❶ 蒸餾設備的設備
(molecular distillation equipment)
分子蒸餾亦稱短程蒸餾.它是一項較新的尚未廣泛應用於工業化生產的液-液分離技術.其應用能解決大量常規蒸餾技術所不能解決的問題.
分子蒸餾與常規蒸餾技術相比有以下特點:
1.普通蒸餾是在沸點溫度下進行分離操作:而分子蒸餾只要冷熱兩個面之間達到足夠的溫度差.就可以在任何溫度下進行分離.因而分子蒸餾操作溫度遠低於物料的沸點.
2.普通蒸餾有鼓泡.沸騰現象:而分子蒸餾是液膜表面的自由蒸發.操作壓力很低.一般為0.1-1Pa數量級,受熱時間很短.一般僅為十秒至幾十秒.
3.普通蒸餾的蒸發和冷凝是可逆過程.液相和氣相之間處於動態相平衡,而在分子蒸餾過程中.從加熱面逸出的分子直接飛射到冷凝面上.理論上沒有返回到加熱面的可能性.所以分子蒸餾沒有不易分離的物質.
一套完整的分子蒸餾設備主要包括:分子蒸發器、脫氣系統、進料系統、加熱系統、冷卻真空系統和控制系統。分子蒸餾裝置的核心部分是分子蒸發器,其種類主要有3種:(1)降膜式:為早期形式,結構簡單,但由於液膜厚,效率差,當今世界各國很少採用;(2)刮膜式:形成的液膜薄,分離效率高,但較降膜式結構復雜;(3)離心式:離心力成膜,膜薄,蒸發效率高,但結構復雜,真空密封較難,設備的製造成本高。為提高分離效率,往往需要採用多級串聯使用而實現不同物質的多級分離。
1.降膜式分子蒸餾器
該裝置是採取重力使蒸發面上的物料變為液膜降下的方式。將物料加熱,蒸發物就可在相對方向的冷凝面上凝縮。降膜式裝置為早期形式,結構簡單,在蒸發面上形成的液膜較厚,效率差,現在各國很少採用。
2.刮膜式分子蒸餾裝置
我國在80年代末才開展刮膜式分子蒸餾裝置和工藝應用研究。它採取重力使蒸發面上的物料變為液膜降下的方式,但為了使蒸發面上的液膜厚度小且分布均勻,在蒸餾器中設置了一硬碳或聚四氟乙烯制的轉動刮板。該刮板不但可以使下流液層得到充分攪拌,還可以加快蒸發面液層的更新,從而強化了物料的傳熱和傳質過程。其優點是:液膜厚度小,並且沿蒸發表面流動;被蒸餾物料在操作溫度下停留時間短,熱分解的危險性較小,蒸餾過程可以連續進行,生產能力大。缺點是:液體分配裝置難以完善,很難保證所有的蒸發表面都被液膜均勻覆蓋;液體流動時常發生翻滾現象,所產生的霧沫也常濺到冷凝面上。但由於該裝置結構相對簡單,價格相對低廉,現在的實驗室及工業生產中,大部分都採用該裝置。
3.離心式分子蒸餾裝置
該裝置將物料送到高速旋轉的轉盤中央,並在旋轉面擴展形成薄膜,同時加熱蒸發,使之與對面的冷凝面凝縮,該裝置是目前較為理想的分子蒸餾裝置。但與其它兩種裝置相比,要求有高速旋轉的轉盤,又需要較高的真空密封技術。離心式分子蒸餾器與刮膜式分子蒸餾器相比具有以下優點:由於轉盤高速旋轉,可得到極薄的液膜且液膜分布更均勻,蒸發速率和分離效率更好;物料在蒸發面上的受熱時間更短,降低了熱敏物質熱分解的危險;物料的處理量更大,更適合工業上的連續生產。 (alcohol distilling equipment)
特點:第一,節能。採用高效低阻的板型,降低釜溫,適量迴流,建立合理利用各級能量的蒸餾流程;盡量採用儀表控制或微機自控系統,使設備處於最佳負荷狀態。
第二,生產強度高。提高單位塔截面的汽液通量,特別是對醪塔的設計,更應注意其汽液比的關系。使設備更加緊湊、生產強度和處理能力又能提高的方法之一,採用高效塔板代替原有舊式塔校(塔體不動)。
第三,排污性能好。在盡量減少成熟醪中纖維物含量的同時,對設備也要考慮其適應含固形物發酵液的蒸餾,最大限度減少停產清塔的次數。
第四,充分考慮塔器的放大效應.特別是對年產量在15000噸以上的塔設備,由於塔徑均大於1.5米以上,所以要對大直徑塔設備採取積極先進措施,以減輕分離效率的降低。
第五,結構簡單,造價降低。在工藝條件許可的情況下,選用塔板結構簡單而效率又高的新型塔板。
裝置原理:
本裝置適用於制葯、食品、輕工、化工等待業的稀酒精回收,也適用於甲醇等其他溶煤的蒸餾。本裝置根據用戶的要求,可將30。左右的稀酒精蒸餾至90。-95。酒精,成品酒精度數要求再高。可加大迴流比,但產量就相應減少。
採用高效的不銹鋼波紋填料。蒸餾塔體採用不銹鋼製作,從而是防止了鐵屑堵塞填料的現象,延長了裝置的使用期限。本裝置中凡接觸酒精的設備部分如冷凝器、穩壓罐、冷卻蛇管等均採用不銹鋼,以確保成品酒精不被污染。蒸餾釜採用可拆式U型加熱管,在檢修時可將U型加熱管移出釜外,便於對加熱管外壁及蒸餾釜內壁進行清洗。本裝置可間歇生產,也可連續生產。
能力參數: 型號 塔徑mm 30~40%進料的生產能力 60~80%進料的生產能力 90%酒精 95%酒精 90%酒精 95%酒精 T-200 φ200 35kg 26kg 45kg 36kg T-300 φ300 80kg 64kg 100kg 80kg T-400 φ400 150kg 120kg 180kg 140kg T-500 φ500 230kg 185kg 275kg 220kg T-600 φ600 335kg 270kg 400kg 320kg 減壓蒸餾設備(atmospheric-vacuum distillation unit)常減壓蒸餾裝置通常包括三部分:
(1)原油預處理。採用加入化學物質和高壓電場聯合作用下的電化學法除去原油中混雜的水和鹽類。
(2)常壓蒸餾。原油在加熱爐內被加熱至370℃左右,送入常壓蒸餾塔在常壓(1大氣壓)下蒸餾出沸點較低的汽油和柴油餾分,殘油是常壓重油。
(3)減壓蒸餾。常壓重油再經加熱爐被加熱至410℃左右,進入減壓蒸餾塔在約8.799千帕(60毫米汞柱)絕壓下蒸餾,餾出裂化原料的潤滑油原料,殘油為減壓渣油。參見原油蒸餾。 水氣蒸餾是用來分散以及提純液態或者固態有機化合物的一種要領,經常使用於下列幾種環境:(1)某些沸點高的有機化合物,在常壓下蒸餾雖可與副產物分散,但易被破壞;(2)混淆物中含有大量樹脂狀雜質或者不揮發性雜質,採用蒸餾、萃取等要領都難以分散;(3)從較多固體反應物中分散出被吸附的液體。
基本原理
按照道爾頓分壓定律,當與水不相混溶的物質與水並存時,全般系統的蒸氣壓應為各組分蒸氣壓之以及,即:
p= pA+ pB
其中p 代表總的蒸氣壓,pA為水的蒸氣壓,pB 為與水不相混溶物質的蒸氣壓。
當混淆物中各組分蒸氣壓總以及等於外界大氣壓時,這時候的溫度即為它們的沸點。此沸點比各組分的沸點都低。是以,在常壓下應用水氣蒸餾,就能在低於100℃的環境下將高沸點組分與水一路蒸出來。由於總的蒸氣壓與混淆物中兩者間的相對於量無關,直至其中一組分幾乎完全移去,溫度才上漲至留在瓶中液體的沸點。我們懂得,混淆物蒸氣中各個氣體分壓(pA,pB)之比等於它們的物質的量(nA,nB)之比,即:
而nA=mA/MA;nB=mB/MB。其中
mA、mB為各物質在肯定是容量中蒸氣的質量,MA、MB為物質A以及B的相對於份子質量。是以:
可見,這兩種物質在餾液中的相對於證量(就是它們在蒸氣中的相對於證量)與它們的蒸氣壓以及相對於份子質量成正比。
以苯胺為例,它的沸點為184.4℃,且以及水不相混溶。當以及水一路加熱至98.4℃時,水的蒸氣壓為95.4 kPa,苯胺的蒸氣壓為5.6 kPa,它們的總壓力靠近大氣壓力,於是液體就開始沸騰,苯胺就隨水氣一路被蒸餾出來,水以及苯胺的相對於份子質量別離為18以及93,代入上式:
即蒸出3.3 g水可以容或者帶出1 g苯胺。苯胺在溶液中的組分佔23.3%。測試中蒸出的水量往往超過計算值,由於苯胺微溶於水,測試中尚有一部分水氣不遑與苯胺充分接觸便離開蒸餾燒杯的緣故。
哄騙水氣蒸餾來分散提純物質時,要求此物質在100℃擺布時的蒸氣壓至少在1.33 kPa擺布。要是蒸氣壓在 0.13~0.67 kPa,則其在餾出液中的含量僅佔1%,甚至更低。為了要使餾出液中的含量增高,就要想辦法提高此物質的蒸氣壓,也就是說要提高溫度,使蒸氣的溫度超過100℃,即要用過熱水氣蒸餾。例如苯甲醛(沸點178℃),進行水氣蒸餾時,在97.9℃沸騰,這時候pA=93.8 kPa,pB=7.5 kPa,則:
這時候餾出液中苯甲醛佔32.1%。
假如導入133℃過熱蒸氣,苯甲醛的蒸氣壓可達29.3kPa,故而只要有72 kPa的水氣壓,就可使系統沸騰,則:
這樣餾出液中苯甲醛的含量就提高到了70.6%。
應用過熱水氣還具有使水氣冷凝少的長處,為了防止過熱蒸氣冷凝,可在蒸餾瓶下保溫,甚至加熱。
從上面的分析可以看出,施用水氣蒸餾這種分散要領是有條件限定的,被提純物質必需具備以下幾個條件:(1)不溶或者難溶於水;(2)與沸水永劫間並存而不發生化學反應;(3)在100℃擺布必需具有肯定似的蒸氣壓(一般不小於1.33 kPa)。
❷ 食品分子蒸餾技術在食品工業上有那些應用有何特點
分子蒸餾技術是一種對高沸點、熱敏性物料進行分離的有效方法,自本世版紀 30年代出現權以來,得到了世界各國的重視。至本世紀60年代,英、美、德等國相繼設計製造了多套分子蒸餾裝置。各國研製的型式多種多樣,發展至今,大部分 已被淘汰。目前應用較廣的是離心薄膜式及轉子刮膜式.這兩種形式的分離裝置,也一直在不斷改進和完善.特別是針對不同的產品,其裝置結構與配套設備要有不 同的特點。本文介紹分子蒸餾技術的基本原理和特點,並綜述了分子蒸餾技術在食品工業中的應用。
❸ 分子蒸餾原理
分子蒸餾是一種在高真空下操作的蒸餾方法,這時蒸氣分子的平均自由程大於蒸發表面與冷凝表面之間的距離,從而可利用料液中各組分蒸發速率的差異,對液體混合物進行分離。定義在一定溫度下,壓力越低,氣體分子的平均自由程越大。當蒸發空間的壓力很...
❹ 葯物分離純化技術的圖書目錄
第一章 緒論
第一節 葯物分離純化技術的研究內容及重要性
一、分離純化的研究內容和意義
二、葯物分離純化的重要性
第二節 分離純化的原理與方法
一、分離純化的原理
二、分離純化方法的分類
第三節 分離純化方法選擇的標准及其評價
一、分離純化方法選擇的標准
二、分離純化方法的評價
思考題
參考文獻
第二章 葯物的液液萃取技術
第一節 基本概念
一、萃取
二、反萃取
三、物理萃取
四、化學萃取
第二節 分子間作用力與溶劑特性
一、分子間作用力
二、溶質的溶解與溶劑極性
第三節 分配平衡與分配定律
一、分配定律及分配平衡常數
二、分配比
三、萃取率
四、分離系數
第四節 弱電解質分配平衡
第五節 乳化和去乳化
一、乳化及乳化形成的穩定條件
二、乳狀液的類型及其消除
三、乳狀液的消除
第六節 化學萃取法
一、溶質與萃取劑之間的化學作用
二、萃取劑
三、稀釋劑
四、影響化學萃取的因素
五、化學萃取在醫葯領域中的應用
第七節 萃取過程計算
一、單級萃取
二、多級萃取
思考題
參考文獻
第三章 浸取分離技術
第一節 葯材成分與浸取機理
一、中葯化學成分簡介
二、葯材成分的浸取機理
第二節 浸取的基本理論
第三節 浸取溶劑與浸取方法
一、浸取溶劑
二、浸取方法
第四節 影響浸取過程的因素
一、葯材的粉碎粒度
二、浸取的溫度
三、浸取的時間
四、浸取的壓力
五、濃度差
六、浸取溶劑
七、葯物成分的影響
第五節 浸出工藝與設備
一、單級浸出工藝
二、多級浸出工藝
三、連續逆流浸出工藝
第六節 浸取計算
一、平衡狀態下的浸出計算
二、浸出時間的計算
第七節 微波協助浸取技術
一、微波的特性
二、微波協助浸取的原理與特點
三、影響微波協助浸取的因素
四、微波協助浸取在中葯提取中的應用
五、微波協助浸取中葯成分的評價及存在問題
第八節 超聲波協助浸取技術
一、超聲波提取的原理
二、超聲波提取的特點
三、影響超聲波提取的因素
四、超聲波技術在中葯提取中的應用
第九節 半仿生提取法
一、半仿生提取法簡介
二、半仿生提取在中葯提取中的應用
思考題
參考文獻
第四章 超臨界流體萃取技術
第一節 概述
第二節 超臨界流體萃取技術的基本原理
一、超臨界流體的基本性質
二、超臨界流體萃取的萃取劑
三、超臨界流體萃取的基本過程
第三節 超臨界CO2流體萃取
一、超臨界CO2流體的特點
二、超臨界CO2流體相圖
三、超臨界CO2流體的傳遞性質
四、超臨界CO2流體對溶質的溶解性能
五、影響超臨界CO2流體對溶質溶解能力的因素
六、不同溶質在超臨界CO2流體中的溶解度
七、夾帶劑對超臨界CO2流體溶解能力的影響
第四節 超臨界CO2流體萃取的工藝流程與設備
一、超臨界CO2流體萃取的工藝流程
二、超臨界CO2流體萃取的設備
第五節 超臨界CO2流體萃取的應用與實例
一、萜類與揮發油的提取
二、香豆素和木脂素的提取
三、黃酮類化合物的提取
四、醌及其衍生物的提取
五、生物鹼的提取
六、糖及苷類的提取
思考題
參考文獻
第五章 雙水相萃取技術
第一節 概述
一、雙水相體系形成
二、雙水相萃取原理
三、雙水相體系的熱力學模型
第二節 雙水相萃取的特點及影響因素
一、雙水相萃取的特性
二、影響雙水相萃取的主要因素
第三節 雙水相體系及其應用
一、雙水相體系
二、雙水相萃取的工藝流程
三、PEG雙水相體系
第四節 伴有溫度誘導效應的雙水相系統及其應用
第五節 普通有機溶劑/鹽體系及其應用
一、雙水相體系中不同種類鹽分相能力的差異
二、不同種類鹽對有機溶劑的分相
思考題
參考文獻
第六章 制備色譜分離技術
第一節 概述
一、制備色譜簡介
二、色譜分離原理及特點
三、色譜的分類
四、色譜法中常用的術語和參數
五、色譜法的基本理論
第二節 凝膠色譜分離技術及其應用
一、凝膠色譜分離的原理和分類
二、凝膠的種類及性質
三、凝膠特性參數
四、凝膠色譜分離的步驟
五、凝膠色譜分離技術的應用與實例
第三節 高速逆流色譜分離技術
一、簡介
二、高速逆流色譜的原理與特點
三、高速逆流色譜溶劑系統的選擇
四、高速逆流色譜的操作過程及其應用實例
第四節 制備薄層色譜分離技術
一、薄層色譜條件
二、制備薄層色譜操作技術
三、離心薄層色譜和加壓薄層色譜
第五節 制備柱色譜分離技術
一、常壓柱色譜
二、加壓柱色譜
三、減壓柱色譜
第六節 親和色譜分離技術
一、親和色譜分離的原理
二、載體的選擇
三、配基的選擇
四、親和色譜分離的操作過程
思考題
參考文獻
第七章 大孔吸附樹脂分離技術
第一節 概述
一、吸附與吸附作用
二、大孔吸附樹脂的吸附
三、吸附樹脂的分類
四、國內外代表性樹脂的型號和特性
五、大孔吸附樹脂的應用特點
第二節 大孔吸附樹脂柱色譜技術
一、大孔吸附樹脂柱色譜的操作步驟
二、大孔吸附樹脂柱色譜分離效果的影響因素
三、大孔吸附樹脂柱色譜分離工藝條件的確定
四、大孔吸附樹脂柱色譜分離技術應用中存在的問題及解決辦法
第三節 大孔吸附樹脂分離技術的應用與實例
一、在中葯化學成分分離純化中的應用
二、在中葯復方精製中的應用
三、在海洋天然產物分離純化中的應用
四、在微生物葯物分離純化中的應用
思考題
參考文獻
第八章 分子印跡技術簡介
第一節 概述
一、分子印跡技術的原理
二、分子印跡技術的方法
三、分子印跡技術的特點
四、分子印跡聚合的反應物
第二節 分子印跡聚合物的制備與合成
一、分子印跡聚合物的制備過程
二、分子印跡聚合物的合成方法
第三節 分子印跡聚合物對模板分子的識別
一、模板分子進入印跡聚合物空穴
二、印跡聚合物對底物分子的結合
三、印跡反應
第四節 分子印跡技術的應用
一、分子印跡技術的應用領域
二、分子印跡技術的應用實例
三、分子印跡技術及解決辦法
思考題
參考文獻
第九章 離子交換分離技術
第一節 離子交換基本原理
第二節 離子交換劑的分類及命名
一、離子交換劑的分類
二、離子交換劑的命名
第三節 離子交換動力學
一、離子交換速度
二、離子交換過程的動力學
第四節 離子交換樹脂的特性
一、離子交換樹脂的基本要求
二、離子交換樹脂的理化性能
第五節 離子交換的選擇性
一、離子的化合價
二、離子水合半徑
三、溶液的pH
四、交聯度、膨脹度和分子篩
五、有機溶劑的影響
第六節 離子交換操作過程
一、樹脂的選擇與處理
二、裝柱
三、通液
四、洗滌與洗脫
五、樹脂的再生和毒化
第七節 離子交換分離技術的應用與實例
一、在中葯分離純化中的應用
二、在抗生素提取分離中的應用
三、在多肽、蛋白質和酶分離中的應用
四、在氨基酸提取分離中的應用
思考題
參考文獻
第十章 分子蒸餾技術
第一節 概述
一、分子蒸餾的原理
二、分子蒸餾技術的特點
第二節 分子蒸餾技術和主要設備
一、分子蒸餾裝置的組成
二、分子蒸餾裝置
第三節 分子蒸餾技術的應用與實例
一、分子蒸餾的應用優勢
二、分子蒸餾技術的應用范圍
三、分子蒸餾技術應用實例
思考題
參考文獻
第十一章 膜分離技術
第十二章 乾燥技術
❺ 分子蒸餾原理,閃蒸罐原理,過濾機原理
分子蒸餾原理,閃蒸罐原理,過濾機原理
閃蒸和蒸餾不同,在閃蒸過程中沒有熱量加入。
其原理很簡單,物質的沸點是隨壓力增大而升高,那麼是不是壓力越低,沸點就越低呢。
❻ 詳細介紹多效蒸餾器的工作原理及操作使用方法
太陽能海抄水蒸餾器 主題詞或關鍵詞: 太陽能 能源科學 蒸餾器 內容第二次世界大戰中,美國國防部製造了許多軍用海水淡化急救裝置,供飛行員和船員落水後取水用,這種裝置實際上是一種簡易的太陽能蒸餾容器。
對於微小的壓力降就會引起蒸汽的流動。在1mbar下運行要求在沸騰面和冷凝面之間非常短的距離,基於這個原理製作的蒸餾器稱為短程蒸餾器。短程蒸餾器(分子蒸餾)有一個內置冷凝器在加熱面的對面,並使操作壓力降到0.001mbar。
❼ 蒸餾的相關文物
考古人員在西安市張家堡廣場東側發掘出四百四十餘座漢代墓葬,其中一處規格較高的西漢王莽時期墓葬中,發現一盅工藝奇特的銅蒸餾器,可能是歷史上最早的蒸餾器。這盅銅蒸餾器通高三十六厘米,由筒形器、銅鍑和豆形蓋組成。其中筒形器底部有一米格形箅,為古代炊具中用作隔層的器具。底邊有一小管狀流,銅鍑三蹄形足,豆形器蓋上部呈盤形,相合處為榫鉚結構,可在一定范圍內自由活動。出土時放置有序,銅鍑置於筒形器內,豆形蓋置於銅鍑之上。這樣組合的蒸餾器此前從未發現,盡管其工作原理尚不明確,但從構造看來,應是用作蒸餾葯、酒。
據了解,此前中國曾出土東漢時期的青銅蒸餾器,而西安張家堡漢墓發現的銅蒸餾器則較其更早。西安文物保護考古所副所長程林泉表示,其出土為漢代飲食和醫葯技術的研究提供了十分珍貴的實物資料。
另外,在蒸餾器出土所在的編號M115墓葬中,考古人員還發掘出二百多件器物,其中包括五件大型銅鼎和四件大型釉陶鼎。據《周禮》記載,西周時天子用九鼎隨葬。M115的墓主追慕周代禮制,使用九鼎隨葬,可見其特殊身份地位。九鼎和另一件隨葬品仿銅釉陶鼎是王莽托古改制的真實物證,具有極為重要的學術價值和歷史意義。 蒸餾酒是乙醇濃度高於原發酵產物的各種酒精飲料。白蘭地、威士忌、朗姆酒和中國的白酒都屬於蒸餾酒,大多是度數較高的烈性酒。
蒸餾酒的原料一般是富含天然糖分或容易轉化為糖的澱粉等物質。如蜂蜜、甘蔗、甜菜、水果和玉米、高粱、稻米、麥類馬鈴薯等。糖和澱粉經酵母發酵後產生酒精,利用酒精的沸點(78.5攝氏度)和水的沸點(100攝氏度)不同,將原發酵液加熱至兩者沸點之間,就可從中蒸出和收集到酒精成分和香味物質。
用特製的蒸餾器將酒液,酒醪或酒醅加熱,由於它們所含的各種物質的揮發性不同,在加熱蒸餾時,在蒸汽中和酒液中,各種物質的相對含量就有所不同。酒精(乙醇)較易揮發,則加熱後產生的蒸汽中含有的酒精濃度增加,而酒液或酒醪中酒精濃度就下降。收集酒氣並經過冷卻,得到的酒液雖然無色,氣味卻辛辣濃烈。其酒度比原酒液的酒度要高得多,一般的釀造酒,酒度低於20%。 蒸餾酒則可高達60%以上。我國的蒸餾酒主要是用穀物原料釀造後經蒸餾得到的。
現代人們所熟悉的蒸餾酒分為「白酒」(也稱「燒酒」),「白蘭地」,「威士忌」。 「伏特加酒」,「蘭姆酒」等。白酒是中國所特有的,一般是糧食釀成後經蒸餾而成的。白蘭地是葡萄酒蒸餾而成的,威士忌是大麥等穀物發酵釀制後經蒸餾而成的。蘭姆酒則是甘蔗酒經蒸餾而成的。 分子蒸餾是一種在高真空度下進行液液分離操作的連續蒸餾過程。在高真空度條件下,由於分子蒸餾器的加熱面和冷凝面之間距離小於或等於被分離物料的分子平均自由程,當分子從加熱面上形成的液膜表面上進行蒸發時,分子間相互發生碰撞,無阻攔地向冷凝面運動並在冷凝面上冷凝,從而達到分離目的。
分子蒸餾是在待分離組分遠低於常壓沸點的溫度下揮發的,並且各組分在受熱情況下停留時間短,非常適合於分離高沸點、高粘度、熱敏性的天然產物。分子蒸餾技術因而能夠實現遠離沸點下的操作,又具備蒸餾壓強低、受熱時間短、分離程度高等特點,能大大降低高沸點物料的分離成本,極好地保護熱敏性物質的品質。國外在20世紀30年代出現分子蒸餾技術,並在60年代開始工業化反應。國內於80年代中期開始分子蒸餾技術研發。在二十世紀後期,該項技術已廣泛應用於石油化工、食品香料等領域,非凡適用於天然物質的提取與分離。本文簡述了分子蒸餾的原理、提取器和在香精香料工業中的應用。
❽ 分子蒸餾符合雙碳嗎
4、分子蒸餾技術適宜於附加值較高或社會效益較大的物質的分離 。由於目前分子蒸餾全套裝置的一次性投資較大 , 除了分子蒸餾器本身之外 , 還要有整套的真空系統及加熱、冷卻系統等 。對那些常規蒸餾分離不理想 , 附加值不高的產品 , 不宜採用分子蒸餾 。
5、分子蒸餾技術不適宜同分異構體的分離 。從分子蒸餾技術原理可知 , 由於同分異構體結構類似 , 分子量相等 , 分子平均自由程相近 , 因此難於用分子蒸餾加以分離 。
分子蒸餾技術的應用作為一種高效新型的綠色分離技術 , 分子蒸餾因溫度低、物料加熱時問短等特點 , 成功地避免了傳統分離提取方法的缺陷 , 不但可分離常規蒸餾無法分離的組分 , 還能降低成本 。尤其是在天然產物的分離、提純和濃縮方面具有較強的優勢 , 其中包括成分復雜的以及熱敏性的物質 , 如維生素和多元不飽和脂肪酸等 。另外 , 分子蒸餾不必使用溶劑作為分離劑 , 避免了溶劑的殘留及毒性的問題 。目前已經廣泛應用於化工、醫葯、食品、造紙等各個領域 。
在植物有效成分提取中的應用①天然維生素的提取純化
隨著人們對天然維生素E保健功能的日益了解 , 國際市場上天然維生素E的需求量日益增長 。天然維生素主要存在於植物的組織中 , 如大豆油、小麥胚芽油等富含維生素的植物油以及油脂加工的脫臭餾分和油渣中 。而天然維生素具有沸點高、熱敏性等特點 , 用普通的蒸餾方法容易使其發生受熱分解 , 產率降低 。
直到採用分子蒸餾的方法 , 這一問題才得以解決 , 使產率和純度都得以提高 。油脂脫臭的
❾ 蒸發和蒸餾有什麼不同
1、蒸發操作適用於可溶性固體與液體的混合物的離,並且固體的溶,沸點較高。
2.蒸餾是利用混合物中各組分沸點的不同來除去易揮發,難揮發,或者不揮發的雜質的操作。
3.蒸發、蒸餾和分餾它們之間的原理是利用混合物中各組分沸點的差別,使液體混合物部分汽化並隨之使蒸氣部分冷凝,從而實現其所含組分的分離。
❿ 分子蒸餾合減壓蒸餾一樣嗎如果不一樣,有什麼區別
分子蒸餾是利用不同物質分子運動自由程的差別,對物質進行蒸餾.
減壓蒸餾是利用在低壓環境下,物質沸點會降低這一原理對高沸點物質進行蒸餾.