❶ 碲的制备方法
工业上是从铜冶炼的电解铜的阳极泥中提取碲。含碲约3%的阳极泥干燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒挥发,碲留在焙烧渣中。用水浸出硫酸铜,再用氢氧化钠溶液浸出,得到亚碲酸钠溶液。浸出液用硫酸中和,生成粗氧化碲沉淀。两次重复沉淀氧化物,然后进行水溶液电解,可得含碲为98%~99%的碲。
可由炼锌的烟尘中回收而得。
❷ 元素硒是从何物质提炼出来的L硒是属于哪种硒呢
有色金属冶金工业中,提取硒的主要原料为电解产出的阳极泥,其中居于首位的是铜电解的阳极泥,约占原料来源的90%,其次是镍和铅电解的阳极泥。此外,有色冶炼与化工厂的酸泥(从烟气中回收得到的尘泥或淋洗泥渣)也富含硒,也可作为硒提取的原料。
湿法提硒
(1)硫酸化焙烧提取硒
目前,世界上约半数的阳极泥采用硫酸化焙烧处理。该方法的优点主要有以下几点:
•物料呈浆状,操作过程中机械损失较少。
•可以回收提硒残渣中的碲,回收率大于70%。
•在硫酸化焙烧过程中,由于不形成硒酸盐或亚硒酸盐,因此,还原硒时可不需另加盐酸,比较经济。
•简单地在第一工序将硒提取,硒的回收率大于93%。
•不发生硒及其化合物的华,烟气量少,减少了硒的毒害。
•适宜于对含贵金属及铜、镍、铅、铋多的阳极泥综合利用。
硫酸化焙烧提取硒的工艺流程见下图:
在硫酸化焙烧过程中,将阳极泥配以料重80%~110% 的硫酸,搅拌混合均匀,在350~500℃温度下焙烧,物料中的硒及其化合物与硫酸发生如下主要化学反应:
Se+2H2SO4=H2SeO3+2SO2↑ +H2O (1)
Se+2H2SO4=SeO2↑ +2SO2↑ +2H2O (2)
CuSe+4H2SO4=SeO2↑ +CuSO4+3SO2↑ +4H2O (3)
Cu2Se+2H2SO4+2O2=SeO2↑ +2CuSO4+2H2O (4)
Ag2Se+4H2SO4=SeO2↑ +Ag2SO4+3SO2↑ +4H2O (5)
其它硒化物(MeSe)及重金属(Me)等发生如下反应:
4MeSe+12H2SO4=4SeO2↑+4MeSO4+6SO2↑+12H2O+S2 (6)
Me2Se+4H2SO4=SeO2↑ +Me2SO4+3SO2↑ +4H2O (7)
Me+2H2SO4=MeSO4+SO2↑ +2H2O (8)
在硫酸化焙烧过程中,阳极泥中的硒及其化合物发生反应,生成极易挥发的SeO2,SeO2 极易溶解于水生成H2SeO3。因此,采用串联数级盛水的吸收塔,吸收烟气中的SeO2,在高于70℃的吸收温度时,硒的吸收率大于90%。在温度高于70℃时,生成的亚硒酸被烟气中的二氧化硫还原为单体硒。在吸收SeO2 过程中,控制吸收液的硫酸浓度与温度很重要。如果硫酸的浓度过高则会发生如下反应:
Se+H2SO4=SeSO3+H2O (9)
Se+2H2SO4=SeO2+2H2O+2SO2 (10)
SeO2+2H2O+3SO2=H2SeS2O6+ H2SO4 (11)
若溶液温度低于70℃,硒生成H2SeS2O6。在高于70℃时,H2SeS2O6 不稳定而离解析出硒:
H2SeS2O6=Se↓+SO2+H2SO4 (12)
(2)氧化焙烧—碱浸提硒
鉴于硒及其化合物在低温下可氧化为氧化物,该类氧化物易被氢氧化钠浸出。硒被浸出后,转入盐酸介质中,通入二氧化硫还原出硒。一般铜阳极泥在250~380℃下进行氧化焙烧,过程中发生如下化学反应 :
Cu2Se+2O2=CuSeO3+CuO (13)
CuSe+2O2=CuSeO4 (14)
2Ag2Se+3O2=2Ag2SeO3 (15)
Ag2Se+O2=2Ag+SeO2↑ (16)
AuSe2+2O2=Au+2SeO2↑ (17)
在90℃的温度下,焙烧料用碱浸出,发生如下化学反应:
Ag2SeO3+2NaOH=Na2SeO3+H2O+Ag2O (18)
CuSeO3+2NaOH=Na2SeO3+H2O+CuO (19)
SeO2+2NaOH=Na2SeO3+H2O (20)
碱浸出液采用硫酸中和至pH 为7~8 时,溶液中的Na2SeO3 转化为H2SeO3:
Na2SeO3+H2SO4=H2SeO3+Na2SO4 (21)
向H2SeO3 的溶液中加入盐酸酸化,并通二氧化硫将H2SeO3 还原为元素硒,得到的粗硒粉含硒99%,其反应方程式为:
H2SeO3+2SO2+H2O=Se↓+2H2SO4 (22)
Na2SeO3+2HCl+2SO2+H2O=Se↓+2H2SO4+2NaCl (23)
(3)加压氧浸提硒
将铜阳极泥加入高压釜中,在温度为160~180℃、氧压为250~350 kPa 的条件下进行浸出,碲以Te4+或Te6+形态转入溶液,碲与铜浸出率接近100%。浸出渣经过制粒焙烧,阳极泥中的硒被氧化为二氧化硒,经过水吸收,二氧化硫还原为单质硒。
加压浸出提取硒的工艺流程见下图:
(4)水溶液氯化提取硒
向浆化的阳极泥中通入氯气,氯气通入矿浆中,与其中的水反应形成强氧化性的HClO,然后,从物料中浸出硒:
H2O+Cl2=HCl+HClO (24)
2HClO=2HCl+O2 (25)
Se+2HClO+H2O=H2SeO3+2HCl (26)
Cu2Se+4HClO= H2SeO3+H2O+2CuCl2 (27)
Ag2Se+3HClO= H2SeO3+HCl+2AgCl ↓ (28)
当HClO 过量时,硒及其化合物被氧化形成H2SeO4:
Se+3HClO+H2O= H2SeO4+3HCl (29)
Cu2Se+5HClO= H2SeO4+H2O+2CuCl2+HCl (30)
Ag2Se+4HClO= H2SeO4+2HCl+2AgCl ↓ (31)
3Se+SeO2+4HCl=2Se2Cl2+2H2O (32)
水溶液氯化的最佳条件是:氯化温度25~80℃、液固比为8、HCl 水溶液中含50~100g/L 氯化钠、氯气用量为1kg 阳极泥0.9~1.3 kg Cl2。
氯化法综合回收硒与碲典型工艺流程见下图:
(5)选冶结合提硒
选冶结合提硒分为阳极泥选冶提硒和酸泥选冶提硒两种方法。选冶法的优点在于经济适用,脱铅良好。减少了后续处理物料量,硒、碲和贵金属的选矿回收率高,且脱铜工序与湿磨阳极泥合一,简化了工艺。
①阳极泥选冶提硒
由于阳极泥粒度较细,含铅等金属量高,采用相应的选矿捕收剂,优先浮选得硒、碲精矿;然后从中回收硒、碲。前苏联莫斯科铜厂阳极泥成分为(%):Se 2~6,Au0.04~0.16,Ag 2.81~3.17,Pd 0.09~2.84,Pt 0.01~0.44,Cu 11.28~27.6。先将阳极泥脱铜,再调料浆浓度达200g/L,加入丁基铵黑药250g/L 进行浮选,获得含硒9.23%~14.35% 的硒精矿,硒的回收率大于94.4% 。
②酸泥选冶提硒
含硒0.08%~0.11%、银0.05%、铅49.5% 的某铜厂酸泥,其中硒主要呈Cu2Se 与Ag2Se,99% 的铅为PbSO4。经微酸加乙二胺预处理后,用石灰500g/t、丁基黄药100g/t 等药剂浮选脱除尾矿,浮选得含硒1.05%、银0.72% 的精矿,硒的回收率达到87%。
(6)萃取法提取硒
由于硒及其化合物或多或少具有毒性,从环境保护考虑,萃取法显然具有很好的发展前景。
①盐酸介质中萃取硒
TBP可萃取盐酸溶液中的硒,在萃取过程中,采用TBP 可将溶液中的Se4+ 萃取;胺类萃取剂如三辛胺(TOA)可在盐酸介质中萃取Se4+,要求TOA 的浓度超过0.7mol/L。
②硫酸介质中萃取硒
在硫酸介质中,萃取硒的报道较少。有报道可采用D2EHPA/ 甲苯萃取Se4+,在含0.05~2.5mol/L 的硫酸溶液中,可用二乙基二硫代磷酸钠/CCl4 萃取Se4+。
迄今为止,除TBP 在工业上用于萃取Se4+ 外,还未见到其他萃取剂用于硒的工业应用报道。
(7)离子交换树脂吸附硒
在盐酸溶液中,硒会形成相应的HSeO3-、HSeO4-、SeO32- 及SeO42- 等络合阴离子,在盐酸浓度超过6mol/L时,则形成SeCl5-、SeCl62- 等络合阴离子。可采用阴离子交换树脂ЭДЭ-10П 及АВ-17 等交换吸附硒,硒在pH值为3~4 的溶液中具有最大的交换吸附率。
在硝酸介质中,我国研究者采用离子交换树脂、通过交换吸附,将99%的粗硒提纯到99.995% 的纯硒。首先,采用硝酸将99% 的粗硒溶解得含硒15g/L 的亚硒酸溶液;然后,通过OH- 型阴离子交换树脂吸附硒:
H2SeO3+2ROH=R2SeO3+2H2O (33)
当树脂交换吸附达到饱和后,在80℃的温度下,采用6% 氢氧化钠溶液解析:
R2SeO3+2NaOH=2ROH+Na2SeO3 (34)
将较纯净的Na2SeO3 溶液调pH=5.5,通过H+ 型阳离子树脂交换,得到纯H2SeO3 溶液:
Na2SeO3+2RH= H2SeO3+2RNa (35)
将所得纯净的H2SeO3 溶液, 采用NaHSO3 或Na2SO3 溶液还原,沉淀出99.995% 的硒粉。
火法提硒
(1)苏打法提取硒
苏打法是另一种从阳极泥中回收硒的方法,其优点在于:在第一道工序就能使贵金属与硒、碲良好分离,且贵金属回收率高;硒的回收工艺简单;可以综合回收碲与铜。苏打法提硒可分为苏打熔炼法与苏打烧结法。
①苏打熔炼法回收硒
将脱铜阳极泥配以料重40%~50% 的苏打,混合均匀并投入电炉中,在450~650℃下进行苏打熔炼,硒与碲转变为易溶于水的硒酸盐或亚硒酸盐,相关化学反应方程式:
2Se+2Na2CO3+3O2=2Na2SeO4+2CO2 (36)
Cu2Se+ Na2CO3+2O2=Na2SeO3+CO2+2CuO (37)
将脱铜阳极泥配以料重40%~50% 的苏打,混合均匀并投入电炉中,在450~650℃下进行苏打熔炼,硒与碲转变为易溶于水的硒酸盐或亚硒酸盐,相关化学反应方程式:
2Cu2Se+2Na2CO3+5O2=2Na2SeO4+2CO2+4CuO (38)
CuSe+ Na2CO3+2O2=Na2SeO4+ CO2+CuO (39)
2CuSe+2Na2CO3+3O2=2Na2SeO3+2CO2+2CuO (40)
SeO2+Na2CO3=Na2SeO3+ CO2 (41)
Ag2Se+Na2CO3+O2=Na2SeO3+CO2+2Ag (42)
2Ag2Se+2Na2CO3+3O2=2Na2SeO4+2 CO2+4Ag (43)
2Na2SeO3+O2=2Na2SeO4 (44)
苏打熔炼反应起始于300℃,在500~600℃时,反应便剧烈进行;温度达到700℃,则会有SeO2 的明显挥发。为了保证氧化反应完全进行,使硒生成水溶性盐,苏打熔炼温度应控制在650~700℃进行。
苏打熔炼法回收硒的典型工艺流程见下图:
②苏打烧结法回收硒
此法适于处理贫碲高硒的阳极泥物料,因高碲料会妨碍获得纯硒。将含Se21%、Te1%的阳极泥配入料重9%的苏打,加水调成稠浆,挤压制粒、烘干,投入电炉内,保持低于烧结温度下,控制在450~650℃通入空气进行苏打烧结,硒转化为硒酸钠或亚硒酸钠。烧结料用80~90℃热水浸出,在通空气搅拌的情况下,得到含铜62g/L、银3.6g/L 的亚硒酸盐溶液,此浸出液经浓缩至干,干渣配上炭在600~625℃的电炉内还原熔炼而得到Na2Se:
Na2SeO3+3C=Na2Se+3CO (45)
Na2SeO4+4C=Na2Se+4CO (46)
水溶解Na2Se,过滤得到的残渣返回利用。向滤液鼓入空气氧化而得到灰硒产物:
2Na2Se+2H2O+O2=2Se↓+4NaOH (47)
在此过程中,90% 的硒自溶液中析出,经水洗即得粗硒,硒的总回收率在93%~95% 的范围内。
苏打烧结法回收硒的流程见下图:
利用硒的低沸点,而铜、铅、锌、金、银等沸点较高的的特性,将硒与杂质分离。将含硒物料投入真空蒸馏炉内,加温到300~500℃,含硒物料熔融,控制真空度为13~30 Pa,蒸馏与保温2~3 h,物料中的硒被蒸馏出来,导入冷凝室于270~300℃冷凝,从冷凝物回收得到92% 的粗硒,经处理除杂得99.5% 硒;而高沸点难挥发的其他物质残留在蒸馏渣中,可从蒸馏渣中分别综合回收有价金属。
硒提取工艺发展趋势
目前,硒的提取工艺主要分为火法提硒和湿法提硒。火法提取硒工艺由于对原料的适应性强、操作简单,在工业生产中得到了广泛的应用,已经成为一种传统的提取硒的工艺,在相当长的一段时间内,火法提硒成为从铜电解阳极泥中提取硒的主导工艺。但火法提硒工艺也存在一些问题,如烟气量大、易于产生SO2 和SeO2 等有毒气体、能耗高等,严重影响其进一步推广应用。而湿法提硒工艺则具有能耗低、清洁环保、生产成本低等优点,因而湿法提硒工艺将逐渐替代火法提硒工艺,成为提取硒的主导工艺。
❸ 如何从铜阳极泥中浸出金
铜阳极泥提金银
铜阳极泥提金银(extraction of gold and silver from copper anode slime)
从铜电解阳极泥中富集和回收金、银的过程,为冶金副产物提金的重要部分.铜阳极泥是由铜阳极在电解精炼过程中不溶于电解液的各种物质所组成,物相成分比较复杂,其中银主要为Ag、Ag2Se、Ag2Te、CuAgSe、AgCl,金呈(Ag、Au)Te2或游离状态.铜阳极泥组成视产地而异,一般成分(质量分数ω/%)为:cu10~25,Au0.5~5,Ag5~30,Se2~28,Te0.1~8,.Pb1~25;另含少量铋、锑、砷、铁、Al2O3、SiO2,微量钯、铂,水分20%~40%.大型冶炼厂处理铜阳极泥多使用火法-电解流程,同时并发展了浸出脱铜和湿法处理工艺.火法-电解流程通称传统工艺.
传统工艺 工艺流程和铜阳极泥处理基本相同,主要过程为:(1)硫酸盐化焙烧蒸馏除硒和焙烧渣浸出脱铜;(2)浸出渣经还原熔炼产出贵铅合金;(3)贵铅合金氧化精炼为金银合金即阳极板;(4)银电解;(5)银阳极泥预处理后进行金电解.传统工艺流程冗长复杂、返料多、金属直收率不高,为此出现了处理铜阳极泥的新工艺.这些新工艺虽在某种程度上取代了传统工艺,但实质上仍为传统工艺的改进方法.
传统工艺的改进方法 有低温硫酸化焙烧一湿法处理、低温氧化焙烧一湿法处理、硫酸化焙烧湿法沉淀金银、浮选富集金银和住友法和湿法处理等.它们能更好地保护环境,缩短生产周期,加快资金周转,提高企业经济效益.阳极泥含铜很高,预先脱铜,有利于金银的提取.因此,新工艺在脱铜方法上进行了程度不同的改进.
低温硫酸化焙烧-湿法处理 工艺流程如图1.主要过程为:(1)铜阳极泥低温硫酸化焙烧和蒸馏除硒(573~953K);(2)蒸馏除硒渣用H2SO4+NaCl溶液浸出脱铜;(3)用氨水浸出脱铜渣中的银;(4)用水合肼还原银氨溶液中的银,所得银粉送银电解;(5)脱银渣加Na2CO3使铅的氯化物和硫酸盐转变成碳酸铅,再用硝酸脱铅,得到的脱铅渣即为高品位金精矿;(6)金精矿用盐酸和Cl2溶解,用SO2还原金溶液得粗金粉送金电解,还原金后的母液加锌粉置换得钯铂精矿;(7)金精矿氯化产出的不溶渣送回收锡、锑.此法特点在于以湿法代替传统的熔炼贵铅、火法精炼工艺,仍保留硫酸化焙烧、蒸馏除硒、浸出脱铜和金、银的电解精炼作业.这种改进不仅消除了铅害,缩短了处理周期,而且使金、银从阳极泥到电解的直收率分别由73%和81%提高到99.2%和99%.
低温氧化焙烧-湿法处理 工艺流程如图2.主要过程为:(1)低温648K氧化焙烧使铜氧化成CuO,Ag2Se氧化为Ag2SeO3,用稀硫酸浸出使铜、硒、碲转变成CuSO4、H2SeO3、H2TeO3进入溶液而得以分离;(2)脱铜渣先氯化分离金,即在硫酸介质中加NaClO3于353~363K温度下搅拌浸出金、钯和铂:
然后调整溶液至pH2~3,加草酸还原金,粗金粉送金电解或溶解后萃取精制.还原金后的母液用锌粉置换钯、铂或经溶剂萃取回收钯、铂处理;(3)金浸出渣用含NaClO3250g/L溶液在溶液pH8、固液比1:8条件下浸出3h,银生成Ag(SeO3)3-进入浸出液,银浸出率99%~99.8%,浸出液约含银50g/L,用甲醛还原得银粉,母液可循环使用,铅全部留在分银渣中.此法的主要优点是金、银直收率高,分别为98.5%和96%;比传统法高12%及16%;生产周期短,处理成本低;消除了铅和氨对操作环境的有害影响.
硫酸化焙烧-湿法沉淀金银 工艺流程如图3,主要由硫酸化焙烧与蒸馏除硒、稀硫酸浸出及浸出渣溶解分离金等过程组成.(1)硫酸化焙烧和蒸馏除硒:在硫酸:阳极泥=1:1、573K温度下焙烧2h以及在823~873K温度下焙烧4h,硒挥发率在99%以上,吸收的硒经还原后得粗硒.(2)稀硫酸浸出:用含硫酸1.5mol/L的溶液在固液比1:(12~15)、353~363K温度下浸出蒸馏除硒渣2h,铜浸出率为99%,银浸出率为98%,浸出液用铜置换得海绵银.(3)浸出渣溶解分离金:稀硫酸浸出渣用NaClO3溶液浸出铅、碲后产出的含金浸出渣,用过量3倍的溶液在溶液含H2SO41.5mol/L和NaCl2mol/L、固液比l:10、353~363K温度下浸出4h,浸出所得溶液调整至pH2~3,用草酸还原得纯度99.99%的金.
浮选法富集金银 中国和日本都采用浮选法富集铜阳极泥中的金和银.中国的作法是将脱铜、硒后的阳极泥磨细后浮选,浮选时加铁屑置换银,在348~353K温度下加硫酸调整溶液的pH,加偏磷酸抑制脉石和铅,以乙二醇、松节油或甲基异丁基甲醇做起泡剂,丁基黄药或黑药做捕收剂,在弱酸性到含硫酸200g/L介质中浮选.经一次粗选、二次扫选、二次精选得到精矿,金、银的回收率分别达到95.5%、97.4%,90%的铅留在尾矿.选出的精矿一般为原阳极泥量的50%.精矿加苏打熔炼得粗银阳极板,电解得纯银.从银电解阳极泥中提取金.浮选法对环境污染比原火法熔炼有较大改善,缺点是尾矿含金、银较高,分别为30~60g/t和60~900g/t.
住友法 为日本住友金属矿山公司所用的方法.铜阳极泥干燥后加入673K温度的焙烧炉中进行氧化焙烧,加料后炉子在1h内均匀升温至793K后,快速升至973K,并保温1h.焙砂经细磨后在353K温度、固液比1:5条件下用浓硫酸浸出3h,浸出渣用氯化法浸出金、银,浸出液用盐酸沉淀出AgCl后再送去精炼提金,金的直收率98%以上.所得AgCl送精炼提银.
湿法处理 工艺流程如图4.主要过程为:(1)采用稀硫酸和空气(或氧气)氧化浸出脱铜,脱铜液返回铜电解;(2)脱铜渣以氯气、氯酸钠作氧化剂,控制氧化剂用量即浸出电位只浸出其中的硒、碲,而不浸出金、银、钯和铂,浸出液送回收硒、碲;(3)浸出渣以NH.OH或:Na.S0.浸出银,银浸出液送银精炼;(4)银浸出渣用HNO3除铅后,用NaClO3或Cl2、盐酸氯化溶解金,金溶液送金精炼.
❹ 怎么蒸马碲糕
做法
材料:马蹄粉500g、砂糖
750g、马蹄肉250g、清水3000g、沙拉油50g
步骤:
1:马蹄粉加水搅拌至没有粉粒,制成生粉浆.
2:马蹄肉切粒,放入生粉浆中,拌匀.
3:砂糖炒至金黄色加水,加水.煮至溶化,制成糖水.
4:把热糖水加入生粉浆中,搅拌均匀,制成马蹄粉浆.
5:在蒸的容器扫一层油,防止粘底.
7:把马蹄浆倒入容器,抹平.
8:猛火蒸40约分钟,放凉后切减即成
怎么蒸马蹄糕
材料:
马蹄粉500克,清水2500克,红糖500-550克左右(根据个人口味增减)
做法:
1.
将1000克清水加入马蹄粉中,浸泡半小时左右。
2.
将1500克清水烧开,然后加入红糖,至完全融化。
3.
在等待2完成的时候,将1充分搅拌,至马蹄粉和水完全融合成浆液,没有胶着在容器底部。
4.
将2熄火,稍待几分钟让水温降低到大约80度左右。
5.
将3匀速倒入4中(不宜过快或过慢),并不断搅绊。生浆液被沸水烫成半生浆,呈糊状。
6.
将5倒入蒸盘,放入微波炉高火蒸20分钟。
7.
彻底冷却后成马蹄糕。
注意:
1.
马蹄粉的好坏直接影响到成品的口感
2.
即使质量再好的马蹄粉和红糖,始终都会有些杂质量,这是由制作工艺决定的。在红糖融化成糖水之后,如果发现有杂质沉淀,可以先将红糖水倒出,去掉底部沉淀物再重新倒入锅中煮沸。在泡马蹄粉的时候,可以将浮在水面的一些小杂质弄掉。在倒生浆的时候(即步骤5)要留意,倒到最后可以看到容器底部有沉淀的杂质,注意不要一并倒进沸水中。
3.
蒸马蹄糕的关键在于烫生浆粉的水温,也就是步骤4。根据老妈的经验,大约在80度左右最佳。但是我们都没有具体用温度计量过,只能凭感觉。所以说这是最难的一步,多摸索几次也许就有感觉了。如果生浆倒入后马上结成透明疙瘩状,说明水温过高,烫得过熟。如果还是白色糊状,说明水温过低,烫得太生。半生浆呈半透明糊状为最佳。我这次做得不够爽口,原因就是粉浆烫得不够熟。
4.
将半生浆导入蒸盘的时候尽量将表面抹平,否则熟了之后表面不好看。如果倒入不同形状的容器,蒸出来的马蹄糕就会形状不同。
5.
蒸好之后要等它彻底凉透了再去倒出来,否则会不成形。
❺ 分离与富集
硒、碲与其他元素的分离方法,主要有以下6类。
62.6.2.1 共沉淀分离法
共沉淀通常使用的载体是砷和氢氧化铁及其他氢氧化物。
(1)砷沉淀剂分离
硒(Ⅳ)和碲(Ⅳ)在盐酸溶液中很容易被还原为单质。因此,利用载体与硒、碲共沉淀是分离和富集它们的常用手段。通常使用的载体是砷,硒、碲也可互为载体。由于它们的氧化还原电位不同(ESe4+/Se=0.74V;ETe4+/Te=0.57V),所以亚硒酸能被一些弱还原剂,如二价铁盐、亚硫酸、有机酸和蔗糖等,还原成单质硒。亚碲酸则需用较强的还原剂,如盐酸肼、氯化亚锡或金属锌等才能被还原。选择适当的还原剂或调节还原时溶液酸度,可使硒和碲彼此分离。试样中硒、碲含量通常很低。目前多采用在6mol/LHCl中,以砷为聚集剂,用次磷酸钠为还原剂,使硒、碲和砷还原成单质而共沉淀。当用砷作聚集剂时,从大量含铜和铅的试样中能定量地回收硒,但碲的回收率仅93%,故碲的校准曲线最好从沉淀开始操作。
这种共沉淀方法不能分离金、汞,因为金、汞也能被还原而析出。因此,如有金存在,所得沉淀可用硝酸处理,此时硒和碲重新转入溶液,而金则不溶于硝酸。少量金、汞对测定碲有影响,可用三氯甲烷-二硫腙萃取,或铜试剂-四氯化碳萃取分离。
大量铋存在时,有少量铋与硒、碲共沉淀,加入酒石酸可防止铋的共沉淀。
大量钛存在时,会有白色胶状的磷酸钛沉淀,妨碍下一步分析的进行。因此在大量钛存在下测定硒、碲,应避免使用次亚磷酸盐作还原剂。可采用在(1+9)HCl和(1+9)H2SO4中用二氯化锡还原沉淀硒、碲的方法。此时,硒、碲互为共沉淀剂。
测定雄黄、雌黄中的硒、碲,也用上述二氯化锡还原的方法较为适宜。因为用次亚磷酸钠还原,有大量砷析出,给下一步溶解、测定带来不便。
(2)氢氧化铁沉淀剂分离
在氨性溶液中,pH9.4~9.7时,可用氢氧化铁完全共沉淀碲(Ⅳ,Ⅵ)以及硒(Ⅳ),但硒(Ⅵ)仅1%与氢氧化铁共沉淀。据此,可使碲(Ⅳ,Ⅵ)与硒(Ⅵ)分离或硒(Ⅳ)与硒(Ⅵ)分离。在pH6.0~9.0,以氢氧化铁为共沉淀剂,应用于粗铜、黄铜、银、水样和硫化矿中硒(Ⅳ)、碲(Ⅳ,Ⅵ)与其他元素分离。
在氨性溶液中(pH8~9)用氢氧化铁共沉淀硒、碲时,预先加入10g乙酸铵可使大量汞进入滤液与硒、碲分离,沉淀中残留的汞小于2mg。
除氢氧化铁以外,氢氧化铍、氢氧化铬或氢氧化铅亦可用硒、碲或碲的共沉淀剂。
(3)La3+共沉淀分离
在氢氧化铵介质中,La和Zr为共沉淀剂时,Se、Te回收率均优于用Fe共沉淀剂。方法可用于ICP-MS法测定电解铜中的Se、Te。
62.6.2.2 离子交换与吸附法
(1)离子交换树脂分离
a.P201×7型阴离子交换树脂分离。采用P201×7型阴离子交换树脂交换分离SO2-4和SeO2-3;以0.1mol/LHCl溶液洗脱SeO2-3,然后用1.0mol/LHCl洗脱SO2-4,方法用于粗硒、亚硒酸钠中硫的分离测定。
b.732型阳离子交换树脂分离。利用732型阳离子交换树脂,当pH3~4时,Mg、Ca、K、Na能较完全分离而富集Se;用水可将Se定量洗脱。用ICP-AES方法测定了茶叶中的微量硒。
(2)吸附分离
巯基棉分离。不同酸度、流速下,巯基棉可分离元素情况见表62.20。
表62.20 巯基棉对各种元素的主要吸附性能
另外在0.1~7mol/LHCl中,流速为3mL/min,Au、Pt离子可被巯基棉吸附;而在2~7mol/LHCl溶液中可定量吸附Au、Pt,Pd、Rh、Ir、Fe不被吸附。被吸附的Au、Pt难于解脱。
在0.3~2mol/LH2SO4介质中,流速4mL/min,Se4+、Te4+可被巯基棉定量吸附,1mol/LH2SO4中含0.3~1mol/LHNO3对吸附没有影响。
在2~6mol/LHNO3介质中,流速2~6mL/min,巯基棉能定量吸附Se,用浓盐酸水浴煮沸3~5min,硒可定量解脱。
综上所述,Se4+、Te4+的巯基棉分离,主要选择适宜的上柱酸度和淋洗液,便可从众多的干扰离子中分离。
62.6.2.3 蒸馏分离法
硒和碲的氯化物和溴化物如SeBr、TeBr、SeCl4、TeCl4、SeOCl2、TeOCl2、SeOBr2、TeOBr2和Se2Cl2具有挥发性。可利用此特性使硒、碲与某些元素分离。
目前,使用较多的是从含过量溴的氢溴酸的溶液中蒸馏含硒试样,硒以四溴化硒的形式挥发出来,用水作吸收液。由于存在以下平衡:Se+3Br2SeBr4+Br2;因此,蒸馏硒溶液中溴必须是过量的。用这种方法即使微克量的硒亦能定量地蒸馏出来。若氢溴酸溶液中含硫酸,蒸馏温度为125℃时,则砷、锑和碲与硒一同蒸馏出来。蒸馏法广泛地应用于测定不同物质的硒。例如黄铁矿中小量的硒可先将溶液加溴和氢溴酸(1+2)蒸馏分离硒。天然水中的硒,可从含硫酸、溴化钾的过氧化氢的溶液中蒸馏出来。
62.6.2.4 溶剂萃取法
Se4+、Te4+的萃取,常以有机磷类,高分子胺类、亚砜和酮类为萃取剂。
在一定条件下,硒、碲能与磷酸三丁酯(TBP)、二硫腙、铜试剂等试剂形成离子缔合物、配合物或螯合物而被有机溶剂所萃取。
(1)磷酸三丁酯(TBP)
用TBP萃取碲!=30%的TBP-甲苯溶液可从2.8mol/LHBr-2.5mol/LNaBr溶液中萃取黄色溴化碲;!=30%TBP-四氯化碳溶液可以从强盐酸溶液中萃取分离碲;!=20%TBP-煤油溶液可从4~10mol/LHCl中萃取碲(Ⅳ),使碲(Ⅳ)与碲(Ⅵ)、硒(Ⅳ)、硫酸盐等分离。可以在大量硫氰酸酸盐存在下,从pH0.4~1.0的溶液中,用TBP萃取除去铁,而使碲与铁(Ⅱ)分离,与铁共萃取的约用5%~20%的碲,可用0.1mol/LHCl反萃取下来,合并到原来的水相。
(2)二硫腙
用二硫腙萃取硒和碲。从6mol/LHCl中,硒(Ⅳ)和碲(Ⅳ)能被溶于三氯甲烷和四氯化碳中的二硫腙萃取。干扰金属离子例如铜、银、汞、铋则在pH2先用二硫腙-三氯甲烷萃取分离。
(3)铜试剂
用铜试剂(二乙基二硫代氨基甲酸钠)萃取硒或碲。铜试剂与碲形成的配合物,不仅可以从强酸溶液中用TBP萃取,而且可在pH8.5~8.7用四氯化碳萃取。此法,可用于小量碲与硒、铂族金属以及有色金属等分离。用次亚磷酸还原沉淀硒、碲,金、汞,及少量铜、锡、锑等能与碲共沉淀,调节pH11左右,加入1mL10g/L铜试剂溶液、10mL四氯化碳,萃取使碲与金属离子分离。碲用(1+1)HNO3反萃取,硒的铜试剂配合物可被苯萃取。此法可用于铁和钢中硒的测定。
(4)硒试剂(3,3'-二氨基联苯胺)
用硒试剂(3,3'-二氨基联苯胺)萃取硒pH6~8时,硒与硒试剂的配合物可萃取入甲苯、苯或二甲苯中,用于萃取光度法测定硒。
(5)有机磷类、高分子胺类、亚砜和酮类萃取
有机磷类、高分子胺类、亚砜和酮类为萃取剂的萃取性能见表62.21。
表62.21 高分子胺类、亚砜和酮类萃取性能
续表
表中缩写说明:DOSO为二辛基亚砜;DPSO为二苯基亚砜;N503为N,N'-2(1-甲基庚基)乙酰胺;TOA为三正辛基胺;N1923为伯胺。
62.6.2.5 离子交换与吸附法
(1)离子交换树脂分离
硒(Ⅳ)在0.1~12mol/LHCl中不被强酸阳离子交换树脂吸附,所以在测定硒之前可用阳离子交换树脂除去干扰金属。在一定条件下,硒(Ⅳ)能滞留在阳离子交换树脂上,曾用于毫克量硒与硫酸根和铁(Ⅲ)分离。在低酸度下,碲(Ⅳ)比硒(Ⅳ)有较强的吸附,可借以分离此二元素。
硒(Ⅳ)在低于4mol/LHCl中不被强碱性树脂吸附,但酸度高时有些滞留。这也可用于分离这两个元素。硒(Ⅳ)用小于4mol/LHCl洗脱,碲(Ⅳ)保留在柱上,然后用0.1~1mol/LHCl洗脱。
在任何浓度盐酸中六价碲均可通过强碱性阴离子交换树脂。碲(Ⅳ)在小于1mol/LHCl中可通过阴离子交换树脂。在大于3mol/LHCl中,碲(Ⅳ)则被阴离子树脂强烈地吸附。分配系数分别为:3mol/LHCl,103;4~8mol/LHCl,5×103;12mol/LHCl,2×103。4~6mol/LHCl中二氧化硫能还原吸附在树脂上的碲(Ⅳ)为碲(0)。用盐酸洗脱其他元素后,用盐酸-硝酸混合液通过交换柱,将柱上的碲(0)氧化成碲(Ⅳ),然后用1mol/LHCl洗脱。
在小于0.3mol/LHCl中,碲(Ⅳ)完全为阳离子交换树脂吸附。碲(Ⅵ)则在任何浓度盐酸溶液中也不被阳离子树脂吸附。因此,用重铬酸钾氧化碲(Ⅳ)为碲(Ⅵ)后,通过阳离子交换树脂与铁及其他金属元素分离。
硒酸的酸性强于碲酸。因此,硒酸更容易被弱碱性阴离子树脂吸附。在pH2.6~2.8的乙酸-乙酸钠溶液,碲通过弱碱性阴离子树脂,硒(Ⅳ,Ⅵ)吸附在树脂上,使硒、碲分离。然后用3mol/LNaCl溶液洗脱吸附的硒。
(2)纸色谱分离
用甲醇-乙醇-水-氢氟酸-硝酸(45+45+12+3+0.5)的混合溶液为移动相,硒可与许多元素分离,硒(Ⅳ)、锗、碲(Ⅵ)及砷的Rf值分别为0.75、0.01、0.55和0.95。
以TBP处理色层纸,用盐酸和氢溴酸为移动相,进行反相层析可分离硒、碲、金和铂族元素。
用盐酸酸化的二异丙醚-乙醇为移动相,可使微量碲与大量铋分离。
(3)N263萃取色谱分离
以多孔硅胶-N263组成的色谱树脂为固定相,用pH5~10酒石酸钠溶液作流动相,能成功分离SeO2-3和TeO2-3。SeO2-3的保留时间小于TeO2-3的保留时间,当质量比SeO2-3/TeO2-3为200/1~1/1000时,硒、碲能完成分离。
62.6.2.6 液膜分离法
(1)N503液膜
N503是Te4+的一种良好液膜流动载体,以L113B作表面活性剂,液体石蜡作膜的增强剂,磺化煤油作膜的溶剂。由N503-L113B-液体石蜡-磺化煤油(6+5+4+85)组成的液膜,以0.15mol/LHCl作内相试剂,油内比(1+1);外相试液用5mol/LHCl为介质,乳水比(30+500),制备的该乳状液膜体系,能迅速地迁移富集试液中的Te4+。用该液膜法富集试液(或料液)中的碲,Te4+的迁移富集率在99.5%~100.3%。许多共存离子如Cu2+、Pb2+、Zn2+、Ni2+、Co2+、Cd2+、Mo6+、Al3+、Fe2+等;SiO2-3、SO2-4、PO3-4、Cl-、NO-3、ClO-4等都不渗透进入此液膜。只有Te4+能从这些离子中得到满意的分离。
(2)N1923(伯胺)液膜
由N1923-L113B-煤油(7+4+89)组成的液膜。内相:0.3~0.8mol/LNaOH溶液,油内比(1+1);外相:5mol/LHCl作介质,乳水比(20+50)~(20+100)。迁移富集10μgTe4+,125mgPb2+、Fe2+、Al3+、ΣRE3+、Zr4+、Ti4+,25mgMn2+、Cr3+、Co2+、NI2+、Zn2+、Sn4+、Cu2+、Cd2+,大量碱金属和碱土金属离子等,都不被迁移富集,SiO2-3、SO2-4、PO3-4、F-、Cl-、NO-3、ClO-4等都不影响富集碲。本方法选择性高,Te4+迁移率达99.5%以上。
❻ 碲的性质和用途是什么
碲的性质:
碲为银白色带金属光泽的固体;熔点 452℃,沸点1390℃,密度6.25克/厘米3。它有两种同素异形体,即无定形碲和晶形碲。
其电子构型为 (Kr)4d105s25p4,氧化态为-2、+1、+2、+4、+6。常温下,碲能被氧化,与卤素作用形成卤化物,如TeF6和TeCl4。碲不与水和无氧化性的酸作用,但溶于浓硫酸、浓硝酸和热碱溶液。
碲的用途:
碲加到钢中,可增加钢的延性。铸铁中含痕量碲会使铸件表面坚硬、耐磨。碲加到铅中可提高铅的硬度。碲还可用作电池的极板和印刷铅字,以及蓝、棕、红色玻璃的着色剂。
碲的制法:
碲的制法与硒相似,往往与硒化物一起提取出来,再分离出碲化物。然后将碲化物与浓硫酸一起焙烧,转变为二氧化碲TeO2或亚碲酸H2TeO3,再用二氧化硫或碳还原:
H2TeO3+2SO2+H2O─→Te+2H2SO4或用电解法得到元素碲。碲的提纯方法有电解精炼、真空蒸馏和萃取。
❼ 二氧化硒和二氧化碲分离能用蒸馏吗
都是固体,不能蒸馏
二氧化硒(Selenium dioxide)+4价的氧化物,化学式SeO₂。白色晶体,蒸气为绿色;熔点340~350℃,315℃时升华,密度3.95克/厘米3(15℃)。二氧化硒相应的酸为亚硒酸,其酸性比亚硫酸弱。硒在空气或氧气中燃烧,或将亚硒酸H₂SeO₃脱水,都可制得二氧化硒,并可用升华法提纯。
二氧化碲为无机化合物,白色粉末,平均粒径50nm以上。TeO2-05:纯度99.999%以上,铝,钙,铜,铁,镁,镍,铅,硒杂质总含量小于10ppm。主要用于制备二氧化碲单晶,红外器件,声光器件,红外窗口材料,电子元件材料及防腐剂等。包装为聚乙烯瓶封装。熔点773℃。
❽ 氯丙烯工艺理论
生产方法:1.高温氯化法 丙烯和氯气在高温下进行氯化反应;工艺过程如下;干燥的丙烯(新鲜丙烯:循环丙烯=1:3)在加热中预热至350-400℃,在反应塔入口处,与氯气混合(氯气:丙烯=1:3),经特制的喷嘴喷入炉内,炉内温度为500℃左右,利用氯化反应热预热丙烯。丙烯单程转化率为25%,氯的转化为化学计算量,烯丙基氯的总收率为80-85%,除主产品烯丙基外,还有1,2-二氯丙烯、1,3-二氯丙烯、氯化氢、1,2,3-三氯丙烷及其他少量副产品。氯化反应物急冷到50-100℃,以除去氯化氢和丙烯,再经分馏而得丙烯氯。对于年产1。35万t烯丙基氯装置,每吨产品约消耗丙烯700kg,氯气1120kg。2.氧氯化法 以丙烯为原料,以碲为催化剂,通过下列反应得到烯丙基氯;丙烯、盐酸和氧按2.5-1:1:1-0.2(摩尔比)的例混合。反应在240℃,0.101MPa的条件下进行。反应器为流化床,催化剂是载于载体上的Te V2 O5 H3 PO4,并添加含氮物作促进剂。选择性90%以上,流化床的空时收率大于100g烯丙基氯/L催化剂·小时。在小批量生产时,可以通过烯丙醇氯化得到;于10-20℃将硫酸加到烯丙醇、氯化亚铜和盐酸中。加毕,保温反应5h。静置分层,分去下层混酸,上层液水洗1次,5%碳酸钠溶液洗1次,再水洗1次,分尽水后,蒸馏收集40℃以上馏分,得烯丙基氯。收率73%。
其制备方法有高温氯化法、丙烯氧氯化法、烯丙醇氯化法等。
高温氯化法
由丙烯高温所化制得。反应方程式:CH3CH=CH2+Cl2→ClCH2CH=CH2+HCl
将干燥的丙烯经350~400℃预热,液氯经加热气化,两种物料在高速喷射状态下混合并进行反应,丙烯与氯气的配比为4~5∶1(摩尔比),反应器停留时间1.5~2s,反应温度470~500℃。反应产物急冷至50~100℃以除去HCl和丙烯,再经分馏即得到产品。此法为国内外大多数生产企业所采用。
丙烯氧氯化法
按2.5~ (1∶1∶1) ~0.2 (摩尔比) 比例混合的丙烯、氯化氢和氧气在流化床反应器中进行反应,选用催化剂为载于载体上的Te、V2O5 或 H3PO4,并添加含氮物作促进剂,于240~260℃进行常压氧氯化反应,制得3-氯丙烯。反应方程式:CH3CH=CH2+HCl+1/2O2[催化剂]→CH2=CHCH2Cl+H2O
烯丙醇氯化法
反应方程式:CH2=CHCH2OH[Cu2Cl2,HCl]→CH2=CHCH2Cl+H2O
于10~20℃将硫酸滴入烯丙醇、氯化亚铜和盐酸中,滴加完毕后保温反应5h,静置分层,上层液用水、5%碳酸钠溶液、水各洗1次,分尽水后,蒸馏收集40℃以上馏分,即为3-氯丙烯。此法适用于小批量生产。
❾ 碘131的产生和提取
产生碘131的核反应主要有:
①用碲金属或其化合物(如二氧化碲)做靶材料,在反应堆中照射,通过(n,γ)反应生成碲131,碲131再经过β衰变而获得碘131,即Te(n,β)TeI;
②用富集的铀235做靶材料,通过核的裂变U(n,f)I或U(n,f)TeI而得到碘131,碘131的总裂变产额约0.82%。
方法①可以获得较纯的产品,没有α杂质和其他裂变产物的污染,世界上许多国家都采用这个方法;用方法②制备碘131时,除可能有其他放射性碘同位素的污染外,还有α杂质和β杂质,必须进行有效的纯化,只有少数国家使用。
提取
从靶材料二氧化碲中将碘131提取出来的方法有干馏法、色谱法、萃取法和蒸馏法等,应用较多的是干馏法和蒸馏法。蒸馏法是将辐照过的二氧化碲溶解于氢氧化钠溶液,加入过氧化氢、钼盐等,然后在硫酸介质中进行蒸馏。含有碘131的馏分用加有还原剂的氢氧化钠吸收,碘131便以NaI溶液的形式得到。NaI溶液是碘131的初级产品。
生产防护
大量生产碘131时,要注意避免碘131挥发,以免给环境带来严重污染。操作应在设有负压和带有除碘装置的屏蔽箱室里进行。活性炭、涂银活性炭、银铜合金网、银网和碱性溶液等都是碘131的良好吸附剂。
用途
在核医学中,碘131除了以NaI溶液的形式直接用于甲状腺功能检查和甲状腺疾病治疗外,还可用来标记许多化合物,供体内或体外诊断疾病用。如碘131标记的玫瑰红钠盐和马尿酸钠就是常用的肝、胆和肾等的扫描显像剂。除了核医学方面的应用外,碘131还可用来寻找地下水和测定地下水的流速、流向,查找地下管道泄漏;测定油田注水井各油层吸水能力及其变化,以便及时有效地采取措施,调节水流的分配,保持油井的高产稳产等。
❿ 废贵重金属如何提炼
专利光盘:C52贵金属的提炼和回收技术 [C52-001]TDI氢化废钯碳催化剂中回收钯的工艺方法 [C52-002]氨氧化炉废料回收铂金的方法 [C52-003]奥沙利铂的制备 [C52-004]奥沙利铂提纯 [C52-005]钯催化剂的回收 [C52-006]便于分离和回收利用的贵金属纳米粒子的制备方法 [C52-007]铂催化剂的回收方法 [C52-008]铂配合物及其制备方法和用途 [C52-009]铂族金属回收中的改进 [C52-010]铂族金属硫化矿或其浮选精矿提取铂族金属及铜镍钴 [C52-011]纯铂或铂合金快速溶解法及应用 [C52-012]从铂铑合金中分离出铂铑的方法 [C52-013]从碲多金属矿中提取精碲的工艺方法 [C52-014]从电解生产双氧水的阳极泥回收铂和铅的方法 [C52-015]从非极性有机溶液中回收催化金属 [C52-016]从废钯碳催化剂回收钯的方法及焚烧炉系统 [C52-017]从废钯碳催化剂中回收钯的方法 [C52-018]从废催化剂回收铂的方法 [C52-019]从废催化剂回收金和钯的方法及液体输送阀 [C52-020]从废催化剂中回收铂的方法 [C52-021]从废催化剂中回收铂族金属的方法 [C52-022]从废铝基催化剂回收铂及铝的方法和消化炉 [C52-023]从废重整催化剂中回收铂、铼、铝等金属的方法 [C52-024]从贵金属微粒分散液中回收贵金属的方法 [C52-025]从含铂碘化银渣中回收银铂的方法 [C52-026]从含碳矿物中回收贵金属的方法 [C52-027]从精矿中回收贵金属的方法 [C52-028]从难处理矿石回收贵金属值的方法 [C52-029]从汽车尾气废催化剂中回收铂、钯、铑的方法 [C52-030]从羰化反应剩余物中回收铑的方法 [C52-031]从羰基化反应产物中回收铑 [C52-032]从铜阳极泥中回收金铂钯和碲 [C52-033]从烯烃羰基化催化剂废液中回收金属铑的方法 [C52-034]从氧化合成反应产物中回收铑的方法 [C52-035]从有机混合物分离铑的方法 [C52-036]粗铑及含铑量高的合金废料的溶解与提纯方法 [C52-037]萃取分离金和钯的萃取剂及其应用 [C52-038]低品位及难处理贵金属物料的富集活化溶解方法 [C52-039]第Ⅷ族贵金属的回收工艺 [C52-040]电子废料的贵金属再生回收方法 [C52-041]复杂组分溶液中高含量锇、钌的测定方法 [C52-042]改性石硫合剂提取贵金属的方法 [C52-043]贵金属的回收 [C52-044]第Ⅷ族贵金属的回收工艺2 [C52-045]贵金属的回收方法 [C52-046]羰基化反应残余物中贵金属的回收 [C52-047]贵金属的回收方法3 [C52-048]贵金属的碎化溶解方法 [C52-049]贵金属和有色金属硫化矿复合浮选药剂 [C52-050]贵金属铑的回收 [C52-051]贵金属熔炼渣湿法冶金工艺 [C52-052]贵金属提取用的保温电解槽 [C52-053]贵金属提取用的电解槽 [C52-054]含贵金属废水回收处理装置 [C52-055]回收低钯含量废催化剂的方法 [C52-056]一种从含有贵金属的废催化剂中回收贵金属的方法 [C52-057]从贵金属微粒分散液中回收贵金属的方法4 [C52-058]用超临界水反应剂自有机贵金属组合物回收贵金属 [C52-059]由贵金属矿中回收贵金属有用成分的湿法冶金方法 [C52-060]从含碳矿物中回收贵金属的方法5 [C52-061]从难处理矿石回收贵金属值的方法6 [C52-062]回收贵金属 [C52-063]回收贵金属和叔膦的方法 [C52-064]从精矿中回收贵金属的方法7 [C52-065]用不混溶液体从羰基化反应残余物中回收贵金属 [C52-066]从废铑催化剂残液中回收金属铑的方法 [C52-067]回收贵金属和叔膦的方法8 [C52-068]回收铑催化剂的方法 [C52-069]一种从羰基合成反应废铑催化剂中回收铑的方法 [C52-070]回收铑的方法 [C52-071]回收铑的方法9 [C52-072]回收铑的方法10 [C52-073]从羰化反应剩余物中回收铑的方法11 [C52-074]从氧化合成反应产物中回收铑的方法12 [C52-075]一种从羰基合成产物的蒸馏残渣中回收铑的方法 [C52-076]铑催化剂的处理方法 [C52-077]利用加压氢还原分离提纯铱的方法 [C52-078]利用引晶生长法制备均匀球形铂颗粒的方法 [C52-079]溶液中铑、铱与金、铂、钯分离富集方法 [C52-080]顺铂细粉及其制备方法 [C52-081]钛基材料镀铂方法 [C52-082]通过煅烧含金属的碱性离子交换树脂来回收金属的方法 [C52-083]无铑亮黄金水及制备方法 [C52-084]吸附在活性炭上的贵金属的提取方法和系统 [C52-085]吸附在活性炭上的贵金属的洗脱方法 [C52-086]锡阳极泥提取贵金属和有价金属的方法 [C52-087]硝酸装置贵金属回收器 [C52-088]岩石风化土吸附型稀散贵金属的提取技术方案 [C52-089]一种钯催化剂再生方法 [C52-090]一种从羰基合成产物的蒸馏残渣中回收铑的方法13 [C52-091]一种从羰基合成反应废铑催化剂中回收铑的方法14 [C52-092]一种分离铂钯铱金的方法 [C52-093]一种分离提纯贵金属的方法 [C52-094]一种合成羟胺盐的贵金属催化剂的再生方法 [C52-095]一种环状氨基甲酸酯类贵金属萃取剂 [C52-096]一种纳米级铂族金属簇的制备方法 [C52-097]一种生产精炼铂的工艺 [C52-098]一种双取代环状碳酸酯类贵金属萃取剂 [C52-099]一种提取锇、铱、钌的方法 [C52-100]一种提取金属钯的方法 [C52-101]铱的回收和提纯方法 [C52-102]用不混溶液体从羰基化反应残余物中回收贵金属15 [C52-103]用超临界水反应剂自有机贵金属组合物回收贵金属16 [C52-104]用控制电位法从阳极泥提取贵金属 [C52-105]用硫醚配位体从水溶液中分离钯的方法 [C52-106]由贵金属矿中回收贵金属有用成分的湿法冶金方法17 [C52-107]有机螯合剂促进活性碳纤维还原吸附贵金属离子的方法 [C52-108]真空蒸馏提锌和富集稀贵金属法 [C52-109]制备铂(Ⅱ)配合物的一种方法 [C52-110]制备铂化合物的方法 [C52-111]制备铂化合物的方法18 [C52-112]制备纳米贵金属微粒的方法 [C52-113]制取纯钯的方法 [C52-114]制取纯铱的方法 [C52-115]从低品位锡矿中直接提取金属锡的方法 [C52-116]从电解生产双氧水的阳极泥回收铂和铅的方法19 [C52-117]从镀锡、浸锡和焊锡的金属废料回收锡的方法及其装置 [C52-118]从粉状金属物料直接电解回收锡铅合金的方法 [C52-119]从黄杂铜中分离铜、锌、铅、铁、锡的工艺方法 [C52-120]从炼铜废渣中回收锡、铜、铅、锌等金属的方法 [C52-121]从硫化铅精矿冶炼金属铅的设备 [C52-122]从氯化渣中综合回收金银及铅锡等有价金属的方法 [C52-123]从铅锑粗合金中分离铅锑的方法 [C52-124]从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 [C52-125]从铅阳极泥中回收银、金、锑、铜、铅的方法 [C52-126]从铅阳极泥中回收银、金、锑、铜、铅的方法20 [C52-127]从碳酸中除去铅和镉的方法 [C52-128]从钨酸盐溶液中沉淀除钼、砷、锑、锡的方法 [C52-129]从锡精矿直接制取锡酸钠的生产方法 [C52-130]从锡矿石中萃取锡 [C52-131]脆硫铅锑矿铅锑直接分离新工艺 [C52-132]脆硫铅锑尾矿的处理方法 [C52-133]低质粗锡直接电解生产优质精锡的方法 [C52-134]底吹炉高铅渣液态直接还原炼铅的方法 [C52-135]电解法制备高纯度活性二氧化铅的方法 [C52-136]废旧电池铅回收的方法 [C52-137]废旧蓄电池铅清洁回收方法 [C52-138]废旧蓄电池铅清洁回收技术 [C52-139]废铅熔炼回转炉 [C52-140]废铅酸蓄电池生产再生铅、红丹和硝酸铅 [C52-141]废铅蓄电池回收铅技术 [C52-142]分离回收镀白铜针铜锡的方法及其阳极滚筒装置 [C52-143]分离冶金炉尘中锌铅的新工艺 [C52-144]高活性微米纯铅粉制造技术 [C52-145]高铅锑分离法 [C52-146]高铟高铁锌精矿的铟、铁、银、锡等金属回收新工艺 [C52-147]固相反应制备二氧化锡纳米晶的方法 [C52-148]含锑粗锡分离锑的方法 [C52-149]含铁、锰、锌、铅的烟尘回收铅、锌的方法 [C52-150]含锡渣直接电解生产精锡的工艺 [C52-151]褐煤炼锡 [C52-152]黑铜提锡工艺 [C52-153]降铅液及其制备方法 [C52-154]利用含铅废渣生产铅盐的方法 [C52-155]纳米锑掺杂的二氧化锡水性浆料及其制备方法 [C52-156]浅色锑掺杂纳米氧化锡粉体的制备方法 [C52-157]纳米氧化锡粉体的制备方法 [C52-158]难选锡中矿的高温氯化方法 [C52-159]贫锡复杂物料高温氯化焙烧工艺 [C52-160]铅炉渣磁选富集有价金属及其冶炼方法 [C52-161]铅锑冶炼废渣处理方法 [C52-162]铅锌矿的全湿法预处理方法 [C52-163]一种无污染含铅废弃物再生纯铅冶炼工艺 [C52-164]铅冶炼工艺 [C52-165]浅色锑掺杂纳米氧化锡粉体的制备方法21 [C52-166]生铅和精铅的除铊方法 [C52-167]湿法炼铅的一种工艺 [C52-168]水口山炼铅法 [C52-169]碳酸钠转化处理铅基金矿或铅矿工艺 [C52-170]锑火法精炼除铅法及其液态除铅剂 [C52-171]锑铅合金用硫除铅的方法 [C52-172]铜锡混杂屑末的分离方法 [C52-173]退锡或锡铅废液中回收锡的方法 [C52-174]脱铋浮渣的脱铅方法 [C52-175]无污染炼铅方法 [C52-176]无氧化锡球颗粒的制备方法及所使用的成型机 [C52-177]锡矿氯化挥发法 [C52-178]锡粒的制备方法 [C52-179]镀锡钢板电镀用锡粒的制备方法 [C52-180]锡石多金属硫化矿无抑制选矿工艺流程 [C52-181]锡中矿水冶法制取海绵锡和锡盐 [C52-182]锡中矿液相氧化法制取二氧化锡 [C52-183]新式铅冶炼反射炉 [C52-184]氧化铟锡粉末的制备方法 [C52-185]一种从废蓄电池回收铅的方法 [C52-186]一种从铁水中提锡的方法 [C52-187]一种火法处理锑贵铅工艺 [C52-188]一种铅锌多金属硫化矿的分离方法 [C52-189]一种锑的熔融萃取精炼除铅剂 [C52-190]一种无污染含铅废弃物再生纯铅冶炼工艺22 [C52-191]一种由方铅矿制备铅盐新工艺 [C52-192]以废蓄电池渣泥生产活性铅粉的方法 [C52-193]用粗焊锡生产高纯锡的工艺 [C52-194]用反射炉复合法炼铅的方法 [C52-195]用硅氟酸从硫化铅精矿浸取铅的工艺 [C52-196]用硫化铅矿直接提炼金属铅的方法 [C52-197]用绒毯溜槽从重选尾矿中回收钨、锡矿物的选矿方法 [C52-198]用于铅锌矿选择浮选的捕集剂及其制备方法 [C52-199]用于铅锌矿选择浮选的捕集剂用途 [C52-200]用于选择性浮选铅锌矿的促集剂 [C52-201]由铅阳极泥制取硝酸银、回收铜、铅、锑的方法 [C52-202]由铜合金制成的自来水管件的选择性除铅的工艺及除铅液 [C52-203]再生铅的冶炼方法 [C52-204]在中性介质中用电解还原回收废蓄电池中的铅方法 [C52-205]重选用于选别细粒浸染状构造低品位铅锌矿 [C52-206]回收废钯或氧化铝催化剂中金属钯的方法 [C52-207]铂族金属的分离,回收方法 [C52-208]通过许多破碎悬浮阶段从燃煤炉渣中回收贵金属 [C52-209]一种从羰基合成产物中回收铑的工艺 [C52-210]一种纳米贵金属及其制备方法和应用 [C52-211]用萃取法回收废催化剂中的铂 [C52-212]用巯基胺型螯合树脂回收电镀废液中的金和钯 [C52-213]用细菌菌体从低浓度的钯离子废液中回收钯的方法 [C52-214]在聚乙烯吡啶上捕集气态钌的方法, 特别用于从辐照核燃料中回收放射性钌 [C52-215]彩钼铅矿的化学分选方法 [C52-216]从方铅矿中直接提取铅的方法及设备 [C52-217]从含氧化铅和或金属铅的材料提取金属铅的湿冶法 [C52-218]粗锡精炼除铅.铋的方法及装置 [C52-219]纳米晶氧化铒-氧化锡粉体材料及其制备方法和用途 [C52-220]铅-锑粗合金离心偏析分离法 [C52-221]一种铜转炉烟灰矿渣成团冶炼铅的新工艺及其成团配方 [C52-222]应用混合捕集剂作为非硫化物矿,特别是锡石的浮选助剂 [C52-223]用熔融态锡金属回收处理印刷电路板的方法及其装置 [C52-224]直接铅熔炼生产金属铅的一种方法 详见: http://item.taobao.com/auction/item_detail--.jhtml?taomi=%%ixUuMif0i%2FqmrFlZ%2B6wu%2BaCjQpTCK1kelk9Joalg%3D%3D&ref=&ali_trackid=2:mm_12637321_0_0,12014693:102410930_1_660859680