环式等。②单程型。沸腾溶液在加热室中一次通过加热表面,不作循环流动,即行排出浓缩液,如升膜式、降膜式、搅拌薄膜式和离心薄膜式等。③直接接触型。加热介质与溶液直接接触传热,如浸没燃烧式蒸发器。蒸发装置在操作过程中,要消耗大量加热蒸汽,为节省加热蒸汽,可采用多效蒸发装置和蒸汽再压缩蒸发器。蒸发器广泛用于化工、轻工等部门。
冷凝器(Condenser) 制冷系统的机件,能把气体或蒸气转变成液体,将管子中的热量,以很快的方式,传到管子附近的空气中。大部分汽车上的冷凝器安装在水箱前面。发电厂要用许多冷凝器使涡轮机排出的蒸气得到冷凝;在冷冻厂中用冷凝器来冷凝氨和氟利昂之类的致冷蒸气。石油化学工业中用冷凝器使烃类及其他化学蒸气冷凝。在蒸馏过程中,把蒸气转变成液态的装置称为冷凝器。所有的冷凝器都是把气体或蒸气的热量带走而运转的。
C. 沸腾换热实验测量原理
实验原理
在盛满蒸馏水的大容器内,使水达到饱和温度后对试件通电加热,试件表面上不断产生气泡和跃离,形成稳定的泡状沸腾换热现象。当改变加热功率时,就改变了热源管表面的热负荷,可以观察到气泡的形成,扩大和跃离过程以及泡状核心随着试件热负荷提高而增加的现象。如热负荷增大至一定程度后,所产生的气泡在管壁面逐渐形成连续的汽膜,就由泡态沸腾向膜态沸腾过渡。此时壁温会迅速升高,以至会将试件烧毁。测出泡状沸腾时的加热功率及试件壁温,可以得出泡状沸腾时壁面温度与水饱和温度之差随热负荷变化的曲线,计算出泡状沸腾放热系数。
试件参数单位管子内径mm2.66.0管子外径mm3.05.4管子壁厚δmm0.20.3工作段长度Lm0.140.14热源管的发热量由流过它的电流及其工作段的电压降来确定,在试件两端测量热电压降,电流与该电压降相乘得到的功率值,就是试件表面的散热量Q。
试件外壁温度t2很难直接测定,对不锈钢管试件,可利用插入管内热电偶测出管内温度t1,再通过计算求出t2。
三、试验装置(见附图)
试验装置主要包括玻璃大容器、试件,大功率直流电源、辅助加热装置及测量系统。试件由不锈钢管制成,其两端通过电极引入低压大电流加热。为了便于观察,热源管放在盛有蒸馏水的玻璃容器中。低压大电流由功率直流电源提供,热源管的发热量由流过热源管的电流和工作段两端的电压来确定。热源管内壁温度和水的饱和温度由热电偶测量,外壁温度通过计算得到。
为使蒸馏水达到饱和温度,试验前先用辅助电热器将水加热到沸腾,并保持其沸腾状态,即可进行试验。作泡状沸腾换热试验时,可选用下表中不同直径的不锈钢管。
四、试验步骤
1、玻璃容器内充蒸馏水至4/5高度;将试验装置测量线路接好,接通工作电源。
2、辅助电热器通电,当容器中水沸腾后,调节降低工作电压,使沸腾缓慢,以便能清晰观察试件。
3、观察大容器内水沸腾的基本现象。启动功率直流稳压电源,缓慢地加大热源管的工作电流,注意观察下列的沸腾现象:
a、在钢管的某些固定点上逐渐形成气泡,并不断扩大,达到一定大小后,汽泡跃离管壁,渐渐上升,最后离开水面,产生汽泡的固定点称为汽化核心,汽泡跃离后,又有新的汽泡在住房汽化核心产生,如此再而复始,有一定的周期。
b、随热源管工作电流增加,热负荷加大,管壁上汽化核心的数目增加,汽泡跃离的频率也相应加大。
c、如热负荷增大至一定程度后,所产生的汽泡就会在管壁面逐渐形成连续的汽膜,由泡态沸腾向膜态沸腾过渡,此时壁温会迅速升高,以至将钢管烧毁(因此,本试验工作电流不允许超过100安培)。
d、为了测定不同热负荷下放热系数α的变化,工作电流在50-98安培范围内改变,共测7~8个工况,每改变一个工况,待各读数稳定后,记录数据。
e、调换不同直径的不锈钢管,进行上述试验。
f、试验结束前应将功率直流稳压电源旋至零值,然后切断电源。
五、数据整理与计算
1、电流流过热源管,在工作段ab间的发热量Q:
Q=I×U (W)
式中:I—流过试件的电流(A)
U——工作段ab间电压(V)
2、试件表面热负荷q:
q=Q/F (W/m2)
式中:F——工作段ab间的表面积(m2)
3、钢管外表面温度t2
试件为圆管时,按有内热源的长圆管,其管外表面为对流放热条件,管内壁面绝热时,根据管内温度可以计算外壁温度:
式中:λ—不锈钢管导热系数λ=16.3(W/m℃);
L—工作段ab长度(m);
ξ—计算系数
4、泡态沸腾时放热系数α
在稳定情况下,电流流过热源管发生的热量全部通过外表面由水沸腾换热而带走,即: Q=Fα(t2-ts) (w)
所以 α=Q/F△t(W/m2℃)
△t=t2-ts (C)
六、实验报告要求
1、在方格纸上,以q为纵坐标,△t为横坐标将各测试点绘出,并连成曲线。
2、将实验结果与逻逊瑙整理推荐的泡态沸腾热负荷q与温度△t的关系式:
进行比较,分析讨论系数Csf变化带来的影响。
实验原始数据记录及参数计算
试验管直径:D2= 工作段长度:L=
工作段面积 F= 系数ξ=
项目
序号物理量符号及计算公式工况
单位工况123451沸腾水饱和温度Ts℃ 3试件ab间电压降U伏 5管内壁温度t1℃ 6热源管工作电流I安培 8热源管放热量Q=I×UW 9管外壁温度t2=t1-ζQ℃ 10热源管表面热负荷q=Q/FW/m2 11沸腾放热之差△t=t2-ts℃ 12水沸腾放热系数α=Q/F△tW/m2℃
D. 发热量试验要求
量热仪化验物质发热量。
量热仪使用注意事项:
1、量热仪的氧弹应定期进行20MPa水压检查,每年至少一次。
2、量热仪使用完毕后应保持表面清洁干燥,用软布将其擦干净,以防腐蚀。如果长期不用时,应将内筒里的水排放掉。
3、氧气减压器在使用前应将零件上油污擦洗干净,以免在充氧时,发生意外爆炸事故,氧气减压器应定期进行耐压试验,每年至少一次。
4、量热仪使用的理想环境温度是20℃±10℃,室内禁止使用各种热源。如果没有空调,仪器最好放在朝阴的房间,不能有阳光直射,仪器应有良好的接地。若使用压缩机制冷工艺量热仪可不考虑环境温度因素。
5、氧弹的密封每次使用前应仔细检查,如密封垫圈损坏,应即调换,以防密封不良。
6 、仪器用水最好是蒸馏水或纯净水,将蒸馏水装入全自动量热仪内筒后,恒温10小时以上使用最佳。内筒的蒸馏水应定期更换,否则易造成点火失败。(最好每年换一次蒸馏水)
7、氧气瓶内压力小于3M时需要更换新氧气瓶,氧弹充氧压力不得超过3Mpa.保证氧弹正常压力,煤样品称量时不得超过1.3克。
8、专配的漏电保护器插座不得挪作它用。
9、每次换氧气瓶应检查有无漏气,否则浪费氧气
E. 葡萄蒸馏酒的制作过程
葡萄蒸馏酒的制作过程如下:
准备材料:青提1串
制作步骤:
1、青提洗净沥版干水份
F. 清洗液分离技术的研究
清洗液分离技术的研究
刘祥来 QQ584680928
所在院系:电子信息工程学系 机电051 指导老师:范剑红
摘要
介绍了国外清洗技术的发展情况及国内清洗机行业现状,指出了国内清洗技术与国外相比存在的差距和应重视的问题。利用PIC16C72单片机实现了对智能型电热水器的控制。其主要控制功能除了通常的控制加热和保护外,还具有较强的智能,包括根据用户设定的温度自动调节冷热水的混水比例,给出恒定温度等。同时介绍了系统的结构、硬件和软件设计。介绍了产品的外观及电子电路设计,包括报警电路和延时电路等,PTC热敏电阻的介绍以及优势优点。
关键词:智能型电热水器 单片机 清洗机 清洗机现状 智能型电热水器 单片机 报警电路 热敏电阻
1绪论
1.1 课题背景及研究意义
清洗行业是随着工业化和现代化的进程及社会生产的需要而产生和发展起来的。所有工业部门都有某种形式的清洗,只是不同的部门对清洗的重视、依赖程度及应用发展水平不同。工业清洗具有重要意义:恢复设备装置生产能力、保证生产连续高负荷运行的必要手段;对设备的清洗,可以有效地延长设备的使用寿命;对设备的清洗,有利于节能降耗、降低冷却水的用量;对设备的清洗,是降低安全事故发生的有效途径。概括起来有节能、降耗、节水、安全、稳产、提高产品质量、加快生产速度、延长设备使用寿命、降低环境污染以及外表美观和人类的卫生健康等目的。开展对“碳氢真空超声波清洗干燥系统”的开发,对于发展我国的环保事业是完全必要的。我国到处都在建设新的工厂和生产线.正在逐步成为“世界加工厂”.巨大的市场需求.为工业清洗设备制造商和专业清洗剂生产供应商提供了快速发展的良机.鉴于该产品的市场前景较好且有国家的大力支持,我觉的此项目投入能带来巨大的经济效益和社会效益,开展对工业清洗液分离技术的研究是非常有必要的。目前国内大部分的工厂都使用全自动清洗机,特别是使用日立全自动生化分析清洗机。由于该型仪器的检测速度很快。准确性又好。很受广大工厂的欢迎。但是该清清洗机价格昂贵,操作复杂。至于国内的清洗机,国内的清洗即清洗效果差或清洗机没用几天机器就被腐蚀,国内的清洗机跟国外的清洗机相比还是有一定的距离,为了降低成本。研究出一种能使用于自动加热分离清洗液的意义重大。 参考文献[27[28]
1.2 本课题旨在研究工业清洗液分离技术,主要工作内容有:
(1)清洗剂冷却、加热蒸馏以及清洗剂自动循环回收系统的设计制作。
(2)清洗剂内循环的过滤、沉淀、排渣、蒸馏、控温、补液以及工艺过程。导热油加热系统、冷却、液位/温度传感器、油水分离器、PLC自控系统、液位/温度/压力自控系统。
(3)增加防爆措施。防止因仪器液体发生爆炸而误伤工作人员。
(4)从清洗液的原料选择。。
(5)研究目标:工业清洗液分离技术的研究。
1.3 本课题设计基本要求和一般过程
(1)是在满足预期功能的前提下,性能好,效率高,成本低。安全可靠。操作简单。维修方便。
(2)是确定加热器的工作原理,选择合适的机构。拟定设计方案;对加热器的各个工作机构进行能力计算,总体设计。
(3)是如何提高系统安全。水箱不能直接进行加热。防止油水因直接加热导致爆炸,对水箱的材料也应该进行选择,电炉丝的功率也要进行适当的选择。选什么样的炉丝做材料等等
(4)是对水箱容器大小的设计。以及混合液中含水量,含酒精量,含油量,含煤油量的测定,以及要计算加热多久刚好全部挥发出水,酒精,油,煤油,在这段时间内电炉丝产生多少热量。空气消耗了多少热量。以及水蒸气带走了多少热量等等。
2加热器的选择
2.1 概 述
电热丝加热器是电加热器中最早出现的最普遍的加热器 如实验室中使用的电炉,电烘箱,恒温培,电热套等民用方面的如面包烘烤炉,电吹风,电烙铁等这一类电加热器具有结构简单发热养箱温度控制方便的特点。工厂以及我们平常使用的含有电阻丝的电阻主要是PTC热敏电阻, PTC热敏电阻是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时,它的电阻值随着温度的升高呈阶跃性的增高。 它的电阻值随着温度的升高呈阶跃性的增高。电阻常常会因为电阻通电加热,产生的热量过多而烧坏电阻,因此选择电阻的时候应该考虑防止温度过高,本课题选用PTC热敏电阻作为发热元件。因为PTC热敏电阻除用作加热元件外还具有使温度保持在特定范围的功能,又起到开关作用,还可对电器起到过热保护作用。。
2.2 PTC热敏电阻电热丝加热器工作原理
电加热器是依据电阻通电加热产生热量的原理,电热管通电后,依据焦耳定律Q=I2Rt,电热管产生热量,热量通过介质传递给水箱里的水从而使水变成水蒸或者使水中的温度到达了油的挥发点而挥发出油。PTC热敏电阻除用作加热元件外,同时还能起到“开关”的作用,兼有敏感元件、加热器和开关三种功能,称之为“热敏开关”, 如图1和2所示电流通过热敏电阻元件后电阻丝产生热量引起温度升高,即发热体的温度上升,当超过居里点温度后,电阻增加,从而限制电流增加,于是电流的下降导致元件温度降低,电阻值的减小又使电路电流增加,元件温度升高,周而复始,因此具有使温度保持在特定范围的功能,又起到开关作用.利用这种阻温特性做成加热源,作为加热元件应用的有暖风器、电烙铁、烘衣柜、空调等,还可对电器起到过热保护作用。
PTC热敏电阻电热丝加热器发热原理:电热丝加热器发热是根据焦耳–楞次定律Q=I2Rt而发热温度在几百至一千多摄氏度之间,辐射(散失) 的热量Q1随温度的升高而增大 即:
Q1=Q-Q2 = I2Rt-[Cm(T-T0)+C m(T1-T0)]
公式中Q 是电能提供的总热量,Q2是电热丝及介质等的热容热量,C是电热丝比,C0是介质等的比热容。m是电热丝质量,m0 是介质等的质量,T0是室温,T是电热丝发热温度,T1是介质等的温度。刚通电时T随时间而升高,当电提供的能量与散失的能量达到动态平衡时,电热丝发热温度T就稳定不变。散失的能量达到动态平衡时,电热丝发热温度T就稳定不变。参考文献[29]
图1 直接保护原理图图 图 2 间接保护原理图
2.3电热丝加热器的结构
2.3.1 电阻丝材料的选择
加热器一般采用镍铬合金丝作为发热器,这是因为该类材料具有电阻率高且熔点温度较高的特点,为了使单位面积发出的热量高 温度更高 都将电热丝制成螺旋状盘绕在耐高温而绝缘陶瓷或云母介质上,电源引入一般用铁质螺丝螺母连接 如下图3和图4所示,其接点根据不同的加热器有二至十多个接点。
2.3电热丝加热器的结构
2.3.1 电阻丝材料的选择
加热器一般采用镍铬合金丝作为发热器,这是因为该类材料具有电阻率高且熔点温度较高的特点,为了使单位面积发出的热量高 温度更高 都将电热丝制成螺旋状盘绕在耐高温而绝缘陶瓷或云母介质上,电源引入一般用铁质螺丝螺母连接 如下图3和图4所示,其接点根据不同的加热器有二至十多个接点。
图3 螺旋状电热丝
图4 铁质螺丝螺母连接图
2.3.2 加热管T系列
该系列共有3种外形的加热管,可方便地在加热管插座上插拔,像插拔灯泡一样,见下图5。T系列加热管适用于不同的使用条件。
图5 两种加热管的外形简图
T1用于加热小口杯中的水,特点是管功率低。它的水平面投影为圆形,面积较小5 cm左右。因此可方便地深入口径与高度都口杯里。T2用于加热水位较深或者开水壶中的般的“热得快”加热管一样,成长条形,仅仅部设有卡槽,该槽的作用是将加热管固定在插座内,并使其与座中的金属片接触,以保电路的畅通。
T3用于加热横截面积较大容量较大,但高的容器中的水。比如说一大盆水,用T1将耗费较多的时间,无法达到快速加热的目的,T2又无法保证加热管完全伸入液体中。因此,在T1的基础上,将它的直径放大5倍,深度也提高到20 cm。
因此系统采用T3系列加热管
2.3.3 加热管插座
用来连接加热管和温度探头,像灯泡插座,加热管插入后即被卡紧,同时和插座内的金属触点接触,供电电路导通;当需要更换加热管时,像更换灯泡一样方便。加热管插座上还有一个重要部件———温度探头。需要测温时,旋下该探头,测量回路导通,可以测量;不需测量时,将探头旋入插头内的凹槽里,断开测量回停止加热路,同时保护探头免受侵蚀。
2.3.4 温度探头
主要由热敏电阻RT构成,为了保护热敏电阻,将它置于一保险盒内,该保险盒的作用是防止水侵入热敏电阻上的触点而将探头侵蚀。当选择不使用报警功能时,应将整个探头旋入加热管插座中的凹槽内。
2 2.4 电加热管特点
(1)性能稳定可靠。电加热管采用中等功率高密度设计,大大延长了电热管的寿命。不锈钢316以上材质制作,耐腐蚀、可清洗,使用寿命长。
(2)维护工作量最小 水表面除污(泡沫)器去除漂浮在水面上的矿物杂质,最大限度的去除表面污垢,水箱内配有特制电磁阀,定时控制排水,可以彻底地去除沉淀的矿物质及杂质。
(3)反复的热胀,冷缩使水箱水垢不断脱落。
(4)更优化的结构设计,用常用工具就可以方便的进行检视和维修。
(5)安全的电路设计:三级电路保护:短路、过电流、漏电保护使其免去用户的担心。
(6)防干烧设计,当电热元件加热温度超过电热元件能承受的极限的时候,自动切断加热元件的电源,保护电热元件不被烧坏。
(7)特殊的保温设计:以适用各种工作环境及最大限度的减小能量的损失。
2.5 三种控制方式
(1)开关式控制:接受讯号即开(关),达到精确控制温度。
(2)时间比例控制(PID):根据实际工况变化,采用模糊逻辑的PID算法,自动修正参数,调节可变功率达到最佳温度节能状态。
(3)比例控制:利用智能调控模块(SCR)切割相角输出功率,经控制器的精确计算输出控制信号,使功能输出与控制信号成线性对应。控制精度可达RH±1%之内。
2.6 设计重要参数以及性能曲线
下面是一些在电加热计算中经常要用到的性能曲线,对我们的设计是很有帮助的。
2.6.1 阻-温特性(R-T)
电阻-温度特性通常简称为阻温特性, 指在规定的电压下,PTC热敏电阻零功率电阻与电阻温度之间的依赖关系。零功率电阻,是指在某一温度下测量PTC热敏电阻值时,加在PTC热敏电阻上的功耗极低,低到因其功耗引起的PTC热敏电阻的阻值变化可以忽略不计。额定零功率电阻指环境温度25℃条件下测得的零功率电阻 。
lgR(Ω)
25 Tmin Tc T(℃)
图6阻-温特性曲线
Ik 在外加电压Vk时的动作电流
Ir 外加电压Vmax时的残余电流
Vmax 最大工作电压
VN 额定电压
VD 击穿电压
2.6.2 伏-安特性(V-I特性)
电压-电流特性简称伏安特性,它展示了PTC热敏电阻在加电气负载达到热平衡的情况下,电压与电流的相互依赖关系。
I(A)
Ik
Vk VN Vmax VD V
图7 伏-安特性特性曲线
Ik 在外加电压Vk时的动作电流
Ir 外加电压Vmax时的残余电流
Vmax 最大工作电压
VN 额定电压
VD 击穿电压
PTC热敏电阻的伏安特性大致可分为三个区域:在0-Vk之间的区域称为线性区,此间的电压和电流的关系基本符合欧姆定律,不产生明显的非线性变化,也称不动作区。在Vk-Vmax之间的区域称为跃变区,此时由于PTC热敏电阻的自热升温,电阻值产生跃变,电流随着电压的上升而下降,所以此区也称动作区。在VD以上的区域称为击穿区,此时电流随着电压的上升而上升, PTC热敏电阻的阻值呈指数型下降,于是电压越高,电流越大,PTC热敏电阻的温度越高,阻值越低,很快导致PTC热敏电阻的热击穿。伏安特性是过载保护PTC热敏电阻的重要参考特性。
2.6.3 电流-时间特性(I-t特性)
电流-时间特性是指PTC热敏电阻在施加电压的过程中,电流随时间变化的特性。开始加电瞬间的电流称为起始电流,达到热平衡时的电流称为残余电流。
图8 电流-时间特性曲线
一定环境温度下,给PTC热敏电阻加一个起始电流(保证是动作电流), 通过PTC热敏电阻的电流降低到起始电流的50%时经历的时间就是动作时间。电流-时间特性是自动消磁PTC热敏电阻、延时启动PTC热敏电阻、过载保护PTC热敏电阻的重要参考特性。 参考文献[25][26]
2.6.4 与热效应有关的参数
(1)耗散系数δ:电阻器中功率耗散的变化量与元件相应温度变化量之比称为耗散系数,其单位为 W/℃。耗散系数是表征电阻器与周围媒介进行热交换能力的一个参数, 也是PTC元器件应用中十分重要的参数之一。 在材料配方、工艺一定的前提下, PTC本身的居里温度、升阻比均基本不变, PTC器件的其它性能参数则由其结构、外壳及散热条件决定。耗散系数则是这些条件的综合表现。因此PTC元器件的动作时间、恢复特性等均与耗散系数有关。对于大功率发热件来讲,耗散系数就更重要,它直接影响到功率输出。
当PTC热敏电阻器两端加上电压时,由于功耗。电阻体温度逐渐升高,同时向周围媒质散发热量直至电阻体的温度达到稳定,此时消耗的功率全部扩散到媒质中。电阻器的功耗变化量△P与电阻体的温度变化量△T之比就是耗散系数δ。
耗散系数对于各种加热器件的结构设计十分重要, 只要在器件结构上略加修改便可使电参数大为提高,很多工程师却长期被困扰在PTC材料和配方的研究上,这是十分可惜的。
(2)热时间常数ε:表征元件对周围环境温度反应的快慢,当系统中有温度传感器时,这个参数十分重要。热时间常数定义为:在零功率条件下,当环境温度突变时,电阻的温度变化了其始末温差的63。2%所需要的时间,用ε表示。
(3)热容量C:使电阻器的温度每升高1℃所需要的热量,称为热容量,单位J/℃,C=εδ。
(4)热传递条件:有温度差。热量:在热传递过程中,物体吸收或放出热的多少。
热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。
(5)汽化:物质从液态变成气态的现象。方式:蒸发和沸腾,汽化要吸热。
影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动。蒸发有致冷作用。
(6)比热容C:单位质量的某种物质,温
度升高1℃时吸收的热量,叫做这种物质的比热容。 比热容是物质的特性之一,单位:焦/(千克℃) 常见物质中水的比热容最大。 C水=4。2×103焦/(千克℃)物理含义:表示质量为1千克水温度升高1℃吸收热量为4。2×103焦。
(7)热量计算:Q放=cm⊿t降 Q吸=cm⊿t升 。Q与c、m、⊿t成正比,c、m、⊿t之间成反比。
(8)电功率的定义式:P=W/t 常用公式:P=UI W=Uit Q吸=cmΔT。 参考文献[21]
2.7 电加热器的设计计算
2.7.1 电加热器的热量设计步骤,一般按以下四步进行:
(1)计算从初始温度加热至设定温度的所需要的功率以及所需要的时间。
(2)计算维持介质温度不变的前提下,实际所需要的维持温度的功率。
(3)设备及其空气散热损失的热量。
(4)根据以上两种计算结果,选择加热器的型号和数量。总功率取以上二种功率的最大值并考虑1。2系数。
2.7.2 热量计算
(1)初始加热所需要的功率
KW = ( C1M1△T + C2M2△T )÷ 864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃)
M1M2分别为容器和介质的质量(Kg)
△T为所需温度和初始温度之差(℃)
H为初始温度加热到设定温度所需要的时间(h)P最终温度下容器的热散量(Kw)
(2)维持介质于恒温度所需要的功率
KW=C2M3△T/864+P
式中:M3每小时所增加的介质kg/h
(3)维持介质于恒温度所需要的功率
KW=C2M3△T/864+P
式中:M3每小时所增加的介质kg/h
(4)热敏电阻的物理特性用下列参数表示:电阻值、B值、
①.电阻值:RT(KΩ)
热敏电阻的阻值与温度成指数关系,可近似表示为:
①
其中:R2:绝对温度为T2(K)时的电阻(KΩ)
R1:绝对温度为T1(K)时的电阻(KΩ)
B:(T1-T2)温区内B值(K)
图9 空气气水和蒸汽加热功率密度选择曲线(电加热管壳体为耐热10000C的不绣钢)
②:B值(K)
B值决定于热敏的电导激活能,是反映热敏电阻阻值随温度变化快慢的参数,表达式为:
②
其中:B:(T1-T2)温区内B值(K)
R1:绝对温度为T1(K)时的电阻(kΩ)
R2:绝对温度为T2(K)时的电阻(kΩ)
(5)加热设备散热损失计算方法的理论分析根据传热学理论,热设备表面总的散热损失量Q可由下式计算
Q=qpj•S(1)
式中 S——设备总散热外表面积,m2
qpj——总平均热流密度,W/m2
因此,这里的根本问题就是如何获取总平均热流密度qpj的值。总平均热流密度的计算在理论上有热流测试法、导热传热法和对流传热法三种方法。
A热流测试法:热流测试法指直接用热流计测出设备表面不同部位或不同温度区域的热流值,然后取平均值作为最终结果。由于实际工程中某些装置有许多无法用热流计测试的部位,而且测试得到的结果又有很大的片面性,所以该方法准确性不高,仅适于现场粗略估算时采用。因此本系统不采用它。
B导热传热法导热传热计算方法是根据傅里叶导热定律,在已知内外壁温度及保温层热阻的情况下(设备钢壁热阻很小可忽略)计算出热流值的。其计算公式为
③
③ 式中 qi——局部热流密度,W/m2
δi——该局部保温层的折算厚度,m
λ——保温材料的导热系数,W/m•℃
tm——水箱内壁温度,℃
tbi——水箱外壁温度,℃
这里,我们认为造成设备外表面温度场非均匀分布的原因是保温层受到损坏,导致热阻(λ/δi)减小。而一般情况下材料的导热系数是基本上恒定的,故理论上可认为热阻减小的原因是保温层受到损坏而减薄了。但是,实际上保温层并不是均匀减薄,而是局部的各种情形的损坏,这里仅以保温层的折算厚度来表示损坏的程度。δi值通过局部热流测试,然后利用式(2)反算得出。总平均热流密度为
④
⑤
⑥
即局部热流以局部面积Si加权的平均值。
该方法由于需要通过局部热流测试反算δi,故其准确性也要受到很大影响。并且计算复杂本系统也不采用此方案
C对流传热法
对流传热法以设备外表面与环境空间的自然对流传热为理论基础,在已知设备外表面温度tbi、环境温度t0及气流速度V时,可由式(3)及下式计算出总平均热流qpj。
⑦
I式中 α——设备外表面与环境间的对流换热系数, W/m2
对次系统水箱以及其他设备,由下列公式(4)
⑧
将式⑧代入式⑥整理后得到 ⑨
通过红外热象测试,可以得到准确的设备外表面温度场分布结果,即tbi值,于是可以计算出总平均热流密度qpj的值。显然,计算的核心是求表面温度用面积加权的平均壁温。 参考文献[22] [24]
2.8 电加热器设计计算举例
有一只封闭的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后并保持水箱内的水的温度保持15分钟不变。需要多大的功率才能满足所要的温度。 技术数据:
1、水的比重:1000kg/m3
2、水的比热:1kcal/kg℃
3、钢的比热:0.12kcal/kg℃
4、水在70℃时的表面损失4000W/m2
5、保温层损失(在70℃时)32W/m2
6、容器的面积:0.6m2
7、保温层的面积:2.52m2
初始加热所需要的功率:
容器内水的加热:C1M1△T = 1×(0.5×1.2×0.5×1000)×(70-15) = 16500 kcal
容器自身的加热:C2M2△T = 0.12×150×(70-15) = 990 kcal
平均水表面热损失:0.6m2 × 4000W/m2 × 3h × 1/2 × 864/1000 = 3110.4 kcal
平均保温层热损失:2.52m2 × 32W/m2 × 3h × 1/2 × 864/1000 = 104.5 kcal
(考虑20%的富裕量)
初始加热需要的能量为:(16500 + 990 + 3110.4 + 104.5)×1.2 = 70258.8 kcal/kg℃
工作时需要的功率:
加热补充的水所需要的热量:20kg/H × (70-15)×1kcal/kg℃ = 1100kcal
水表面热损失:0.6m2 × 4000W/m2 × 1h × 864/1000 = 2073.6 kcal
保温层热损失:2.52m2 × 32W/m2 × 1h × 864/1000 = 69.67 kcal
(考虑20%的富裕量)
工作加热的能量为:(1100 + 2073.6 + 69.6)×1.2 = 6486.54 kcal/kg℃
工作加热的功率为:6486.54 ÷864÷1 = 7.5 kw
初始加热的功率大于工作时需要的功率,加热器选择的功率至少要27.1kw。
最终选取的加热器功率为7kw。选取4根7KW的电加热管同时对加热水箱进行加热。
2.9 电加热器的构成
电加热器的构成如下图10。
2.10 使用条件及维护方法
(1)可使用污水,煤油水,汽油水质无特殊要求
(2)环境温度>4℃,湿度≤90%RH。
(3)水电到位,外壳保持接地。
(4)建议定期清洗水箱。(半年为一周期).
(5)电加热器长时间不用,应按下排水按钮将水箱里的油水排放干净。
G. 石油蒸馏物的成份及用途
石油蒸馏物的成份有汽油、柴油、煤油、石蜡、石油沥青、润滑油、石油焦等等。
经过加工石油而获得的各类石油产品在不同的领域内有着广泛的,不同的用途。
1、燃料
各类石油产品中用量最多的动力燃料类各种牌号的汽油,柴油,煤油和燃料油,广泛用于各种类型汽车、轮船、飞机、火箭等动力机械。
2、润滑油
润滑油使各类滑动、转动、滚动机械,仪器减少磨损、保证速率,起到润滑、散热、密封、绝缘等作用,保护机件以延长它们的使用寿命并节省动力。
3、沥青
沥青具有良好的黏结性,抗水性和防腐性,广泛用于铺筑路面,作防腐防水涂料及制造油毛毡和碳素材料等。
(7)蒸馏釜散热量计算公式扩展阅读
历史发展
19世纪20年代主要石油产品为灯用煤油,原油加工量较少,原油蒸馏用釜式蒸馏法(原油间歇送入蒸馏釜,在釜下加热)进行。
19世纪80年代,随着原油加工量逐渐增加,将4~10个蒸馏釜串联起来,原油连续送入。
1912年,美国M.T.特朗布尔应用管式加热炉与蒸馏塔等加工原油,形成了现代化原油连续蒸馏装置的雏形,原油加工量越来越大。
近30年来,原油蒸馏沿着扩大处理能力和提高设备效率的方向不断发展,逐渐形成了现代化大型装置。
原油蒸馏是石油炼厂中能耗最大的装置,采用化工系统工程规划方法,使热量利用更为合理。此外,利用计算机控制加热炉燃烧时的空气用量以及回收利用烟气余热,可使装置能耗显著降低。
H. 板式蒸发器蒸发一吨水 要消耗多少蒸汽
单效蒸发器蒸发每吨水蒸汽消耗一吨鲜蒸汽,多效蒸发器五效蒸发每吨水版消耗大约0.3-0.4吨生蒸汽,均权不算动力电耗和冷凝水的价格。
蒸发浓缩结晶单元能耗一般和待处理物料的性质和蒸发量有很大关系,蒸发装置蒸发每吨水大概耗能15-55KW电能。
(8)蒸馏釜散热量计算公式扩展阅读:
板式蒸发器优势:
1、传热系数高。 板式蒸发器由彼此倒置的各种波纹板组成,以形成流动路径。 通过管道的流体的传热系数较高,是壳管式的3-5倍。
2、对数平均温差大,最后的温差小。 管壳式蒸发器中的流体是具有小的平均温差系数的错流。 板式蒸发器采用并流或逆流模式,末端温差小,与水的热交换能量小于1℃。
3、占地面积小。 板式蒸发器结构紧凑,体积中的蒸发器比管壳式蒸发器大2-5倍,占地面积更小。
4、易于换热交换区或工艺组合。 只需添加或减少几块板即可更改传热面积并更改印版布置以重新组装工艺。
5、重量轻。 板型的厚度在0.4-0.8mm的范围内,壳管型的厚度在2.0-2.5mm的范围内,因此重量更轻。
I. 松脂如何加工
用水蒸气蒸馏或其他方法将松脂分成松节油和松香的过程。松脂中的挥发性物质为松节油,非挥发性的熔合物为松香。
简史
中国的松脂加工业历史久远,在20世纪50年代以前都是简单地将块状松脂放入蒸馏釜内,用直接火加热炼制。由于松脂含油少,杂质和氧化树脂多,加工所得的松节油收率低,松香质量差。50年代以来采用了新的采脂方法,松脂质量改善,部分工厂改用间歇水蒸气加工松脂的生产工艺,松节油的收率和松香质量都有提高。60年代初,大部分小型厂改进了直接火法的炉灶结构,在炼制过程中往釜中滴水,以降低蒸煮温度,改善了这些厂产品的质量。70年代推广了松脂加工连续化生产。80年代初实现了松脂蒸馏的自控。
加工方法
包括松脂贮存、输送、蒸馏。松脂加工厂备有贮脂池,以便按计划连续生产。加工时用螺旋输送机将池中松脂送至料斗进行加工。规模较大的工厂,贮脂池离加工车间较远,松脂通过管道用压缩空气送至车间料斗。蒸馏工艺分连续水蒸气蒸馏法、间歇水蒸气法和简易加工法3种。
连续水蒸气蒸馏法
用水蒸气作为加热和解吸介质加工松脂的方法。先用水蒸气将松脂加热熔解,使成流体状态(脂液),滤去大部分杂质;后用澄清的方法净制,进一步除去细小杂质和绝大部分水;最后,将净制脂液用过热水蒸气蒸出松节油,得到松香。这三个工序是连续进行的。连续水蒸气蒸馏法马尾松松脂加工工艺流程如图1。松脂从上料螺旋机输入料斗,再经螺旋给料器不断送入连续熔解器,并加入适量的水和松节油。在熔解器中松脂被加热熔解。熔解脂液经过滤滤去大部杂质,流入连续澄清槽,杂质在残渣受器内定期排出。澄清后的脂液连续流入贮脂罐。中层脂液于中层脂液澄清槽澄清后流入压脂罐,用水蒸气压入中油贮槽回收。脂液泵将澄清脂液从贮脂罐抽出,经过转子流量计计量、预热器加热后连续送入蒸馏塔。蒸馏塔上段蒸出优油和水的混合蒸汽,经换热器(9)冷凝后流入优油油水分离器(10),分离后的优油流入贮槽,一部分送至熔解器作熔解松脂用,其余的经盐滤器除水后流入优油仓库。塔下段蒸出的重油和水的混合蒸汽由换热器冷凝后,经油水分离器分离水分。重油流入仓库。塔底部连续放出松香。
图1松脂熔解
为了除去松脂中的杂质和水分,先将松脂熔化成流体,然后进行净制。松脂熔解时加入松节油,使脂液中松香和松节油的比例成64~62∶36~38,以降低脂液的浓度和粘度。加原料松脂8~10%的水,洗涤松脂,除去水溶性色素。加草酸0.05~0.1%,以还原深色的树脂酸铁盐。连续熔解器有卧式和立式的两种。卧式为一圆筒,由不锈钢板焊制,内有带孔翼片的螺旋器,推动松脂块前进。使松脂块有足够的熔解时间。在器底设直接水蒸气喷管,用水蒸气加热熔解松脂。立式熔解器为一圆筒体,由一根直立的进脂管与熔解器本体下部相连而成。器下部设直接水蒸气喷管,底部锥形,装有排渣阀门。松脂、熔解用松节油和水连续地沿进脂管流入熔解器下部,然后在熔解器中由下而上不断地被直接水蒸气加热而熔解。较脂液重的粗渣、泥沙等沉积于熔解器底部,通过锥底下的排渣阀门定期排放。熔解脂液从熔解器顶部流入滤渣器滤去大部杂质,进入净制工序。在熔解过程中,蒸发出的油水蒸气可用换热器冷凝流回熔解器中。熔解温度控制在96℃以下。
脂液净制
中国多采用澄清法。此法设备简单,维修容易,无须消耗动力,缺点是占地面积大,分离时间长,还需加一套中层脂液处理设备。通常采用半连续式澄清槽组,水分和杂质通过2~4个澄清槽分离,生产量较小时,也可只用一个澄清槽。脂液澄清连续进行,水与杂质间歇排出。澄清的脂液再经一小型过滤器,除去未沉降极少量的树皮杂质后,流至蒸馏塔。澄清过程中,在澄清脂液和下层水之间,有一层脂液、细小杂质和水的混合物,称中间层。中间层与渣水由各槽下部放出,再经进一步澄清后放回至熔解器回收,或直接蒸馏回收黑色松香和松节油。
连续蒸馏
净制脂液直接蒸馏时,沸点随脂液中松香含量的增加而升高,如欲将松节油蒸尽,温度将达到250~300℃,这将使树脂酸脱羧分解,大大影响松香质量。水蒸气蒸馏可降低蒸馏温度,保证松香质量。蒸馏时适当提高温度可减少水蒸气的耗量。马尾松松脂常压连续蒸馏工艺有3种:①一塔三段。蒸馏塔用盲板分隔为三个塔段,相邻塔段间有溢流管相通,净制脂液经预热器加热至140℃左右,连续进入塔上部,在三个塔段的顶部分别蒸出优级松节油(优油)、中间松节油(中油,作熔解用)和高沸点松节油(重油)与水的混合蒸汽,经换热器冷凝和油水分离后得优油、中油和重油。从塔底连续放出松香。塔底温度一般为190~200℃。②二塔三段。净制脂液经预热后进入第一塔,塔分两段,上段蒸出优油与水的混合蒸汽,经冷凝后得优油;下段蒸出中油、重油与水的混合蒸汽,经分凝塔分离中油和重油。塔底放出松香。③一塔二段。蒸馏塔分隔成两段,上段蒸出优油与水的混合蒸汽,下段蒸出重油与水的混合蒸汽,分别冷凝和油水分离后得优油和重油,塔底放出松香。松脂中不含高沸点油分时可采用一个塔,亦不分段,蒸出全部优油,塔底温度亦可降低。
连续蒸馏塔一般为板式塔,采用浮阀塔较多。每一塔段底装有直接水蒸气喷管,喷出过热水蒸气,温度在300~350℃,每块塔板上装有水蒸气加热盘管,以加热脂液,供给松节油气化所需热量。各级松节油和水的混合蒸汽由换热器冷凝冷却。可用浮头式列管换器或较高效的螺旋板换热器。在换热面积较小时,可用盘管换热器。
间歇水蒸气法
分三个工序间歇进行,其原理和工艺条件与连续水蒸气法基本相同。间歇水蒸气法马尾松松脂加工工艺流程如图2。松脂从螺旋输送机进入料斗,经密闭加料阀间歇流入熔解釜,以直接水蒸气加热熔解后的脂液用水蒸气压入过渡槽。熔解时逸出的松节油和水的混合蒸汽经气液分离器和换热器回收。熔解脂液在过渡槽贮留10分钟后经过滤器流入澄清槽组(7、8、9、10)澄清。澄清脂液从澄清槽(10)分次流入一级蒸馏釜,蒸出优油和水的混合蒸汽,经换热器(12)冷凝、油水分离器分层和盐滤器(14)除去残水,优油由贮槽送往油库。蒸完优油的脂液分次流入二级蒸馏釜,按温度先后蒸出中油、重油,中油和水的混合蒸汽经换热器(16)冷凝、油水分离器分出的中油由贮槽泵往加油罐作熔解松脂用。重油和水的混合蒸汽经换热器(16)冷凝、油水分离器分层和盐滤器除残水,除水重油经重油贮槽送往油库。过渡槽和澄清槽逸出的松节油蒸汽经换热器冷凝流入加油罐回收。澄清时的中层脂液经排渣槽在中层脂液澄清槽再澄清后于喷提锅回收松节油,并蒸煮黑松香。
图2松脂间歇熔解每次加料量按30分钟生产能力计算。间歇式熔解器为直立圆锥形,用不锈钢板焊制,也有用普通钢板内衬混凝土制成。直接水蒸气喷管设于底部,喷管上面有筛板。松脂熔解后,由熔解釜上部通入水蒸气(2~3千克/平方厘米),将脂液从底部压出,送至净制工序。较大的杂质留在筛板上,定期从出渣口清除。净制的工艺流程和设备与连续法相似。为了防止从熔解釜压送脂液时对澄清槽中脂液的搅动,在澄清槽前设一过渡槽,有效容积为一次熔解脂液的量。有的工厂在澄清槽后设一澄清脂液过渡槽,计量蒸馏一次的脂液,用水蒸气压送至一级蒸馏釜。马尾松松脂间歇水蒸气法蒸馏分二级或三级进行,一级蒸馏釜蒸出优油,二级蒸馏釜蒸出中油、重油,最后放出松香。或在一个蒸馏釜中分三个阶段蒸出优油、中油、重油。通常进料温度在85℃左右,加热至150~155℃前蒸出优油,175℃前蒸出中油,185~200℃前蒸出重油。蒸馏釜为不锈钢制圆筒体,下部设有间接水蒸气管加热脂液和一定数量小孔的直接水蒸气喷管,通入300~350℃过热直接水蒸气蒸出松节油。松脂中不含高沸点油分时只用一级蒸馏,在180℃前将松节油全部蒸出。
简易加工法
有滴水法、双釜滴水法和简易水蒸气法3种。
滴水法
将松脂装入蒸馏釜内,用直接火加热,以滴入水的方式产生水蒸气蒸出松节油。蒸馏釜由不锈钢板或铝板焊制,炉灶用砖砌成。松脂入釜后,炉灶开始生火,先蒸出部分轻油。当釜内温度上升至一定温度时,经转子流量计计量滴水,调节水量和温度先后蒸出优油、中油、重油,经冷凝后分别收集。釜内放出的松香,以两层不锈钢(或铜)网夹脱脂棉过滤,除去杂质,再进行包装。滴水法加工所需设备简单,投资少,对动力要求不高,设于靠近采脂林区,松脂可及时加工,减少运输过程中松节油的损失及松香的氧化。由于用直接火加热,松香质量不稳定,且易酿成火灾。
双釜滴水法
在单釜生产的同一灶上方增设一熔解釜,利用烟道气的余热,对松脂进行预热、熔解,然后借高位差使熔解的松脂经过滤后,间歇流入蒸馏釜中,进行蒸馏。双釜生产比单釜生产缩短加工工时,降低燃料用量,杂质在蒸馏之前滤去,可以提高产品质量,生产也比较安全。
简易水蒸气法
又称小蒸汽法。该法不用直接火加热,而用过热水蒸气,兼作解吸介质。是双釜滴水法的改进。其特点是:在松脂质量较好时,可不加松节油熔解,也不设澄清工序,并免去残渣处理设备。蒸馏过程中过热水蒸气二次利用,用轮蒸法分别蒸出优油和中油、重油。比直接火法安全。
产品处理
①松香包装:连续蒸馏塔生产的松香可直接从塔底经管道输入包装场,灌装于镀锌铁皮桶内,每桶松香净重225~230千克。如输送管道过长,可用水蒸气夹套保温。间歇水蒸气法或简易加工法放出的松香,先装入铝板制的槽(车),然后分装于桶中。装桶时应取样检验松香的质量。装满松香的铁皮桶用包装车分运至包装场冷却,桶间应保持一定距离,以利散热。松香全部固化约需3昼夜。冷却后的松香经结晶检查合格才能入库。②松节油的收集:从蒸馏设备蒸出的各类松节油和水的混合蒸汽,通过换热器冷凝和冷却,进入油水分离器分离水分。优油和重油再经盐滤器除去所含乳状水分即得产品优级松节油和重质松节油。③松香结晶:结晶影响松香质量,松香晶体熔点较高,可达110~135℃,难于皂化,降低松香使用价值。严重结晶的松香为等外品。中国马尾松松脂中枞酸型树脂酸含量较多,加热过程中发生异构,造成单一树脂酸组成含量过高而出现结晶现象。蒸馏温度较低,放香后冷却较快,长叶松酸含量较多时,易产生低温结晶。蒸馏温度过高,时间较长,异构剧烈,形成大量枞酸,易产生高温结晶。加热温度适当、冷却过程合理、长叶松酸和枞酸的含量比例适当时,结晶趋势最低,不易产生结晶现象。晶体在105~120℃时成长速度最快,在熔融松香冷却过程中,通过这段温度区域时间过长时,也易产生结晶现象。水分对晶体的形成也有较大的影响,松香含水率在0.15%以上者易结晶。包装冷却过程中,如有晶种存在,也会引起松香结晶。松香包装时,液香流槽内常有白色的混浊物,放香时这种白色混浊物被热香带入包装桶,难被热香熔化而悬浮在液香中,充当晶种而引起松香结晶。热香冷却过程中,受到振动,亦易引起结晶。防止松香结晶必须综合考虑到上述各方面的因素。如:根据原料的组成特性,确定适宜的蒸馏温度和时间以及冷却条件,以控制松香中树脂酸的异构程度,使结晶趋势最小;注意冷却环境,使松香较快地通过由40℃冷到80℃这一降温过程;保证过热水蒸气的干度和温度,降低松香含水率;保持松香包装工段的清洁,勿使晶体带入包装桶等。
趋势
中国随着工业的发展,国民经济许多部门对松香质量的要求日益提高,在国际市场上尤应努力提高松香质量,以加强竞争能力;水蒸气蒸馏法松脂加工将得到进一步发展;采用高真空蒸馏新工艺生产高酸值高软化点浅色松香,以满足用户的特殊需要。
松脂加工设备
见松脂加工。