『壹』 如何測定陽離子交換能力
你這是咋問的問題,陽離子交換能力應叫陽離子交換容量或周期製取量,是進入物體回(流體)某一指標含答量與陽離子交換載體(容積)通過計算得出陽離子工作交換容量。測定是陽離子交換出口某一指標含量(化驗手段),能否達到相關GB標准…。一傑華粼
『貳』 電化學知識是化學反應原理的重要部分,以下是常見的電化學裝置:某興趣小組同學模擬工業上用離子交換膜法
①電解時,陽極上失電子發生氧化反應,溶液中的氫氧根離子的放電能力大於版硫酸根離子的放電能權力,所以陽極上氫氧根離子失電子生成水和氧氣4OH--4e-=2H2O+O2↑,故答案為:4OH--4e-=2H2O+O2↑;
②電解時氫離子在陰極得電子生成氫氣,則氫氧化鉀在陰極生成,所以在D口導出;2L濃度為0.25mol/L的KOH溶液與2L0.025mol/L的硫酸溶液混合後,
c(OH-)=
2×0.25?2×0.025×2 |
2+2 |
1×10?14 |
0.1 |
『叄』 影響離子交換樹脂的因素
1.懸浮物和油脂 水中的懸浮物會堵塞樹脂孔隙,油脂會包住樹脂顆粒,它們都會使交換能力下降。
2.有機物 廢水中某些高分子有機物與樹脂活性基團的固定離子結合力很強,一旦結合就很難再生,結果降低樹脂的再生率和交換能力,例如高分子有機酸與強鹼性季胺基團的結合力就很大,難於洗脫。
3.高價金屬離子 廢水中Fc3+、AL3+、Cr3+等高價金屬離廣可能導致樹脂中毒。當樹脂受鐵離子中毒時,會使樹脂的顏色變深。高價金屬離子易為樹脂吸附,再生時難於把它洗脫下來,結果會降低樹脂的交換能力。為了恢復樹脂的交換能力可用高濃度酸液長時間浸泡。
4.pH值 離子交換樹脂是由網狀結構的高分子固體與附在母體上許多活性基團構成的不溶性高分子電解質。強酸和強鹼樹脂的活性基團的電離能力很強,交換能力基本上與pH值無關,但弱酸性樹脂在低pH值時不電離或部分電離,因此在鹼性條件下,才能得到較大地交換能力。弱鹼性樹脂在強酸性條件下才能有較大地交換能力。
5.水溫 水溫高雖可加速離子地交換擴散,但各種離子交換樹脂都有一定的允許使用溫度范圍。水溫超過允許溫度時,合使樹脂交換基團被分解破壞,從而降低樹脂的交換能力,所以溫度太高時,應進行降溫處理。
6.氧化劑 廢水中如果含有氧化劑(如Cl2,O2,H2Cr2O7)時,會使樹脂氧化分解。強鹼陰樹脂容易被氧化劑氧化,使交換基團變成非鹼性物質,可能完全喪失交換能力。氧化作用也會影響交換樹脂的母體,使樹脂加速老化,結果使交換能力下降。為了減輕氧化劑對樹脂的影響,可選用交聯度大的樹脂或加入適當的還原劑。
『肆』 離子交換器的常見故障
rightleder1、交換劑工作交換能力降低,周期制水量減少
其可能產生的原因有:
(1)原水中Fe3+、Al3+含量高,使交換劑「中毒」,這時樹脂顏色變深,呈暗紅色。處理方法是用酸清洗復甦交換劑。
(2)反洗不夠徹底,交換劑被懸浮物污染,有結塊現象,產生偏流。處理方法是徹底反洗或清洗交換劑層,盡量降低進水的懸浮物含量。
(3)再生劑用量太少活濃度太低;食鹽中鋼離子含量過低。處理方法是適當增加再生劑用量或提高再生液濃度,使用含鈉量高的工業鹽。
(4)交換劑層高度太低或交換劑逐漸減少。處理方法是適當增加交換劑層高度。
(5)再生流速太快或再生方法不對。處理方法是嚴格按正確的再生方法操作。
(6)原水水質突然惡化,或運行流速太快。處理方法是掌握水質變化規律,適當降低運行流速。
2、運行或再生反洗過程中有交換劑流失
其可能產生的原因有:
(1)排水裝置如排水帽破裂。處理方法是檢修排水裝置,更換排水帽。
(2)反洗強度太大。處理方法是反洗時注意觀察樹脂膨脹高度,當樹脂膨脹接近頂部時,適當降低反洗強度。
3、整個軟化過程中,交換器出水總是有硬度
其可能產生的原因有:
(1)反洗閥門或鹽水閥門泄漏,關不嚴。處理方法是及時檢修閥門。
(2)交換劑層高度不夠或運行流速太快。處理方法是添加交換劑,調整運行流速。
(3)交換劑「中毒」變質,已失去交換能力。處理方法是處理或更換交換劑。
(4)原水中硬度太高,或鈉鹽濃度太大。處理方法是採用二級軟化。
(5)化驗試劑中有硬度或指示劑失效。處理方法是檢查或更換試劑,正確進行化驗操作。
4、軟化水氯離子含量增加
其可能產生的原因有:
(1)再生時錯開出水閥或運行時誤開鹽閥。處理方法是謹慎操作,防止差錯。
(2)鹽水閥或正在再生的交換器出水閥滲漏。處理方法是及時檢修閥門。
(3)再生後正洗不徹底,或水源水質變化。處理方法是正洗至進、出水氯根含量基本一致,監測原水氯根含量是否增加。
『伍』 常見的放射性廢水處理方法有哪些
放射性廢水的主要去除對象是具有放射性的重金屬元素,與此相關的處理技術,簡單地可分為化學形態改變法和化學形態不變法兩類。
放射性廢水處理方法:
其中化學形態改變法包括:
1、化學沉澱法;
2、氣浮法;
3、生化法。
化學形態不變法包括:
1、蒸發法;
2、 離子交換法;
3、吸附法;
4、 膜法。
化學沉澱法是向廢水中投放一定量的化學絮凝劑,如硫酸鉀鋁、硫酸鈉、硫酸鐵、氯化鐵等,有時還需要投加助凝劑,如活性二氧化硅、黏土、聚合電解質等,使廢水中的膠體物質失去穩定而凝聚何曾細小的可沉澱的顆粒,並能於水中原有的懸浮物結合為疏鬆絨粒。改絨粒對水中的放射性元素具有很強的吸附能力,從而凈化水中的放射性物質、膠體和懸浮物。引起放射性元素與某種不溶性沉渣共沉的原因包括了共晶、吸附、膠體化、截留和直接沉澱等多種作用,因此去除效率較高。
化學沉澱法的優點是:方法簡便、費用低廉、去除元素種類較廣、耐水力和水質沖擊負荷較強、技術和設備較成熟。缺點是:產生的污泥需進行濃縮、脫水、固化等處理,否則極易造成二次污染。化學沉澱法適用於水質比較復雜、水量變化較大的低放射性廢水,也可在與其他方法聯用時作為預處理方法。
蒸發濃縮法處理放射性廢水:除氚、碘等極少數元素之外,廢水中的大多數放射性元素都不具有揮發性,因此用蒸發濃縮法處理,能夠使這些元素大都留在殘余液中而得到濃縮。蒸發法的最大優點之一是去污倍數高。使用單效蒸發器處理只含有不揮發性放射性污染物的廢水時,可達到大於10的4次方的去污倍數,而使用多效蒸發器和帶有除污膜裝置的蒸發器更可高達10的6次方到8次方的去污倍數。此外,蒸發法基本不需要使用其他物質,不會像其他方法因為污染物的轉移而產生其他形式的污染物。
盡管蒸發法效率較高,但動力消耗大、費用高,此外,還存在著腐蝕、泡沫、結垢和爆炸的危險。因此,本法較適用於處理總固體濃度大、化學成分變化大、需要高的去污倍數且流量較小的廢水,特別是中高放射性水平的廢水。
新型高效蒸發器的研發對於蒸發法的推廣利用具有重大意義,為此,許多國家進行了大量工作,如壓縮蒸汽蒸發器、薄膜蒸發器、脈沖空氣蒸發器等,都具有良好的節能降耗效果。另外,對廢液的預處理、抗泡和結垢等問題也進行了不少研究。
離子交換法處理放射性廢水的原理是,當廢液通過離子交換劑時,放射性離子交換到離子交換劑上,使廢液得到凈化。目前,離子交換法已廣發應用於核工藝生產工藝及放射性廢水處理工藝。
許多放射性元素在水中呈離子狀態,其中大多數是陽離子,且放射性元素在水中是微量存在的,因此很適合離子交換出來,並且在無非放射性粒子干擾的情況下,離子交換能夠長時間的工作而不失效。
離子交換法的缺點是,對原水水質要求較高;對於處理含高濃度競爭離子的廢水,往往需要採用二級離子交換柱,或者在離子交換柱前附加電滲析設備,以去除常量競爭離子;對釕、單價和低原子序數元素的去除比較困難;離子交換劑的再生和處置較困難。除離子交換樹脂外,還有用磺化瀝青做離子交換劑的,其特點是能在飽和後進行融化-凝固處理,這樣有利於放射性廢物的最終處置。
吸附法是用多孔性的固體吸附劑處理放射性廢水,使其中所含的一種或數種元素吸附在吸附劑的表面上,從而達到去除的目的。在放射性廢液的處理中,常用的吸附劑有活性炭、沸石等。
天然斜發沸石是一種多孔狀結構的無機非金屬礦物,主要成分為鋁硅酸鹽。沸石價格低廉,安全易得,處理同類型地放射性廢水的費用可比蒸發法節省80%以上,因而是一種很有競爭力的水處理葯劑。它在水處理工藝中常用作吸附劑,並兼有離子交換劑和過濾劑的作用。
當前,高選擇性復合吸附劑的研發是吸附法運用中的熱點。所謂「復合」是指離子交換復合物(氰亞鐵鹽、氫氧化物、磷酸鹽等)在母體(多位多孔物質)上的某些方面飽和,所以新材料結合天然母體材料的優點,具有良好的機械性能、高的交換容量以及適宜的選擇性。
離子浮選法屬於泡沫分離技術范疇。該方法基於待分離物質通過化學的、物理的力與捕集劑結合在一起,在鼓泡塔中被吸附在氣泡表面而富集,借泡沫上升帶出溶液主體,達到凈化溶液主體和濃縮待分離物質的目的。例子浮選法的分離作用,主要取決於其組分在氣-液界面上選擇性和吸附程度。所使用捕集劑的主要成分是,表面活性劑和適量的起泡劑、絡合劑、掩蔽劑等。
離子浮選法具有操作簡單、能耗低、效率高和適應性廣等特點。它適用於處理鈾同位素生產和實驗研究設施退役中產生的含有各種洗滌劑和去污劑的放射性廢水,尤其是含有有機物的化學清洗劑的廢水,以便充分利用該廢水易於起泡的特點而達到回收金屬離子和處理廢水的目的。
膜處理作為一門新興學科,正處於不斷推廣應用的階段。它有可能成為處理放射性廢水的一種高效、經濟、可靠的方法。目前所採用的膜處理技術主要有:微濾、超濾、反滲透、電滲析、電化學離子交換、鐵氧體吸附過濾膜分離等方法。與傳統處理工藝相比,膜技術在處理低放射性廢水時,具有出水水質好,濃縮倍數高,運行穩定可靠等諸多優點。
不同的膜技術由於去除機理不同,所適用的水質與現場條件也不盡相同。此外,由於對原水水質要求較高,一般需要預處理,故膜法處理法宜與其他方法聯用。
如鐵凝沉澱-超濾法,適用於處理含有能與鹼生成金屬氫氧化物的放射性離子的廢水。
水溶性多聚物-膜過濾法,適用於處理含有能被水溶性聚合物選擇吸附的放射性離子的廢水。
化學預處理-微濾法,通過預處理可以大大提高微濾處理放射性廢水的效果,且運行費用低,設備維護簡單。
『陸』 離子交換器常見故障及其消除方法有哪些
凈得瑞為您解答:
離子交換劑常見的故障有:交換劑工作交換能力降低,周期制水量減少;運行或再生反洗過程中有交換劑流失;整個軟化過程中,交換器出水總是有硬度;軟化水氯離子含量增加;軟化水或再生排廢水,有時呈黃色,即交換劑產生溶膠現象。1、交換劑工作交換能力降低,周期制水量減少其可能產生的原因有:
(1)原水中Fe3+、Al3+含量高,使交換劑「中毒」,這時樹脂顏色變深,呈暗紅色。處理方法是用酸清洗復甦交換劑。
(2)反洗不夠徹底,交換劑被懸浮物污染,有結塊現象,產生偏流。處理方法是徹底反洗或清洗交換劑層,盡量降低進水的懸浮物含量。
(3)再生劑用量太少活濃度太低;食鹽中鋼離子含量過低。處理方法是適當增加再生劑用量或提高再生液濃度,使用含鈉量高的工業鹽。
(4)交換劑層高度太低或交換劑逐漸減少。處理方法是適當增加交換劑層高度。(5)再生流速太快或再生方法不對。處理方法是嚴格按正確的再生方法操作。
(6)原水水質突然惡化,或運行流速太快。處理方法是掌握水質變化規律,適當降低運行流速。2、運行或再生反洗過程中有交換劑流失其可能產生的原因有:
(1)排水裝置如排水帽破裂。處理方法是檢修排水裝置,更換排水帽。
(2)反洗強度太大。處理方法是反洗時注意觀察樹脂膨脹高度,當樹脂膨脹接近頂部時,適當降低反洗強度。
3、整個軟化過程中,交換器出水總是有硬度其可能產生的原因有:
(1)反洗閥門或鹽水閥門泄漏,關不嚴。處理方法是及時檢修閥門。
(2)交換劑層高度不夠或運行流速太快。處理方法是添加交換劑,調整運行流速。(3)交換劑「中毒」變質,已失去交換能力。處理方法是處理或更換交換劑。(4)原水中硬度太高,或鈉鹽濃度太大。處理方法是採用二級軟化。
(5)化驗試劑中有硬度或指示劑失效。處理方法是檢查或更換試劑,正確進行化驗操作。4、軟化水氯離子含量增加其可能產生的原因有:
(1)再生時錯開出水閥或運行時誤開鹽閥。處理方法是謹慎操作,防止差錯。(2)鹽水閥或正在再生的交換器出水閥滲漏。處理方法是及時檢修閥門。
(3)再生後正洗不徹底,或水源水質變化。處理方法是正洗至進、出水氯根含量基本一致,監測原水氯根含量是否增加。
『柒』 鐵離子和鉀離子誰的離子交換能力強
對於離抄子來說沒有金屬性誰強誰弱而言,所以對於鉀離子和鐵離子無法判斷金屬性強弱。
金屬性是也是金屬的失去電子的強弱,是還原性在金屬上的另外一種說法,主要用於金屬單質的還原性強弱,所以對於元素周期表,從左往右金屬性逐漸減弱,從上往下,金屬性逐漸增強,對於鉀和鐵的單質,鉀的金屬性要比鐵強,因為鉀和鐵在同一周期,鉀元素的最外層電子數為1,容易失去電子,而鐵的最外層電子數為2,而且鉀元素屬於第一主族,反應活性比鈉好高,所以明顯,鉀的金屬性比鐵強。
對於鉀離子和鐵離子,能判斷的是氧化性,鉀易失去電子,而鉀離子去不容易得到電子,因為鉀離子的電子排布已經達到了最穩定的狀態,而無論是三價鐵離子還是亞鐵離子,得到電子的能力都比鉀離子強,而且三價鐵離子具有比較強的還原性,很容易得到一個電子還原成亞鐵離子,所以對於鉀離子和鐵離子來說,鐵離子的氧化性要比鉀離子強。
『捌』 樹脂層高度造成流速對其交換能力的影響程度
影響全自動鈉離子交換軟化的因素
1、運行流速(gpm/ft2,/h)
通常流速越大離子交換所需的工作層越大,樹脂有效利用率就會下降,但設備單位時間產水能力會提高。反之流速越小所需的工作層越小,樹脂利用率就會提高,但設備單位時間產水能力會下降。過大的流速會造成原水只與樹脂表面離子交換,水不能進入樹脂內部。樹脂表面通常只提供20%的交換容量,樹脂裡面可以提供80%的交換容量。合理的交換流速對提高設備產水處理能力和交換能力是非常重要的。一般建議運行流速控制在20-30m/h(即4-10gpm/ft2),二級軟化處理和小型裝置可適當提高到小於60m/h。
2、水與樹脂接觸的時間(gpm/ft3)
水與樹脂的接觸時間越長,交換越充分,單位體積樹脂的交換容量提高,但單位時間樹脂的產水能力下降。接觸時間越短,交換越不充分,單位體積樹脂的交換能力下降,而單位時間樹脂的產水能力提高。因此合理的接觸時間對於軟水器的經濟運行非常重要。一般建議1.0-5.0gpm/ft3樹脂(每小時水流量為樹脂裝載體積的8-40倍)。
3、樹脂層高度
樹脂層越低,因流速對其交換容量的影響就越大。當樹脂層高的達
到30英尺(762mm)時,樹脂層高度造成的流速對其交換能力的影響可降低到比較低的程度。因此建議樹脂層高度大於800mm。
4、進水含鹽量離子交換軟化設備,軟化設備
進水含鹽量的高低會影響出水品質,而進水含鹽量中K+、Na+的總含量對出水品質的影響非常大。
5、樹脂交換容量
不同的樹脂提供的交換容量是不一樣的
『玖』 強酸型 離子交換劑 常用於分離什麼物質
,稀土元素的分離雖然目前萃取法在稀土分離中也有很大優勢.但為取得單個的高純度的稀土元素.離子交換法仍佔有一定的地位.這個流程中使用強酸性陽離子交換樹脂,並應用延緩離子.由於所用淋洗劑是與稀土元素有很強結合能力的試劑乙二胺四乙酸(EDTA).如無任何阻擋,所有稀土元素都會較快地從柱中流出而不能達到有效分離.所謂延緩離子是這樣的離子(比如Cu2+),它與淋洗劑的結合能力比稀土強,事先充滿整個樹脂柱,當淋洗劑與稀土形成的配合物下行遇到Cu2+時,Cu2+即與淋洗劑結合而將稀土元素離子釋放出來使之滯留在樹脂上.隨著淋洗的繼續,稀土元素經過反復地在淋洗劑和樹脂間交換.最後按順序在柱上排列,達到分離的目的.二,在分析領域的應用1,試樣中總鹽量的測定2,分離干擾離子(1),不同電荷離子間的分離一般常用陽離子交換樹脂.(2),相同電荷離子間的分離將某種離子變成絡陰離子,而用離子交換樹脂分離.二,在分析領域的應用例:分離Al3+和Fe3+HCl介質將相同電荷的離子一起吸附到樹脂上,然後進行選擇性淋洗,將它們分離.例:分離鎳,錳,鈷,銅,鐵,鋅在濃鹽酸介質中,強鹼性陰離子交換樹脂上進行交換後,用不同濃度的鹽酸溶液洗脫.12mol/LHCl→Ni2+,6.0mol/LHCl→Mn2+4.0mol/LHCl→Co2+,2.5mol/LHCl→Cu2+0.5mol/LHCl→Fe3+,0.005mol/LHCl→Zn2+3,痕量物質的富集例:測定天然水中K+,Na+,Ca2+,Mg2+,SO42-,Cl-試液→陽離子交換柱→陰離子交換柱→少量稀鹽酸洗脫陽離子→少量氨溶液洗脫陰離子→濃縮三,化學工業中的應用1,氫氣的凈化2,工業鹽酸的提純3,石油化工四,醫葯食品工業五,環境保護§4.6吸附分離及應用吸附色層分離是用吸附劑對某些元素或離子進行吸附而建立起來的色層分離方法.吸附劑特性:化學穩定性好,耐化學腐蝕,分離所得到產物具有良好的化學純度;(2)耐輻射性,尤其在放射化學分離中容易得到比較穩定的分離效率和回收率.良好的吸附和淋洗性能,在吸附色層中溶質和吸附劑之間容易達到平衡,吸附和淋洗較快,為快速分離相獲得較小體積的淋洗液創造了條件;(4)吸附劑易於獲取,價格低廉,操作比較簡單,消化處理容易.
『拾』 常用的離子交換樹脂類型有哪些
離子交換樹脂的基本性能
1、強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
2、弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
3、強鹼性陰離子樹脂
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
4、弱鹼性陰離子樹脂
這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。
5、離子樹脂的轉型
以上是樹脂的四種基本類型。在實際使用上,常將這些樹脂轉變為其他離子型式運行,以適應各種需要。例如常將強酸性陽離子樹脂與NaCl作用,轉變為鈉型樹脂再使用。工作時鈉型樹脂放出Na+與溶液中的Ca2+、Mg2+等陽離子交換吸附,除去這些離子。反應時沒有放出H+,可避免溶液pH下降和由此產生的副作用(如蔗糖轉化和設備腐蝕等)。這種樹脂以鈉型運行使用後,可用鹽水再生(不用強酸)。又如陰離子樹脂可轉變為氯型再使用,工作時放出Cl-而吸附交換其他陰離子,它的再生只需用食鹽水溶液。氯型樹脂也可轉變為碳酸氫型(HCO3-)運行。強酸性樹脂及強鹼性樹脂在轉變為鈉型和氯型後,就不再具有強酸性及強鹼性,但它們仍然有這些樹脂的其他典型性能,如離解性強和工作的pH范圍寬廣等。