導航:首頁 > 耗材問題 > 液態樹脂自乳化

液態樹脂自乳化

發布時間:2021-03-31 14:17:59

Ⅰ 有哪些溶劑是可以溶解液態樹脂的而且不易燃

早上好,具抄體看是哪一種液體樹脂成分,如果是類似環氧、酚醛和丙烯酸酯這樣人工合成的高分子聚合物建議用鹵代烴比如二氯甲烷、四氯化碳和四氯乙烯具有較好阻燃力,其他高閃點和高沸點兼顧諸如各種鄰苯二甲酸酯和NMP也可參考用於稀釋。如果是天然樹脂比如桃膠、阿拉伯膠和未經割取暴露在樹乾的液體松香,由於含有大量無機和有機鹽難溶於有機溶劑,良溶劑一般只有熱水。

Ⅱ 您好,我要買一種材料,就是乳白色的液體樹脂,將他倒進模具里,加溫

蜂蜜結晶是在食用蜂蜜過程中經常遇到的一個問題,隨著時間的延長及氣溫的變化版,蜂蜜會從液權態變為結晶狀態,顏色由深變淺。這種變化常常會引起一些人的擔憂,其實這是蜂蜜的自然變化,與溫度、水分、蜜源有關。
蜂蜜結晶速度的快慢受到溫度的影響,在13℃-14℃時最容易結晶。若低於此溫度,由於蜂蜜的黏稠度提高,致使蜂蜜結晶遲緩;若高於此溫度,由於提高了糖的溶解度,從而減少了溶液的過飽和程度,也使結晶變慢。
蜂蜜的結晶還與蜂蜜的種類、含水量有關。如紫雲英蜜、刺槐蜜、棗花蜜則不易結晶;而油菜花蜜、野壩子蜜、棉花蜜、向日葵蜜則易結晶。全部結晶的蜂蜜,一般含水量較低,宜長期保存不易變質。含水量多的未成熟蜂蜜由於溶液的過飽和程度降低,結晶速度也會變慢或不能全部結晶。這種半結晶的蜂蜜其營養成分並未發生變化,只是未結晶蜂蜜含水量相應增加,因此這種蜂蜜不宜長期保存。
專家表示,蜂蜜結晶是蜂蜜的一種物理現象,其營養價值並未發生變化,不會影響蜂蜜

Ⅲ 怎樣讓桃樹樹脂變成液態

下午好,如果說的來是桃膠自,它是一種大分子多糖混合物類似阿拉伯膠,易溶於溫水幾乎不溶於已知的有機溶劑所以用60-70度溫水進行恆溫溶解幾小時就變成膠體水溶液了(雜質較多請用高壓鍋處理),適量添加一些1,2-丙二醇和丙三醇有助於保濕來延長水分揮發時間。

Ⅳ 樹脂有多少種是液態的嗎怎麼才能固化

樹脂有天然樹脂和合成樹脂之分。天然樹脂是指由自然界中動植物分泌物所得內的無定形有機物質容,如松香、琥珀、蟲膠等。合成樹脂是指由簡單有機物經化學合成或某些天然產物經化學反應而得到的樹脂產物。

環氧樹脂│ 酚醛樹脂│ 丙烯酸樹脂│ 不飽和聚酯樹脂│ 離子交換樹脂│氨基樹脂│ 有機硅樹脂│ 聚醯胺樹脂│ 脲醛樹脂│ 聚氨酯樹脂│ 呋喃樹脂│ 其他合成樹脂│

一般要加入固化劑才能固化。

Ⅳ 自乳化環氧樹脂乳液儲存穩定性與哪些因素有關

你選用的是哪種環氧樹脂,適當的雜化一下,效果會好些

Ⅵ 乳液和樹脂的區別

「乳液」和「樹脂」的區別:

一、「乳液」和「樹脂」——定義不同

1、「乳液」是用不溶於水的溶液聚合物,加入表面活性劑來製得的,在高速攪拌下就產生了該聚合物的乳液。

2、「樹脂」通常是指受熱後有軟化或熔融范圍,軟化時在外力作用下有流動傾向,常溫下是固態、半固態,有時也可以是液態的有機聚合物。

二、「乳液」和「樹脂」——功能不同

1、「乳液」具有永久的柔韌性,有較好的耐酸鹼性,能與大多數添加劑混合,乳液性在某一溫度形成透明的薄膜,這個溫度叫最低成膜溫度,皮膜對水滴有較好的阻隔性。

2、「樹脂」一般不溶於水,能溶於有機溶劑,常溫下呈固態、中固態、假固態,有時也可以是液態的有機物質。具有軟化或熔融溫度范圍,在外力作用下有流動傾向,破裂時常呈貝殼狀。具有良好的綜合物理機械性能,且易於加工成型。缺點是耐候性,耐熱性差,且易燃。

三、「乳液」和「樹脂」——適用范圍不同

1、「乳液」具有廣泛的粘接性能,除能粘接木材、皮革、織物、紙張、水泥、混凝土、鋁箔、鍍鋅鋼板等材料,可用作內外牆塗料、屋面防水塗料、防火塗料、防銹塗料。

2、「樹脂」主要用作工程材料,也可用於家庭生活用具,適用於家用電器製品,如電視機外殼、冰箱內襯、吸塵器等,以及儀表、電話、汽車工業用塑料製品。

Ⅶ 如何加速使液體樹脂快速凝固且不變形無氣泡

配方工藝調整下,固化用量很關鍵

不飽和聚酯樹脂中阻聚劑及其他添加劑的影響
為了不飽和聚酯樹脂的穩定,常在其中加入阻聚劑或緩聚劑。這是一種能與鏈自由基反應形成非自由基或不能再引發的低活性自由基,使交聯固化速率降低為零的物質。因此,低反應活性的樹脂有可能因為其中加入的阻聚劑量很少而顯得反應活性很高,而高反應活性的樹脂也可能因其中加入了過量的阻聚劑而變得不甚活潑。另外其他添加劑例如:阻燃劑、色漿、低收縮劑、各種填料的加入,引入了磷、鹵、金屬離子或其他因素,都會影響樹脂交鏈反應活性。
(6)固化劑、阻聚劑用量的影響
用JX-196樹脂作固化實驗,不同固化劑、阻聚劑用量的影響如下:
組號 BPO TBC HQ N-Cu 凝膠時間min 放熱峰溫度℃ 固化時間min
1 0.3 0 0 0 3.7 178 1.7
2 0.3 0.02 0.07 0.07 12.9 143 3.05
3 0.3 0.02 0.07 0.02 12.3 167 2.7
4 0.3 0.04 0.04 0.04 11.3 164 2.6
5 0.6 0.02 0.07 0.07 8.3 181 1.7
6 0.6 0.02 0.07 0.02 6.4 184 1.5
7 0.6 0.04 0.04 0.04 7.6 185 1.3
8 0.9 0.04 0.04 0.04 4.2 191 1.2

從上述實驗可以看出:三組不同固化劑用量固化結果形成三個階梯,用量越大,固化越快,放熱峰越高。不同的阻聚劑和不同的用量固化效果也為不相同。因此在樹脂製造和使用過程中,掌握好阻聚劑、固化劑的合理匹配十分重要。
2 不飽和聚酯樹脂固化網路結構分析
2.1不飽和聚酯樹脂交聯網路結構
不飽和聚酯中的雙鍵與交聯劑中的雙鍵聚合形成不溶不熔的交聯網路結構,網路中含有兩種聚合物分子鏈結構。網路主體由不飽和聚酯分子鏈的無規線團組成,苯乙烯共聚分子鏈穿插其中,將不飽和聚酯分子鏈連接和固定起來,形成一個巨大的網。在網中不飽和聚酯分子鏈平均分子量為1000-3000。連接在不飽和聚酯分子鏈間苯乙烯分子鏈的長度為1-3個,而從某個引發點開始,聚酯分子 → 苯乙烯 鏈 → 聚酯分子 → 苯乙烯鏈 → 這樣的連續重復,最多也只有7-8個交替,這樣苯乙烯共聚物分子鏈平均分子量可達8000-14000。整個網路結構平均分子量為10000-30000。如果網路分子量小於10000會直接影響製品的力學性能 ,如強度、彈性和韌性等。
2.2 不飽和聚酯樹脂交聯網路的長壽命自由基
不飽和聚酯樹脂交聯網路在固化過程中,不飽和聚酯和苯乙烯各自雙鍵的聚合進程及殘留率的變化具有一定的特色。實驗表明不管聚酯樹脂交聯網路完善與否,都會產生一些自由基無法終止的空間位阻的死點,形成長壽命自由基。這些長壽命自由基又只會存在於不飽和聚酯鏈上,而不會出現在只有兩個官能度的小分子的交聯劑上。由於長壽命自由基的存在,不飽和聚酯樹脂固化後交聯反應仍能進行。溫度的升高,特別是接近樹脂玻璃化溫度時,分子的可動性大大增加,長壽命自由基得以活動,可以和殘余的交聯劑單體繼續進行交聯反應,這就是樹脂後固化可以提高固化度的原因。
2.3 聚酯樹脂網路結構中的微相分離現象
實驗分析表明,在交聯良好的不飽和聚酯樹脂中也存在著一種微相分離結構。這種微相分離很可能是在聚合過程中,由於不同分子鏈的相互排斥作用,聚酯鏈和交聯劑以某種方式分別斂集在一起而產生了分相。固化初期的放熱峰使兩相相互溶合在一起,這是不飽和聚酯樹脂形成均勻網路的重要條件。但放熱峰後相分離的過程又在隨著時間的延續不斷進行和發展。低溫的處理可加速該微相分離的發展,相反,熱處理可以消除這種微相分離。當溫度升高時首先可以使斂集較松的分相區破壞,溫度再升高又可使斂集較緊的分相區破壞,最後,玻璃化溫度以上的高溫就可使所有分相區消除。相區一經破壞,再重新聚集分相就不象聚合時單體運動、排列自如,而要受到網路的限制。而在兩相玻璃化溫度以上的高溫處理導致在網路均勻狀態下進一步的聚合和交聯,可從根本上消除這種微相分離。
微相分離現象的存在對材料的性能有相當大的影響。實驗表明,同一條件下聚酯澆鑄體樣品,25℃室溫固化30天,固化度達到90.2%,其巴柯硬度為38.5。而經高溫處理後,雖然固化度提高不大為92.6%,但由於消除了相分離的影響,巴柯硬度竟達到44.4。可見微相分離對樹脂的硬度影響很大。同時也可以理解高溫後處理試樣剛度大大超過室溫固化試樣的原因所在。因此,我們要十分強調不飽和樹脂玻璃鋼製品,尤其是防腐蝕、食品用等玻璃鋼設備,一定要經過高溫後處理,消除微相分離現象再投入使用。
2.4交聯劑對網路結構的影響

上面已經說到,兩種單體交聯固化時,競聚率在影響不飽和聚酯樹交聯網路的均勻性方面起著關鍵性的作用。因此在選擇交聯劑時必須注意競聚率,使交聯劑與不飽和聚酯能很好的交替共聚,形成均勻的網路結構。此外交聯劑分子量要小一點,官能度要低,與聚酯要有優良的相容*聯劑用量的選擇上,一般說來交聯劑用量過少,不飽和聚酯的雙鍵不能完全反應,用量過多又必然形成大量的塑性鏈,這兩種情況都不能使樹脂形成均勻緊密地網路。實驗表明,交聯劑苯乙烯的用量通常為35%左右,即與聚酯雙鍵之比在1:1.6-2.4之間。
2.5不飽和聚酯分子量對交聯網路的影響
聚酯分子量越大,分子鏈越長,分子量越小,分子鏈越短。實驗表明,隨著聚酯分子量的增加,形成完整網路的概率也越大,分子量小,形成完整網路就較困難。隨著分子量增加,網路中端基減少,節點增加,耐熱性越好。因此分子量大的樹脂耐熱性能較高。
2.6 不飽和聚酯分子結構對網路性能的影響
不飽和聚酯交聯點間分子結構對網路熱性能有直接的影響。不飽和聚酯分子結構單元由雙鍵、酯鍵、醚鍵、亞甲撐、芳環類等集團組成。一般情況下,雙鍵之間的鏈節越短,樹脂的熱變性溫度就越高。雙鍵間鏈節延長會使熱變性溫度降低。
彎曲強度是材料拉伸強度和抗壓強度的綜合體現,是材料性能重要的指標。樹脂的交聯密度越高,承受負荷的分子鏈越多,彎曲強度也應越高。但有時實際上卻非如此。這是因為樹脂網路是極不均勻的,而且均勻*聯密度的增加而下降。因此在外力的作用下,各分子鏈的受力也不均勻。再有,高交聯密度樹脂其分子張緊而難以運動,變性量很小,在外力作用下寧折不彎。可見高交聯樹脂由於均勻性差,分子鏈難以鬆弛雙重原因會造成他們彎曲強度不高。一個有高溫使用價值的樹脂,其理想的分子結構應該是在雙鍵間主鏈中引入一連串非對稱的芳雜環結構,最好能帶有少量的極性鍵。
2.7 引發劑及固化條件對樹脂網路結構的影響
(1)引發劑種類不同 ,樹脂交聯固化性能也不同。以過氧化環己酮(HCH)/環烷酸鈷(CoN)和過氧化苯甲醯(BPO)/二甲基苯胺(DMA)兩種氧化-還原體系為例進行固化實驗可以看到:以BPO/DMA體系引發以苯乙烯為交聯劑的樹脂,固化達80h的過程中用丙酮萃取的百分率緩慢下降至24.9%,而以HCH/CoN體系引發同樣以苯乙烯為交聯劑的樹脂固化至4.5h後即下降至24.5%,可見以HCH/CoN體系引發固化不飽和聚酯樹脂要比BPO/DMA體系引發更為有效。同時發現,以HCH/CoN引發體系固化的樹脂網路中長壽命自由基的數量10個月後仍然不低於固化80天後的數量。相比之下,以BPO/DMA引發體系固化的樹脂網路中長壽命自由基的數量卻很快消失殆盡了,充分說明該體系對樹脂網路的形成有很大影響。尤其固化後期要達到較高的固化程度比較困難。
(2)固化條件不同樹脂固化網路的性能也將有很大差異。以天津巨星公司JX-196樹脂為例:取JX-196樹脂,加入HCH/CoN引發體系後分成兩份,分別置於25℃恆溫水浴和25℃空氣浴中,記錄下每一試樣在固化過程中溫度的變化情況。可以看到,在固化前期樹脂的溫度情況水浴與

空氣浴基本一致,但是在凝膠以後,在空氣浴中固化樣品放熱峰較高,而在水浴中固化樣品放熱峰溫度比前者要低20-30℃。再將兩種樣品進行後固化處理以後測定,在空氣浴中固化的試樣各種性能參數都明顯優於在水浴中固化的試樣。這說明同一樹脂在經歷不同固化條件時,起始的固化度有明顯差別。雖然只要有足夠的引發劑存在並經高溫後處理,最終固化度將趨於一致,可是固化性能卻有顯著差別。這就是說,初始的固化條件奠定了交聯網路結構基礎,因而也就在相當大的程度上確定了材料的物性。所以在固化工藝中有一種所謂成夾生飯無法再煮熟之說。樹脂固化以後分子就難以穿插運動了,因此影響網路結構的關鍵時刻是凝膠時刻的一段時間,在這段時間,為了保證樹脂網路結構的均勻性和連續性,要求交聯劑繼續滲透和溶脹,而此時出現的放熱峰起到了這種作用,雖然交聯產物最終固化度未見得更高,但性能卻要比無放熱峰者為好。
JX-196樹脂在空氣浴與水浴中固化性能比較
凝膠時間min 放熱峰溫度℃ 巴柯硬度 彎曲強度KPa
空氣浴℃ 9.7 184 43 211
水浴℃ 11.6 163 30 188

Ⅷ 水性環氧樹脂的環氧樹脂水性化方法

根據制備方法的不同,環氧樹脂水性化有以下四種方法:機械法、化學改性法、相反轉法和固化劑乳化法等。
1)機械法
機械法即直接乳化法,可用球磨機、膠體磨、均氏器等將固體環氧樹脂預先磨成微米級的環氧樹脂粉末,然後加入乳化劑水溶液,再通過機械攪拌將粒子分散於水中; 或將環氧樹脂和乳化劑混合,加熱到適當的溫度,在激烈的攪拌下逐漸加入水而形成乳液。用機械法制備水性環氧樹脂乳液的優點是工藝簡單,所需乳化劑用量較少,但乳液中環氧樹脂分散相微粒尺寸較大,粒子形狀不規則且尺寸分布較寬,所配得的乳液穩定性差,粒子之間容易相互碰撞而發生凝結現象,並且該乳液的成膜性能也欠佳。當然提高攪拌分散時的溫度可以促進乳化劑分子在環氧樹脂微粒表面更為有效地吸附,使得環氧樹脂微粒能較為穩定地分散在水相中。
2)化學改性法
化學改性法又稱自乳化法,即將一些親水性的基團引入到環氧樹脂分子鏈上,或嵌段或接枝,使環氧樹脂獲得自乳化的性質, 當這種改性聚合物加水進行乳化時,疏水性高聚物分子鏈就會聚集成微粒,離子基團或極性基團分布在這些微粒的表面,由於帶有同種電荷而相互排斥,只要滿足一定的動力學條件,就可形成穩定的水性環氧樹脂乳液,這是化學改性法制備水性環氧樹脂的基本原理。根據引入的具有表面活性作用的親水基團性質的不同,化學改性法制備的水性環氧樹脂乳液可分為陰離子型、陽離子型和非離子型三種。
a、陰離子型
通過適當的方法在環氧樹脂分子鏈中引入羧酸、磺酸等功能性基團,中和成鹽後的環氧樹脂就具備了水可分散的性質。常用的改性方法有功能性單體擴鏈法和自由基接枝改性法。功能性單體擴鏈法是利用環氧基與一些低分子擴鏈劑如氨基酸、氨基苯甲酸、氨基苯磺酸等化合物上的胺基反應,在環氧樹脂分子鏈中引入羧酸、磺酸基團,中和成鹽後就可分散在水相中。自由基接枝改性法是利用雙酚A環氧樹脂分子鏈中的亞甲基活性較大,在過氧化物作用下易於形成自由基,能與乙烯基單體共聚,可將丙烯酸、馬來酸酐等單體接枝到環氧樹脂分子鏈中,再中和成鹽後就可製得能自乳化的環氧樹脂。
b、陽離子型
含胺基的化合物與環氧樹脂反應生成含叔胺或季胺鹼的環氧樹脂,再加入揮發性有機一元弱酸如醋酸中和得到陽離子型的水性環氧樹脂。這類改性後的環氧樹脂在實際中應用較少,這是因為水性環氧固化劑通常是含有胺基的鹼性化合物,兩個組分混合後,體系容易出現破乳和分層現象而影響該體系的使用性能。
c、非離子型
一般多在環氧樹脂鏈上引入親水性聚氧乙烯基團,同時保證每個改性環氧樹脂分子中有兩個或兩個以上環氧基,所得的改性環氧樹脂不用外加乳化劑即能自分散於水中形成乳液。如用分子量為4000~20000的雙環氧端基乳化劑與環氧當量為190的雙酚A環氧樹脂和雙酚A混合,以三苯基膦化氫為催化劑進行反應,可製得含親水性聚氧乙烯、聚氧丙烯鏈端的環氧樹脂,該樹脂不用外加乳化劑便可溶於水,且耐水性增強。另外,這種方法製得的粒子較細,通常為納米級,前面兩種方法製得的粒子較大,通常為微米級。從此意義上講,化學法雖然制備步驟多,成本高,但在某些方面具有實際意義。
在環氧樹脂鏈上引入親水性聚氧乙烯基團,同時保證每個改性環氧樹脂分子上有兩個或兩個以上環氧基,所得的改性環氧樹脂不用外加乳化劑即能自分散於水中形成乳液。如先用聚氧乙烯二醇、聚氧丙烯二醇和環氧樹脂反應,形成端基為環氧基的加成物,利用此加成物和環氧當量為190的雙酚A環氧樹脂和雙酚A混合,以三苯基磷為催化劑進行反應,可得到含有親水性聚氧乙烯、聚氧丙烯鏈段的環氧樹脂。這種環氧樹脂不用外加乳化劑即可溶於水中,且由於親水鏈段包含在環氧樹脂分子中,因而增強了塗膜的耐水性。並且在引入聚氧化乙烯、氧化丙烯鏈段後,交聯固化的網鏈分子量有所提高,交聯密度下降,形成的塗膜有一定的增韌作用。
3) 相反轉法
相反轉是一種制備高分子量環氧樹脂乳液較為有效的方法,II型水性環氧樹脂塗料體系所用的乳液通常採用相反轉方法制備。相反轉原指多組分體系(如油/水/乳化劑)中的連續相在一定條件下相互轉化的過程,如在油/水/乳化劑體系中,其連續相由水相向油相(或從油相向水相)的轉變,在連續相轉變區,體系的界面張力最低,因而分散相的尺寸最小。通常的制備方法是在高剪切力條件下先將乳化劑與環氧樹脂均勻混合,隨後在一定的剪切條件下緩慢地向體系中加入水,隨著加水量的增加,整個體系逐步由油包水型轉變為水包油型,形成均勻穩定的水可稀釋體系。乳化過程通常在常溫下進行,對於固態環氧樹脂,往往需要藉助於少量溶劑和加熱使環氧樹脂粘度降低後再進行乳化。
4)固化劑乳化法
水性環氧樹脂體系通常採用固化劑乳化法來制備水性環氧樹脂乳液。這類體系中的環氧樹脂一般預先不乳化,而由水性環氧固化劑在使用前混合乳化,因而這類固化劑必須既是交聯劑又是乳化劑。水性環氧固化劑是以多胺為基礎,對多胺固化劑進行加成、接枝、擴鏈和封端,在其分子中引入具有表面活性作用的非離子型表面活性鏈段,對低分子量的液體環氧樹脂具有良好的乳化作用。用固化劑乳化法制備水性環氧樹脂體系的優勢是在使用前由固化劑直接乳化環氧樹脂,不需考慮環氧樹脂乳液的儲存穩定性和凍融穩定性;缺點是配得的乳液適用期短。
目前,水性環氧的發展迎來春天!大家一起努力!共譜水性環氧新樂章!

Ⅸ 液態樹脂為什麼不能被蒸發

你好,可以,但是沒有多大意義。真空乾燥是根據液體負壓蒸發原理,為了快速蒸發干回燥而采答取的措施。而樹脂乾燥,大多是「固化」,而非蒸發,加快樹脂固化影響因素是溫度,所以,提高溫度才是加速的條件。但是,過高的溫度會導致固化物變脆,這是因為樹脂沒有經過足夠的塑化時間,分子結構發生改變。

閱讀全文

與液態樹脂自乳化相關的資料

熱點內容
edi評測費用 瀏覽:775
廢水管不停響 瀏覽:827
土壤陽離子交換能力最強的離子是 瀏覽:708
樹脂桶結構圖 瀏覽:589
喜牌飲水機多少價格 瀏覽:77
凈水機廢水管口能抬高多少 瀏覽:729
用於廢水分離工藝的主要包括用於過濾 瀏覽:818
小巨人空氣凈化器效果怎麼樣 瀏覽:459
安全除垢劑 瀏覽:11
養水草用什麼純水機 瀏覽:678
洛恩斯凈水器濾芯怎麼換 瀏覽:677
污水處理優秀員工事跡材料 瀏覽:293
飲水機活性炭怎麼樣 瀏覽:619
屠宰廢水污泥含量是多少 瀏覽:682
健康天使空氣凈化器怎麼樣 瀏覽:927
景區污水處理後怎麼辦 瀏覽:198
清洗反滲透膜方案 瀏覽:860
潔星力除垢劑主要成分 瀏覽:721
高壓鍋燒水水垢 瀏覽:329
小紅門污水處理廠人員 瀏覽:331