㈠ 废水中如何去除氟离子
采用诱导结晶法除氟。其技术核心是在高氟水中投加氟磷灰石作为晶种,并投加磷酸专盐和钙盐使水中氟属离子在晶种表面生成氟磷酸钙(Ca10(PO4) 6F2)结晶。通过单因素实验得出最佳工艺条件:投加8g/L氟磷灰石,并投加NaH2PO4和CaCl2,使钙离子、磷酸根离子和氟离子的摩尔比为10:5:1,搅拌速度为100 r/min,反应时间1 h。反应中磷酸根离子和钙离子的利用率分别达到98%和25%以上。电子扫描显微镜(SEM)表征晶种在参与反应后,表面有结晶生成。研究表明,采用诱导结晶法可将水中氟离子浓度从5~10 mg/L降至1 mg/L以下,达到饮用水水质标准。
㈡ 水处理除氟的方法都有哪些
目前国内外水处理除氟的方法主要有:
化学法、吸附法、离子交换法、
电化学法和反渗透法等。
㈢ 求除氟工艺及详细说明
你好!我建议去和化学工厂及水利局咨询一下就好啦.含氟废水,目前国内大多数生产厂尚无完善的处理设施,所排放的废水中氟含量超过国家排放标准,严重污染环境。按照国家污水综合排放标
准,氟离子浓度应小于10mg/L;对于饮用水,氟离子浓度要求在1mg/L以下。
目前国内外常用的含氟废水处理方法大致分为两类,即沉淀法和吸附法。
化学沉淀法是通过投加钙盐等化学药品,形成氟化物沉淀或氟化物被吸附于所形成的沉淀物中而共同沉淀。该方法简单、处理方便,费用低,
但石灰溶解度低,只能以乳状液投加,且产生的CaF<SUB>2</SUB>沉淀包裹在Ca(OH)<SUB>2</SUB>颗粒的表面,使之不能被充分利用,因而用量
大。处理后的废水中氟含量一般只能下降到15mg/L,很难达到国标一级标准。而且存在泥渣沉降缓慢,脱水困难,处理大流量排放物周期长,
不适应连续处理连续排放等缺点。<BR> 吸附法是指含氟废水流经接触床,通过与床中固体介质
进行离子交换或化学反应,去除氟化物。这种方法只适用于低浓度的含氟废水或经其他方法处理后氟化物浓度降至10~20mg/L的废水。而且接触
床的再生及高浓度再生液的处理是整个运行过程中不可缺少的一部分,接触床频繁的再生使运行成本较高。<BR> &n
bsp; 此外,还有冷冻法、离子交换树脂除氟法、超滤除氟法、电渗析等,但因为处理成本高,除氟效率低,至今多停留在实验阶
段,很少推广应用于工业含氟废水治理。<BR> 絮凝一气浮处理含氟废水新工艺是在传统工艺的
基础上,采用絮凝一气浮一吸附相结合的工艺处理含氟废水。<BR> 1.基本原理<BR>
利用铝离子的三种机理来去除氟离子,即:<BR>
(1)吸附。铝盐絮凝除氟过程中生成的具有很大表面积的无定性Al(OH)<SUB>3 </SUB>(am)原体对氟离子产生氢键吸附,氟离子半径小,电负性强,
这一吸附方式很容易发生。<BR> (2)离子交换。氟离子与氢氧根的半径及电荷都相近,铝盐絮凝除
氟过程中,投加到水中的A1<SUB>13 </SUB>O<SUB>4 </SUB>(0H) <SUB>14</SUB><SUP>7+</SUP> 等聚阳离子及水解后形成的无定性Al(0H)<SUB>3</SUB>
(am)沉淀,其中的OH<SUP>-</SUP>与F<SUP>-</SUP>发生交换,这一交换过程是在等电荷条件下进行的。<BR>
(3)络合沉淀。F<SUP>-</SUP>能与Al<SUP>3+</SUP>等形成从AlF<SUP>2+</SUP>、AlF<SUP>2+</SUP>、AlF<SUB>3</SUB>到AlF<SUB>6</SUB><SUP>
3-</SUP> 6种络合物,络合沉降而去除F<SUP>-</SUP>。<BR> 络合离子方程式如下:<BR>
F<SUP>-</SUP>+ Al<SUP>3+</SUP> →AlF<SUP>2+</SUP>↓+ AlF<SUB>2</SUB><SUP>+</SUP>↓+ AlF<SUB>3</SUB>↓+
AlF<SUB>4</SUB><SUP>-</SUP>↓+ AlF<SUB>5</SUB><SUP>2-</SUP>↓+ AlF<SUB>6</SUB><SUP>3-</SUP>↓<BR>
; 絮凝产生的絮状物通过气浮装置达到有效的固液分离,出水经过砂滤再通过活性炭吸附后排放。<BR>
; 2.应用实例<BR> 某半导体厂含氟废水平均进口浓度为165.54m/L,pH=2.39,排放水
量为50m<SUP>3</SUP>/d。《污水综合排放标准》( GB8978 -1996)一级标准为:F-≤10mg/,pH=6~9。处理工艺流程见图1。<BR><IMG alt=""
src="/sbgl/design/UploadFiles_1688/200612/20061205214244475.gif">
<P> 生产废水首先流入调节沉淀池,然后由泵提入絮凝反应池,同时通过自动加药机投加药剂NaOH,
2‰聚铝及0.005‰的PAM助凝剂,进行絮凝反应。加药过程中,观察pH值显示仪的读数,根据声值调节NaOH的投加量,控制pH在7左右。絮凝反应时间约为
15min。出水自流入气浮分离池,由溶气释放器中释放出来的溶气水将絮凝后的沉淀托出水面,在液面上形成沉淀物浮渣,浮渣经刮渣机刮出后进入干化
箱,静沉后的清洁液再流入调节沉淀池,沉渣干化后可外运填埋或焚烧处理。气浮分离池下部的清液自流入清水池中,部分清水由溶气泵提入溶气罐,
作为气浮用的溶气水,其余的清水由泵提入砂滤塔,经过砂滤的水再进入活性炭吸附罐进行深度处理,最后直接排放。<BR>
在调试期间发现pH值对各阶段的处理效果有一定影响(表1),由表1可见,当声值控制在7.0左右时处理效果最佳。<BR>
<IMG alt="" src="/sbgl/design/UploadFiles_1688/200612/20061205214244371.gif"><BR> <BR>
3.运行效果<BR> 这套处理设施竣工投用以来,经环境监测权威机构多次对设施进出口F-浓度进行采样
监测。监测结果表明,该含氟废水处理设备出口排放物中的州值均在6.5~7之间,F-的浓度均小于5mg/L,排放指标均达到了国家污水综合排放一级标准,
除F-效率达98.9%。<BR> 同时经济评估表明,这套设施充分利用了工厂原有的调节沉淀池、部分管路等
设施,总投资不高,除去设备折旧费及人工费,总运行费用每吨仅为0.50元。<BR> 4.结论<BR>
(1)絮凝一气浮处理含氟废水工艺继承了传统工艺的优点,充分利用铝盐絮凝的吸附、离子交换、络合沉淀等
作用机理,缓解后续处理的负荷,且采用聚铝作为絮凝剂比采用铝盐用量减少一半,处理费用进一步降低。<BR>
; (2)将气浮技术运用于含氟废水处理中,解决了以往固液分离的难题,使设备能稳定运行。<BR>
(3)出水末端采用活性炭吸附,给出水稳定达标排放提供保障。<BR> (4)在工艺中,用NaOH取代传统的Ca
(OH)<SUB>2</SUB>,使泥渣量减少,解决了传统工艺泥渣多,易结垢,处理效果不佳,管路易堵塞等难题。<BR> <STRONG>
; 参考文献<BR></STRONG> 1 凌波.铝盐混凝沉淀除氟水.水处理技术.1990,16(2):418~421
<BR> 2 刘裴文、萧举强、王萍等.含氟废水处理过程的吸附交换机理—离子交换与吸附.1991.7(50)
:375~382<BR> 3 胡万里.混凝、混凝剂、混凝设备.化学工业出版社,环境科学工程出版中心<BR>
4 卢建杭、刘维屏、王红斌铝盐混凝法除氟离子的一般规律.化工环保.2000
</P> <center></center></td></tr>
好像有点乱,看下面的地址吧!
参考资料:http://www.jdzj.com/sbgl/design/200612/20061205214217_1913.html
http://www.sclw.com/ctidea.asp#t4
我国许多地区,地下水含氟量都超过国家规定的生活饮用水卫生标准(1.5mg/L)。有些地区甚至高达20mg/L。长期饮用高氟水,轻者使牙齿产生斑釉,关节疼痛,重者会影响骨骼发育,致使丧失劳动力。为此本公司开发出活性氧化铝吸附过滤用于地下水除氟(也适用于工业废水除氟)的专用设备。。
原理与工艺流程
含氟水经过比表面积较大的活性氧化铝吸附过滤层。在PH值5~6的条件下,水中氟离子被吸附生成难溶解的氟化物而被除去,其反应式如下:R2SO4+2F-=R2F2+SO42-
吸附剂失效后,用硫酸铝溶液进行再生,以恢复其吸附能力。当原水PH值大于7时,一般用二氧化碳气体进行调节。
参考资料 :
http://www.sclw.com/ctidea.asp#t4
㈣ 水里氟元素高怎样可以去除
药物去除水中的氟 包括以下措施: 1.硫酸铝+适量石灰可产生氢氧化铝沉淀,氟离子吸附在专沉淀物上属而被清除。 2.活性氧化铝有较大的表面积和较强的离子交换作用,对氟离子有较强的吸附作用。 3.碱性氯化铝可直接加入饮水中产生胶体聚合物,氟离子随聚合物沉淀,上清液即为低氟水。 药物降氟法较多,但均不够理想,且费用也较大,难以长期坚持应用。
很详细了,望采纳!
㈤ 除氟工艺的目的
含氟废水,目前国内大多数生产厂尚无完善的处理设施,所排放的废水中氟含量超过国家排放标准,严重污染环境。按照国家污水综合排放标
准,氟离子浓度应小于10mg/L;对于饮用水,氟离子浓度要求在1mg/L以下。
目前国内外常用的含氟废水处理方法大致分为两类,即沉淀法和吸附法。
化学沉淀法是通过投加钙盐等化学药品,形成氟化物沉淀或氟化物被吸附于所形成的沉淀物中而共同沉淀。该方法简单、处理方便,费用低,
但石灰溶解度低,只能以乳状液投加,且产生的CaF<SUB>2</SUB>沉淀包裹在Ca(OH)<SUB>2</SUB>颗粒的表面,使之不能被充分利用,因而用量
大。处理后的废水中氟含量一般只能下降到15mg/L,很难达到国标一级标准。而且存在泥渣沉降缓慢,脱水困难,处理大流量排放物周期长,
不适应连续处理连续排放等缺点。<BR> 吸附法是指含氟废水流经接触床,通过与床中固体介质
进行离子交换或化学反应,去除氟化物。这种方法只适用于低浓度的含氟废水或经其他方法处理后氟化物浓度降至10~20mg/L的废水。而且接触
床的再生及高浓度再生液的处理是整个运行过程中不可缺少的一部分,接触床频繁的再生使运行成本较高。<BR> &n
bsp; 此外,还有冷冻法、离子交换树脂除氟法、超滤除氟法、电渗析等,但因为处理成本高,除氟效率低,至今多停留在实验阶
段,很少推广应用于工业含氟废水治理。<BR> 絮凝一气浮处理含氟废水新工艺是在传统工艺的
基础上,采用絮凝一气浮一吸附相结合的工艺处理含氟废水。<BR> 1.基本原理<BR>
利用铝离子的三种机理来去除氟离子,即:<BR>
(1)吸附。铝盐絮凝除氟过程中生成的具有很大表面积的无定性Al(OH)<SUB>3 </SUB>(am)原体对氟离子产生氢键吸附,氟离子半径小,电负性强,
这一吸附方式很容易发生。<BR> (2)离子交换。氟离子与氢氧根的半径及电荷都相近,铝盐絮凝除
氟过程中,投加到水中的A1<SUB>13 </SUB>O<SUB>4 </SUB>(0H) <SUB>14</SUB><SUP>7+</SUP> 等聚阳离子及水解后形成的无定性Al(0H)<SUB>3</SUB>
(am)沉淀,其中的OH<SUP>-</SUP>与F<SUP>-</SUP>发生交换,这一交换过程是在等电荷条件下进行的。<BR>
(3)络合沉淀。F<SUP>-</SUP>能与Al<SUP>3+</SUP>等形成从AlF<SUP>2+</SUP>、AlF<SUP>2+</SUP>、AlF<SUB>3</SUB>到AlF<SUB>6</SUB><SUP>
3-</SUP> 6种络合物,络合沉降而去除F<SUP>-</SUP>。<BR> 络合离子方程式如下:<BR>
F<SUP>-</SUP>+ Al<SUP>3+</SUP> →AlF<SUP>2+</SUP>↓+ AlF<SUB>2</SUB><SUP>+</SUP>↓+ AlF<SUB>3</SUB>↓+
AlF<SUB>4</SUB><SUP>-</SUP>↓+ AlF<SUB>5</SUB><SUP>2-</SUP>↓+ AlF<SUB>6</SUB><SUP>3-</SUP>↓<BR>
; 絮凝产生的絮状物通过气浮装置达到有效的固液分离,出水经过砂滤再通过活性炭吸附后排放。<BR>
; 2.应用实例<BR> 某半导体厂含氟废水平均进口浓度为165.54m/L,pH=2.39,排放水
量为50m<SUP>3</SUP>/d。《污水综合排放标准》( GB8978 -1996)一级标准为:F-≤10mg/,pH=6~9。处理工艺流程见图1。<BR><IMG alt=""
src="/sbgl/design/UploadFiles_1688/200612/20061205214244475.gif">
<P> 生产废水首先流入调节沉淀池,然后由泵提入絮凝反应池,同时通过自动加药机投加药剂NaOH,
2‰聚铝及0.005‰的PAM助凝剂,进行絮凝反应。加药过程中,观察pH值显示仪的读数,根据声值调节NaOH的投加量,控制pH在7左右。絮凝反应时间约为
15min。出水自流入气浮分离池,由溶气释放器中释放出来的溶气水将絮凝后的沉淀托出水面,在液面上形成沉淀物浮渣,浮渣经刮渣机刮出后进入干化
箱,静沉后的清洁液再流入调节沉淀池,沉渣干化后可外运填埋或焚烧处理。气浮分离池下部的清液自流入清水池中,部分清水由溶气泵提入溶气罐,
作为气浮用的溶气水,其余的清水由泵提入砂滤塔,经过砂滤的水再进入活性炭吸附罐进行深度处理,最后直接排放。<BR>
在调试期间发现pH值对各阶段的处理效果有一定影响(表1),由表1可见,当声值控制在7.0左右时处理效果最佳。<BR>
<IMG alt="" src="/sbgl/design/UploadFiles_1688/200612/20061205214244371.gif"><BR> <BR>
3.运行效果<BR> 这套处理设施竣工投用以来,经环境监测权威机构多次对设施进出口F-浓度进行采样
监测。监测结果表明,该含氟废水处理设备出口排放物中的州值均在6.5~7之间,F-的浓度均小于5mg/L,排放指标均达到了国家污水综合排放一级标准,
除F-效率达98.9%。<BR> 同时经济评估表明,这套设施充分利用了工厂原有的调节沉淀池、部分管路等
设施,总投资不高,除去设备折旧费及人工费,总运行费用每吨仅为0.50元。<BR> 4.结论<BR>
(1)絮凝一气浮处理含氟废水工艺继承了传统工艺的优点,充分利用铝盐絮凝的吸附、离子交换、络合沉淀等
作用机理,缓解后续处理的负荷,且采用聚铝作为絮凝剂比采用铝盐用量减少一半,处理费用进一步降低。<BR>
; (2)将气浮技术运用于含氟废水处理中,解决了以往固液分离的难题,使设备能稳定运行。<BR>
(3)出水末端采用活性炭吸附,给出水稳定达标排放提供保障。<BR> (4)在工艺中,用NaOH取代传统的Ca
(OH)<SUB>2</SUB>,使泥渣量减少,解决了传统工艺泥渣多,易结垢,处理效果不佳,管路易堵塞等难题。<BR> <STRONG>
; 参考文献<BR></STRONG> 1 凌波.铝盐混凝沉淀除氟水.水处理技术.1990,16(2):418~421
<BR> 2 刘裴文、萧举强、王萍等.含氟废水处理过程的吸附交换机理—离子交换与吸附.1991.7(50)
:375~382<BR> 3 胡万里.混凝、混凝剂、混凝设备.化学工业出版社,环境科学工程出版中心<BR>
4 卢建杭、刘维屏、王红斌铝盐混凝法除氟离子的一般规律.化工环保.2000
</P> <center></center></td></tr>
好像有点乱,看下面的地址吧!
参考资料:http://www.jdzj.com/sbgl/design/200612/20061205214217_1913.html
http://www.sclw.com/ctidea.asp#t4
我国许多地区,地下水含氟量都超过国家规定的生活饮用水卫生标准(1.5mg/L)。有些地区甚至高达20mg/L。长期饮用高氟水,轻者使牙齿产生斑釉,关节疼痛,重者会影响骨骼发育,致使丧失劳动力。为此本公司开发出活性氧化铝吸附过滤用于地下水除氟(也适用于工业废水除氟)的专用设备。。
原理与工艺流程
含氟水经过比表面积较大的活性氧化铝吸附过滤层。在PH值5~6的条件下,水中氟离子被吸附生成难溶解的氟化物而被除去,其反应式如下:R2SO4+2F-=R2F2+SO42-
吸附剂失效后,用硫酸铝溶液进行再生,以恢复其吸附能力。当原水PH值大于7时,一般用二氧化碳气体进行调节。
参考资料 :
㈥ 含氟量高的地下水怎么除氟
去除水中的氟主要有:活性氧化铝法、电渗析法、絮凝沉淀池、骨炭祛、电凝聚祛和反渗析法等。其中前3种方法应用比较普遍。
1、活性氧化铝法:
以颗粒状活性氧化铝为吸附剂,用过滤方法吸附水中的氟离子。当活性氧化铝吸附氟离子饱和后可再生重复使用。
吸附——活性氧化铝的粒径越小,吸附容量越高,一般宜为0.4~1.5mm。为了提高吸附容量,原水进入滤池前宜投加硫酸(或盐酸,醋酸)等酸性瘩液或投加二氧化碳气体,以降低pH值至6.0~7.0。
单个滤池吸附剂厚度常在1.5~1.8 m,当工程规模小、滤速低、进水的pH值用硫酸榕液调节时,厚度可在0.8~1.2 m之间。
再生——当滤池出水含氟量超标时,对活性氧化铝就应进行再生,再生液常采用0.75%~ 1%的氢氧化钠溶液,也可采用2%~ 3%的硫酸铝溶液。再生过程可分为首次冲洗、再生、二次冲洗及中和4个阶段。
当采用硫酸铝再生时,中和阶段可以省略。氢氧化钠的消耗量可按每去除1g氟化物需要8~10g固体氢氧化钠计算;硫酸铝的消耗量可按每去除1g氟化物需要60~80g固体硫酸铝计算。
2、电渗析法:
在电场作用下,通过离子交换膜的选择透过性使水中离于作定向迁移,达到离子从水中分离。
该方法适用于含盐量在500~10000mg/L、含氟量小于12mg/L的原水。并在除盐的同时去除氟离子。
电渗析法原水水质并应符合下列条件:浑浊度小于5NTU;化学需氧量(COD))小于3mg/L;铁小于0.3mg/L;锰小于0.3mg/L;游离余气小于1 mg/L。
除氟使用的电惨析法普遍采用浓水循环和自动倒极技术,在切换电极极性的同时改变浓淡水的方向,倒极周期0.5~1 h。电渗析流程长度和极、段数应按脱盐率确定。
3、絮凝沉淀法:
投加凝聚剂经混合,絮凝、沉淀以去除水中的氟离子。由于凝聚剂投加量大时,易引起水中SO²¯或CI¯超标,故原水含氟量不宜大于4mg/L。处理水量宜不大于30m³/d。
凝聚剂多采用铝盐,如氯化铝、硫酸铝和聚合氯化铝等。投加量一般为原水含氟量的10~15倍,投药后pH值将影响到去除效果,宜控制在6.5~7.5范围。由于矾花很轻,宜采用静止沉淀的方法。
絮凝沉淀法主要配套设备有:再生液泵;调节原水pH值的二氧化碳钢瓶或二氧化碳发生器,若采用硫酸调节pH值,需设置稀释槽和酸被输送泵;排液泵;电气控制箱;水质化验设备。主要测定项目为水的含氟量和pH值。
(6)离子交换系统去除氟扩展阅读:
饮用水中氟超标的危害:
氟是人体所必须的微量元素之一,适当氟的摄入有利于防止龋齿病的发生,但人体正常的氟需求量是每日1-1.5毫克,如果持续过量摄入就会引发氟中毒。
目前,氟中毒的主要临床表现为氟斑牙(黄牙)和氟骨症,氟斑牙患者,一般牙齿表面缺少光泽,出现黄色、褐色色素沉着,严重的会导致牙齿大块缺损。
调查显示,持续饮用含氟1.5毫克/升以上的水,氟斑牙发病率会高达45%以上,且中度以上患者居多。然而,患有氟骨症则更为可怕,早期出现四肢、脊柱骨骼和全身各关节疼痛、全身乏力等症状,如果得不到有效的控制和治疗,可能造成肢体功能发生障碍,全身骨骼和关节变形,甚至瘫痪。
㈦ 如何去除地下水中氟离子
如何去除地下水中氟离子
药物去除水中的氟 包括以下措施: 1.硫酸铝+适量石灰可产生氢氧专化铝沉淀,氟离子属吸附在沉淀物上而被清除。 2.活性氧化铝有较大的表面积和较强的离子交换作用,对氟离子有较强的吸附作用。 3.碱性氯化铝可直接加入饮水中产生胶体聚合物,氟离子随聚合物沉淀,上清液即为低氟水。 药物降氟法较多,但均不够理想,且费用也较大,难以长期坚持应用。
㈧ 分子筛除氟原理及流程
饮用水氟超标处理在国际上也是一个难题,尤其是低成本高效率的处理技术比较少。我公司开发的分子筛技术,对氟化物去除率为75-85%,运行成本0.1-0.6元/吨(根据水中氟化物的含量确定),各项指标均达到世界先进水平。
GLE3-2500型全自动除氟器为我公司标准配置产品。它采用固定单层床工艺,顺流再生。当除氟器工作时,源水自上而下通过分子筛层,水中的氟化物不断被分子筛吸附而除去。
当出水达到一定量时,一级罐中的分子筛会饱和,失去交换能力,须退出运行进行再生。此时出水由其他罐提供,保证连续出水。
再生时要求先对分子筛进行反洗,以去除可能截流的悬浮物等杂质,同时松动分子筛。然后从罐上部进药液,再生废液通过排污阀排出。药洗结束后,最后进行正洗工艺,彻底清除分子筛层中残留的药液。再生过程中药液通过喷射器自动吸入,并自动混合到预定浓度后送入交换器,再生剂浓度可通过阀门自由调节。
采用2台设备同时运行,分别再生。单台设备额定出水量为6m3/h。当其中的任一台设备失效时,该失效罐自动退出运行,启动再生程序。再生结束后自动投入运行。
整个系统采用全自动控制,以流量控制运行终点,顺流再生。每台罐的工作状态依次为:运行→再生(反洗、吸药、置换、正洗)→ 运行。同时为保证生产用水的需要,控制系统禁止两台设备出现同时再生的情况。
工艺特点
1、采用全自动控制,经过有经验的水处理工程师调试完毕后,无须专人看管,大大减少了由于人为因素造成的设备运行故障。
2、同时运行分别再生的处理工艺,大大提高了设备和分子筛的利用率。减少了设备投资费用。
3、采用我公司生产的专用控制器GLC流量控制器和GLA多阀控制器,实现设备的模块化控制。大大简化的控制系统的控制程序,而且控制器的设定与操作,无须专业工程师。
4、控制阀门采用进口的气/液动隔膜阀,阀门性能稳定可靠,使用寿命长。大大减小了由于阀门造成的电路故障。
零部件说明
1、控制器:以GLC流量控制器为核心,结合GLA多阀控制器的自动控制系统,可以设定周期流量,自动记录流量,达到预定值自动发出再生信号启动再生。能够自动实现设备运行与备用的切换。GLA多阀控制器在再生过程中可以给出两个开关信号,用来实现相关辅助设备的控制。
2、SIGNET流量传感器(原装):配合GLC流量控制器用于流量的计量。当水流推动涡轮转动时产生一个磁脉冲信号,由流量计上的探头传送给GLC流量控制器,由GLC自动累积流量。当累积流量达到流量设定值后,由GLC控制器给出信号,启动该罐的GLA多阀控制器,实现再生工艺。流量传感器由工程塑料制造,强度好,使用寿命长,耐腐蚀。
3、气/液动隔膜阀:以色列原装进口阀门,阀门材质为工程塑料,耐腐性能优异,强度高,使用寿命长。
4、 喷射器:喷射器安装在再生压力水口管路上,以正负压差产生的虹吸原理将再生液吸入软化罐。它采用UPVC材质,耐腐性能好。
5、 树脂罐体:采用φ1500×2200玻璃钢罐体。
6、药液计量箱:采用φ500×100mm 的PE材质箱体。
7、设备本体管路:采用upvc管路,外形美观,耐腐蚀。
活化火山岩分子筛的结构特性
火山岩是一种呈结晶阴离子型架状结构的多孔硅铝酸盐矿物质,是30多种火山岩石族矿物的总称。在世界40多个国家的火山碎屑沉积岩中,已发现有1000多处火山岩石产地。常见的主要矿物有钠性火山岩石、钙性火山岩石等,它们含水量的多少随外界温度和湿度的变化而变化。其化学通式可以表示为:(Na,K)x(Mg,Ca,Sr,Ba……)y•[Alx+ySin-(x+2y)O2n]•mH2O。其中,x为碱金属离子个数,y为碱土金属离子个数,n表示铝硅离子的个数之和,m表示水分子的个数。
构成火山岩结晶阴离子型架状结构的最基本单位是硅氧(SiO4)四面体和铝氧(AlO4)四面体。在这种四面体中,中心是硅(或铝)原子,每个硅(或铝)原子的周围有4个氧原子,各个硅氧四面体通过处于四面体顶点的氧原子互相连接起来,形成所谓的巨大分子。其中在铝氧四面体中由于1个氧原子的价电子没有得到中和,使得整个铝氧四面体带有1个负电荷,为保持电中性,附近必须有1个带正电荷的金属阳离子(M+)来抵消极性(通常是碱金属或碱土金属离子)。这些阳离子和铝硅酸盐结合相当弱,具有很大的流动性,极易和周围水溶液中的阳离子发生交换作用,交换后的火山岩石结构不被破坏。火山岩石的这种结构决定了它具有离子交换性。
㈨ 除氟剂,除氟剂使用,除氟剂说明,除氟剂如何正确使用
长期饮用含氟量超过1mg/L的水,可导致牙齿和骨骼氟中毒。河流及其他天然水体氟化物浓度过高,对水生生物将会产生毒性。除天然存在高氟地下水外,在工业生产中也会产生大量含氟废水。这些废水不加以处理就会对环境造成危害。排放大量含氟废水的工业有:煤化工、玻璃和陶瓷制造、晶体管制造、电镀、冶炼铝、钢加工、农药和化肥生产等。环瑞高效除氟剂是专为解决氟去除难题而研发的全系列氟去除药剂,适用于各行业污水超标治理。
一、除氟剂特点是什么?
1.反应速度快,去除效率高;
2.药剂纯度高、杂质含量少,较市面上其他产品,用量少,污泥量低。
3.有液体药剂和固体药剂,根据废水特性,选择性广。
4.絮体形成快、沉降速度快,较市面上其他产品处理能力大
5.易于添加和使用,良好的操作性;
6.处理设备简单,投加即可见效,无需复杂调试
二、 除氟剂如何正确使用呢?
1.首先在实验室进行小试,以确定现场水量的药剂添加量。小试流程如:
1)测量原水pH、氟含量。
2)取原水样1L加碱或酸调至合适pH
3)加入除氟剂用蒸馏水彻底溶解后加入。
4)电磁搅拌30min。
5)加入适量絮凝剂至泥水分离。
6)可将废水氟含量降至1mg/L以下。
2.其次,现场使用时反应非常迅速,可直接投加,对氟超标的废水进行处理,由于废水的含氟高低不一,因而投加量有所不同;投加量应根据实验室小试初步确定,并在实际使用中进行调整。
3.最后,环瑞高效除氟剂的现场投加,由于废水中的氟值高低不一,因而投加量有所不同;投加量应根据实验室小试初步确定,并在实际使用中进行调整。
㈩ 如何消除氟离子
如何去除地下水中氟离子药物去除水中的氟 包括以下措施: 1.硫酸铝+适量石灰可产生氢氧化铝沉淀,氟离子吸附在沉淀物上而被清除。 2.活性氧化铝有较大的表面积和较强的离子交换作用,对氟离子有较强的吸附作用。 3.碱性氯化铝可直接加入饮水中产生胶体聚合物,氟离子随聚合物沉淀,上清液即为低氟水。 药物降氟法较多,但均不够理想,且费用也较大,难以长期坚持应用。