A. 苯胺的备制
简单的说就是将硝基苯和氢气加热到200度左右,通入流化床反应器,在金属负载型催化剂(很多种,你这里是活性铜)的作用下,在200-320度时生成苯胺。
反应化学式为C6H5NO2+3H2—-—- C6H5NH2+2H20
硝基苯催化加氢法是目前工业上生产苯胺的主要方法,包括固定床气相催化加氢、流化床气相催化加氢以及硝基苯液相催化加氢三种工艺。
催化剂
C6H5NO2+3H2—-—- C6H5NH2+2H20+Q
生产工艺:1,硝基苯加氢还原:硝基苯经预热和氢气以1:9(摩尔比)进入气化器,气化并加热至185~200℃,通人流化床。以铜作催化剂,气态硝基苯在流化床内发生加氢还原反应。控制流化床内中心温度220~270℃。H:≥90%。加氢反应产生的热量由废热锅炉产生1.3~1.7MPa的饱和蒸汽,供气化器和后续精馏工序使用。流化床顶部出来的气态反应生成物经冷凝、冷却。液相为反应生成的苯胺和水,分层得到粗品苯胺。不凝气(H:≥90%)少量排放,其余压缩后。和新鲜氢混合循环使用。床内铜催化剂定期进行再生处理。2,苯胺精制:粗品苯胺从脱水塔顶泵人。控制脱水塔釜温度140-160℃,塔顶温度120~140℃。塔内真空度一0.06至-0.07MPa。当脱水塔釜液水分≤0.1%后,进入精馏塔精馏脱除重组份(硝基苯、联苯胺类等)。控制塔釜温度l10~120℃。塔顶温度100~llO~C。塔内真空度一0.09MPa以上。气态苯胺从塔顶蒸出冷凝得到成品;塔釜内的重组份定期排放,蒸馏回收苯胺后作为焦油。
固定床气相催化加氢工艺是在l~3 MPa和200—300 摄氏度等条件下,硝基苯和氢发生反应,苯胺的选择性>99%。具有运转费用低、投资少、技术成熟和产品质量好等优点,不足之处是易发生局部过热而引起副反应和催化剂失活。国外大多数苯胺生产厂采用此工艺进行生产。
流化床气相催化加氢法是汽化后的硝基苯与过量H:混合,进人流化床反应器,在260—280℃进行加氢还原反应生成苯胺和水蒸汽。该法较好地改善了传热状况,避免局部过热,减少副反应的生成,延长了催化剂的使用寿命;不足之处是操作较复杂,催化剂磨损大,装置建设、操作和维修费用较高。我国绝大多数苯胺生产厂家均采用流化床气相催化加氢工艺进行生产。
硝基苯液相催化加氢工艺是在无水条件下硝基苯进行加氢反应生成苯胺,苯胺的收率为99%。优点是反应温度较低,副反应少,催化剂负荷高,寿命长,设备生产能力大,不足之处是反应物与催化剂以及溶剂必须进行分离,设备操作以及维修费用高。
目前,成功应用于硝基苯加氢工艺的催化剂主要是还原态的铜基催化剂和贵金属铂系催化剂。
俄罗斯催化研究所披露了硝基苯加氢制苯胺的铜加强催化剂的制备方法:通过在不锈钢的栅格中烧结分布在热交换器表面的镍和铝粉末,得到镍.铝载体,铜催化剂便依附在此载体上,用此方法制得的催化剂活性高。
硝基苯催化加氢工艺的技术进展主要表现在催化剂的改进方面。
美国杜邦公司成功开发了硝基苯液相催化加氢工艺:在150—250℃和0.15—1.0 MPa条件下,采用贵金属催化剂,在无水条件下硝基苯进行加氢反应生成苯胺,收率为99%。俄国物理有机研究所研制出以稀土金属氧化物为载体的硝基苯催化加氢钯催化剂,实验证明,在硝基苯加氢制苯胺中,l%Pd/Sm:03比1%Pd/A120 的催化活性高,两者的稳定性比值为3.5。莫贝公司研制出由金、银铂或钯等贵金属制成的网状、波纹状或蜂窝状催化剂,在此催化剂存在下,以甲醇为溶剂,于131—150oC和6.4 MPa条件下硝基苯加氢反应63 rain,苯胺收率98.1%以上。天津大学制成了一种功能性磷树脂,把Pd、Pt或Ni负载于该树脂上制成催化剂,可用于硝基苯的氢化反应。
B. 食品加工论文范文
食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。
食品加工论文 范文 一:食品工业泡沫分离技术的应用
泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.
1泡沫分离技术的原理及特点
1.1泡沫分离技术的原理
泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.
1.2泡沫分离技术的特点
1.2.1优点
(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.
1.2.2缺点
表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].
2泡沫分离技术在食品工业中的应用
2.1蛋白质的分离
在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条明闭件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质激禅裂混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为5.0,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为3.68.Li等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为0.10g?L-1,填料床高度为300mm和初始pH值为6.2的条件下,最佳的牛血清蛋白富集比为21.78,是控制塔条件下富集比的2.44倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对袭明桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为92.50%、富集比为7.63.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到95.8%的亚麻蛋白质,而多糖的损失率仅为6.7%.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.
2.2酶的分离
蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为7.0及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为10.5和6~9.Brown等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为0.2g/L、pH值为7.0时,蛋白和酶活回收率接近于100%,富集比为3.67.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].
2.3糖的分离
糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为4.8%和33.8%;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为98.8%和74.1%.Sarachat等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为4.__洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为83.1%.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.
2.4皂苷类有效成分的分离
皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.
2.4.1大豆异黄酮苷元的分离Liu等[10]
采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.
2.4.2无患子总皂苷的分离魏凤玉等[30]
分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为2.0g/L、进料量为150mL、气速为32L/h、温度为30℃、pH值为4.3时,得到富集比为2.153,纯度与回收率分别为74.68%和79.19%.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.
2.4.3竹节参总皂苷的分离
竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为0.4~0.5mm,pH值为5.5,温度为65℃,电解质NaCl浓度为0.015mol?L-1.在最佳工艺条件下,总皂苷富集比为2.1,纯度比为2.6,回收率为98.33%,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.
2.4.4文冠果果皮皂苷的分离
文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷1.5%~2.4%.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为2.5L?min-1,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为3.05,回收率为60.02%,纯度为63.35%.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.
3展望
泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].
食品加工论文范文二:食品工业废水处理节能研究
食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。
1食品工业废水处理工艺现状
目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。
2各种工艺特点及应用效果分析
目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。
2.1好氧生物处理工艺
好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。
2.1.1SBR法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。
2.1.2BAF法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。
2.1.3MBR法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。
2.2厌氧生物处理工艺
在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。
2.2.1UASB法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为60.2mg/L、15.5mg/L、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为0.54元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。
2.2.2EGSB反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的0.6m/h~0.9m/h高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为0.73元/m3?d),具有良好的环境效益和社会效益。
2.2.3ASBR法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。
3厌氧生物处理工艺优势分析
与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。
C. 鐣滅藉吇娈栧簾姘村勭悊锛
鐣滅藉吇娈栧簾姘村勭悊鏄闈炲父閲嶈佺殑锛岀暅绂藉吇娈栬兘甯︽潵缁忔祹鏁堢泭锛屼絾闅忎箣鑰屾潵鐨勭幆澧冩薄鏌撲篃鏄涓嶅彲閬垮厤鐨勶紝缁嗚妭澶勭悊闈炲父鍏抽敭銆備腑杈惧挩璇㈠氨鐣滅藉吇娈栧簾姘村勭悊鍜屽ぇ瀹惰存槑涓涓嬨
銆銆1 鐣滅藉吇娈栦笟鐨勬薄鏌撶幇鐘
銆銆鐣滅戒笟鏄鎴戝浗鍐滀笟鍜屽啘鏉戠粡娴庣殑閲嶈佺粍鎴愰儴鍒,鐣滅藉吇娈栦笟澶у姏鍙戝睍鎵甯︽潵鐨勭幆澧冩薄鏌撻棶棰樻棩鐩婁弗閲, 涓嶄粎褰卞搷缁忔祹鍙戝睍, 鑰屼笖杩樺嵄鍙婄敓鎬佸畨鍏, 宸叉垚涓轰汉浠鏅閬嶅叧娉ㄧ殑绀句細闂棰樸 鐣滅藉吇娈栧満浜х敓鐨勭勃渚垮拰姹℃按閫犳垚鍦拌〃姘淬 鍦颁笅姘淬 鍦熷¥鍜岀幆澧冪┖姘旂殑涓ラ噸姹℃煋, 鐩存帴褰卞搷浜嗕汉浠鐨勮韩浣撳仴搴峰拰姝e父鐢熶骇鐢熸椿銆傜暅绂藉吇娈栧満鏈缁忓勭悊鐨勬薄姘 涓鍚鏈夊ぇ閲忔薄鏌撶墿璐, 鍏舵薄鏌撹礋鑽峰緢楂, 鍚勭被鐣滅界勃灏挎帓娉勭郴鏁拌佽〃 1 銆傝繖绉嶉珮娴撳害鏈夋満搴熸按鐩存帴鎺掑叆鎴栭殢闆ㄦ按鍐插埛杩涘叆姹熸渤婀栧簱 , 澶ч噺娑堣楁按浣撲腑鐨勬憾瑙f哀 , 浣挎按浣撳彉榛戝彂鑷銆傛按涓鍚鏈夊ぇ閲忕殑 N 銆 P 绛夎惀鍏荤墿鏄閫犳垚姘翠綋瀵岃惀鍏诲寲鐨勯噸瑕佸師鍥犱箣涓, 鎺掑叆楸煎樺強娌虫祦浣垮规湁鏈虹墿姹℃煋鏁忔劅鐨勬按鐢熺敓鐗╅愭笎姝讳骸, 涓ラ噸鑰呭艰嚧楸煎樺強娌虫祦涓уけ浣跨敤鍔熻兘銆傚吇娈栨薄姘撮暱鏃堕棿娓楀叆鍦颁笅, 浣垮湴涓嬫按涓鐨勭濇佹爱鎴栦簹纭濇佹爱娴撳害澧為珮, 鍦颁笅姘存憾瑙f哀鍚閲忓噺灏, 鏈夋瘨鎴愬垎澧炲, 瀵艰嚧姘磋川鎭跺寲, 鐢氳嚦涓уけ鍏朵娇鐢ㄥ姛鑳, 鍚屾椂鍗卞強鍛ㄨ竟鐢熸椿鐢ㄦ按姘磋川銆傞珮娴撳害姹℃按杩樺彲瀵艰嚧鍦熷¥瀛旈殭鍫靛, 閫犳垚鍦熷¥閫忔皵銆 閫忔按鎬т笅闄嶅強鏉跨粨銆佺洂鍖, 涓ラ噸闄嶄綆鍦熷¥璐ㄩ噺, 鐢氳嚦浼ゅ冲啘浣滅墿 , 閫犳垚鍑忎骇鍜屾讳骸銆
銆銆涓烘帶鍒剁暅绂藉吇娈栦笟浜х敓鐨勫簾姘淬 搴熸福鍜屾伓鑷瀵圭幆澧冪殑姹℃煋, 鍥藉剁幆澧冧繚鎶ゆ诲眬鍙戝竷浜嗐 鐣滅藉吇娈栦笟姹℃煋鐗╂帓鏀炬爣鍑嗐 , 鐫鎵嬫不鐞嗙暅绂藉吇娈栧満鍜屽吇娈栧尯鐨勬薄鏌撻毦棰樸傝繖涓鏍囧噯鏃ㄥ湪榧撳姳鐢熸佸吇娈, 鎺ㄥ姩鐣滅藉吇娈栦笟鍙鎸佺画鍋ュ悍鍙戝睍; 淇冭繘鐣滅藉満鍦ㄥ簾寮冪墿澶勭悊杩囩▼涓鑰冭檻璧勬簮鍖栧埄鐢, 鍑忓皯鏈绔姹℃煋鐗╁勭悊閲忋傜暅绂藉吇娈栦笟姹℃煋鐗╂帓鏀炬爣鍑嗚佽〃 2 銆
銆銆2 鐣滅藉吇娈栧簾姘寸殑棰勫勭悊
銆銆鐣滅藉吇娈栧簾姘存棤璁轰互浣曠嶅伐鑹烘垨缁煎悎鎺鏂借繘琛屽勭悊, 閮借侀噰鍙栦竴瀹氱殑棰勫勭悊鎺鏂姐傞氳繃棰勫勭悊鍙浣垮簾姘存薄鏌撶墿璐熻嵎闄嶄綆, 鍚屾椂闃叉㈠ぇ鐨勫浐浣撴垨鏉傜墿杩涘叆鍚庣画澶勭悊鐜鑺, 閫犳垚璁惧囩殑鍫靛炴垨鐮村潖绛夈傞拡瀵瑰簾姘翠腑鐨勫ぇ棰楃矑鐗╄川鎴栨槗娌夐檷鐨勭墿璐, 鐣滅藉吇娈栦笟閲囩敤杩囨护銆 绂诲績銆 娌夋穩绛夊浐娑插垎绂绘妧鏈杩涜岄勫勭悊, 甯哥敤鐨勮惧囨湁鏍兼爡銆 娌夋穩姹犮 绛涚綉绛夈 鏍兼爡鏄姹℃按澶勭悊鐨勫伐鑹烘祦绋嬩腑蹇呬笉鍙灏戠殑閮ㄥ垎, 鍏朵綔鐢ㄦ槸闃绘嫤姹℃按涓绮楀ぇ鐨勬紓娴鍜屾偓娴鍥轰綋, 浠ュ厤闃诲炲瓟娲炪 闂搁棬鍜岀¢亾, 骞朵繚鎶ゆ按娉电瓑鏈烘拌惧囥 娌夋穩娉曟槸鍦ㄩ噸鍔涗綔鐢ㄤ笅灏嗛噸浜庢按鐨勬偓娴鐗╀粠姘翠腑鍒嗙诲嚭鏉ョ殑澶勭悊宸ヨ壓, 鏄搴熸按澶勭悊涓搴旂敤鏈骞跨殑鏂规硶涔嬩竴銆傜洰鍓, 鍑℃槸鏈夊簾姘村勭悊璁炬柦鐨勫吇娈栧満鍩烘湰涓婇兘鏄鍦ㄨ垗澶栦覆鑱 2鑷3涓娌夋穩姹, 閫氳繃杩囨护銆 娌夋穩鍜屾哀鍖栧垎瑙e皢绮姘磋繘琛屽勭悊銆傜瓫缃戞槸绛涙护鎵鐢ㄧ殑璁炬柦, 搴熸按浠庣瓫缃戜腑鐨勭紳闅欐祦杩, 鑰屽浐浣撻儴鍒嗗垯鍑鏈烘版垨鍏舵湰韬鐨勯噸閲, 鎴娴佷笅鏉, 鎴栨帹绉诲埌绛涚綉鐨勮竟缂樻帓鍑恒傚父鐢ㄧ殑鐣滅界勃渚垮浐娑插垎绂荤瓫缃戞湁鍥哄畾绛涖佹尟鍔ㄧ瓫鍜岃浆鍔ㄧ瓫銆傛ゅ, 杩樻湁甯哥敤鐨勬満姊拌繃婊よ惧囧傝嚜鍔ㄨ浆榧撹繃婊ゆ満銆 杞杈婂帇婊ゆ満銆 绂诲績鐩樺紡鍒嗙绘満绛夈
銆銆3 鐣滅藉吇娈栧簾姘寸殑涓昏佸勭悊鎶鏈
銆銆3.1 鑷鐒跺勭悊娉
銆銆鑷鐒跺勭悊娉曟椂鐣滅藉吇娈栧簾姘村勭悊鎶鏈鏈浼犵粺鐨勬柟娉曘傝嚜鐒跺勭悊娉曟槸鍒╃敤澶╃劧姘翠綋銆佸湡澹ゅ拰鐢熺墿鐨勭墿鐞嗐 鍖栧︿笌鐢熺墿鐨勭患鍚堜綔鐢ㄦ潵鍑鍖栨薄姘淬傚叾鍑鍖栨満鐞嗕富瑕佸寘鎷杩囨护銆 鎴鐣欍 娌夋穩銆 鐗╃悊鍜屽寲瀛﹀惛闄勩 鍖栧﹀垎瑙c 鐢熺墿姘у寲浠ュ強鐢熺墿鐨勫惛鏀剁瓑銆傚叾鍘熺悊娑夊強鐢熸佺郴缁熶腑鐗╃嶅叡鐢熴 鐗╄川寰鐜鍐嶇敓鍘熺悊銆 缁撴瀯涓庡姛鑳藉崗璋冨師鍒, 鍒嗗眰澶氱骇鎴鐣欍 鍌ㄨ棌銆 鍒╃敤鍜岃浆鍖栬惀鍏荤墿璐ㄦ満鍒剁瓑銆傝繖绫绘柟娉曟姇璧勭渷銆 宸ヨ壓绠鍗曘 鍔ㄥ姏娑堣楀皯 , 浣嗗噣鍖栧姛鑳藉彈鑷鐒舵潯浠剁殑鍒剁害銆 鑷鐒跺勭悊鐨勪富瑕佹ā寮忔湁姘у寲濉樸 鍦熷¥澶勭悊娉曘 浜哄伐婀垮湴澶勭悊娉曠瓑銆傛哀鍖栧樺張绉颁负鐢熺墿绋冲畾濉 , 鏄涓绉嶅埄鐢ㄥぉ鐒舵垨浜哄伐鏁翠慨鐨勬睜濉樿繘琛屾薄姘寸敓鐗╁勭悊鐨勬瀯绛戠墿銆 鍏跺规薄姘寸殑鍑鍖栬繃绋嬪拰澶╃劧姘翠綋鐨勮嚜鍑杩囩▼寰堢浉浼 , 姹℃按鍦ㄥ樺唴鍋滅暀鏃堕棿闀 , 鏈夋満姹℃煋鐗╅氳繃姘翠腑寰鐢熺墿鐨勪唬璋㈡椿鍔ㄨ岃闄嶈В , 婧惰В姘у垯鐢辫椈绫婚氳繃鍏夊悎浣滅敤鍜屽橀潰鐨勫嶆哀浣滅敤鎻愪緵 , 浜﹀彲閫氳繃浜哄伐鏇濇皵娉曟彁渚涖備綔涓虹幆澧冨伐绋嬫瀯绛戠墿 , 姘у寲濉樹富瑕佺敤鏉ラ檷浣庢按浣撶殑鏈夋満姹℃煋鐗 ,鎻愰珮婧惰В姘х殑鍚閲 , 骞堕傚綋鍘婚櫎姘翠腑鐨勬爱鍜岀7 , 鍑忚交姘翠綋瀵岃惀鍏诲寲鐨勭▼搴︺傚湡澹ゅ勭悊娉曚笉鍚屼簬瀛h妭鎬х殑姹℃按鐏屾簤, 鏄甯稿勾鎬х殑姹℃按澶勭悊鏂规硶銆 灏嗘薄姘存柦浜庡湡鍦颁笂, 鍒╃敤鍦熷¥ - 寰鐢熺墿 - 妞嶇墿缁勬垚鐨勭敓鎬佺郴缁熷瑰簾姘翠腑鐨勬薄鏌撶墿杩涜屼竴绯诲垪鐗╃悊鐨勩 鍖栧︾殑鍜岀敓鐗╁噣鍖栬繃绋, 浣垮簾姘寸殑姘磋川寰楀埌鍑鍖, 骞堕氳繃绯荤粺鐨勮惀鍏荤墿璐ㄥ拰姘村垎鐨勫惊鐜鍒╃敤,浣跨豢鑹叉嶇墿鐢熼暱绻佹畺, 浠庤屽疄鐜板簾姘寸殑璧勬簮鍖栥 鏃犲冲寲鍜岀ǔ瀹氬寲銆備汉宸ユ箍鍦板彲閫氳繃娌夋穩銆 鍚搁檮銆 闃婚殧銆 寰鐢熺墿鍚屽寲鍒嗚В銆 纭濆寲銆 鍙嶇濆寲浠ュ強妞嶇墿鍚告敹绛夐斿緞鍘婚櫎搴熸按涓鐨
銆銆鎮娴鐗┿ 鏈夋満鐗┿ 姘銆 纾峰拰閲嶉噾灞炵瓑銆 杩戝勾鏉, 浜哄伐婀垮湴鐨勭爺绌惰秺鏉ヨ秺鍙楀埌閲嶈, 鍙跺媷绛夊埄鐢ㄧ孩鏍戞嶇墿鏈ㄦ勫拰绉嬭寗澶勭悊鐗茬暅搴熸按钀ュ吇鐩 N 銆 P , 缁撴灉琛ㄦ槑涓ょ嶆嶇墿瀵筃 銆 P 鐨勫幓闄ゆ晥鏋滆緝濂 銆傚粬鏂颁郡 , 楠嗕笘鏄庡垎鍒浠ラ欐牴鑽夊拰椋庤溅鑽変负妞嶈 , 寤虹珛浜哄伐婀垮湴 , 闅忓h妭涓嶅悓 , 瀵规薄鏌撶墿鐨勫幓闄ょ巼涓嶅悓 , COD Cr 鍘婚櫎鐜囧彲杈 90% 浠ヤ笂 , BOD 5鍙杈 80% 浠ヤ笂銆傜敱浜庤嚜鐒跺勭悊娉曟姇璧勫皯 , 杩愯岃垂鐢ㄤ綆 , 鍦ㄦ湁瓒冲熷湡鍦板彲鍒╃敤鐨勬潯浠朵笅 , 瀹冩槸涓绉嶈緝涓虹粡娴庣殑澶勭悊鏂规硶 , 鐗瑰埆閫傚疁浜庡皬鍨嬬暅绂藉吇娈栧満鐨勫簾姘村勭悊銆
銆銆3.2 鍘屾哀澶勭悊鎶鏈
銆銆20 涓栫邯 50 骞翠唬鍑虹幇浜嗗帉姘ф帴瑙︽硶 (anaerobiccontact process) 宸 鑹 , 姝 鍚 闅 鐫 鍘 姘 婊 鍣 A F(anaerobic filter) 鍜屼笂娴佸紡鍘屾哀姹℃偿搴 UASB (Upflowanaerobic sludge bed) 鐨勫彂鏄, 鎺ㄥ姩浜嗕互鎻愰珮姹℃偿娴撳害鍜屾敼鍠勫簾姘翠笌姹℃偿娣峰悎鏁堟灉涓哄熀纭鐨勪竴绯诲垪楂樿礋鑽峰帉姘у弽搴斿櫒鐨勫彂灞 , 骞堕愭ュ簲鐢ㄤ簬绂界暅姹℃按澶勭悊涓銆1/2 12涓嬩竴椤靛熬椤靛帉姘у勭悊鐗圭偣鏄閫犱环浣, 鍗犲湴灏, 鑳介噺闇姹備綆, 杩樺彲浠ヤ骇鐢熸布姘 ; 鑰屼笖澶勭悊杩囩▼涓嶉渶瑕佹哀 , 涓嶅彈浼犳哀鑳藉姏鐨勯檺鍒 , 鍥犺屽叿鏈夎緝楂樼殑鏈夋満鐗╄礋鑽锋綔鍔 , 鑳戒娇涓浜涘ソ姘у井鐢熺墿鎵涓嶈兘闄嶈В鐨勯儴鍒嗚繘琛屾湁鏈虹墿闄嶈В銆傚父鐢ㄧ殑鏂规硶鏈 : 瀹屽叏娣峰悎寮忓帉姘ф秷鍖栧櫒銆 鍘屾哀鎺ヨЕ鍙嶅簲鍣ㄣ 鍘屾哀婊ゆ睜銆 涓婃祦寮忓帉姘ф薄娉ュ簥銆 鍘屾哀娴佸寲搴娿 鍗囨祦寮忓浐浣撳弽搴斿櫒绛夈 閭撹壇浼熴 闄堥摤閾鐢ㄥ唴寰鐜鍘屾哀鍙嶅簲鍣( IC ) 宸ヨ壓澶勭悊鐚鍦哄簾姘 , 鍏 TP 鍘婚櫎鐜囪揪53.8% ,COD 鍘婚櫎鐜囪揪 80.3% ,BOD 5 鍘婚櫎鐜囪揪 95.8% ,SS 鍘婚櫎鐜囪揪 78% , 娌兼皵浜ф皵鐜囪揪 1.5锝 3 m 3 - d -1 銆 寮犲浗娌荤瓑閫夌敤灏忕悆钘汇 棰よ椈绛夎椈绫 , 閲囩敤鎮娴钘荤被娉曞拰鍥哄畾钘荤被娉曚袱绉嶅伐鑹 , 瀵圭尓绮鍘屾哀搴熸恫杩涜屽噣鍖栧勭悊, 涔熷彇寰椾簡杈冨ソ鐨勬晥鏋溿傜洰鍓嶅浗鍐呭吇娈栧満搴熸按澶勭悊涓昏侀噰鐢ㄧ殑鏄涓婃祦寮忓帉姘ф薄娉ュ簥鍙婂崌娴佸紡鍥轰綋鍙嶅簲鍣ㄥ伐鑹恒 杩戝勾鏉 , 瀛﹁呭瑰悇绉嶅帉姘у弽搴斿櫒鐮旂┒杈冨 , 璁や负鏂板瀷瓒呴珮鏁堝帉姘у弽搴斿櫒澶勭悊鐚鍦烘薄姘存湁鏈烘薄鏌撶墿鏈夊箍闃旂殑鍓嶆櫙銆
銆銆3.3 濂芥哀澶勭悊鎶鏈
銆銆濂芥哀澶勭悊鐨勫熀鏈鍘熺悊鏄鍒╃敤寰鐢熺墿鍦ㄥソ姘ф潯浠朵笅鍒嗚В鏈夋満鐗 , 鍚屾椂鍚堟垚鑷韬缁嗚優 ( 娲绘ф薄娉 ) 銆傚湪濂芥哀澶勭悊涓 , 鍙鐢熺墿闄嶈В鐨勬湁鏈虹墿鏈缁堝彲琚瀹屽叏姘у寲涓虹畝鍗曠殑鏃犳満鐗┿傝ユ柟娉曚富瑕佹湁娲绘ф薄娉ユ硶鍜岀敓鐗╂护姹犮 鐢熺墿杞鐩樸 鐢熺墿鎺ヨЕ姘у寲銆 搴忔壒寮忔椿鎬ф薄娉ャ A/O鍙婃哀鍖栨矡绛夈傞噰鐢ㄥソ姘ф妧鏈瀵圭暅绂藉簾姘磋繘琛岀敓鐗╁勭悊 , 杩欐柟闈㈢爺绌剁殑杈冨氱殑鏄姘磋В涓 SBR 缁撳悎鐨勫伐鑹恒係BR ( sequencing batch reactor) 宸ヨ壓 , 鍗冲簭鎵瑰紡娲绘ф薄娉ユ硶, 鏄鍩轰簬浼犵粺鐨 Fill- Draw 绯荤粺鏀硅繘骞跺彂灞曡捣鏉ョ殑涓绉嶉棿姝囧紡娲绘ф薄娉ュ伐鑹, 瀹冩妸姹℃按澶勭悊鏋勭瓚鐗╀粠绌洪棿绯诲垪杞鍖栦负鏃堕棿绯诲垪 , 鍦ㄥ悓涓鏋勭瓚鐗╁唴杩涜岃繘姘淬 鍙嶅簲銆 娌夋穩銆 鎺掓按銆 闂茬疆绛夊懆鏈熷惊鐜銆 SBR 涓庢按瑙f柟寮忕粨鍚堝勭悊鐣滅藉簾姘存椂, 姘磋В杩囩▼瀵 COD Cr 鏈夎緝楂樼殑鍘婚櫎鐜 , SBR 瀵规荤7鍘婚櫎鐜囦负 74.1% , 楂樻祿搴︽皑姘鍘婚櫎鐜囪揪 97% 浠ヤ笂銆傛ゅ, 鍏朵粬濂芥哀澶勭悊鎶鏈涔熼愭笎搴旂敤浜庣暅绂藉簾姘村勭悊涓, 濡傞棿姝囧紡鎺掓按寤舵椂鏇濇皵( IDEA )銆 寰鐜寮忔椿鎬ф薄娉ョ郴缁( CASS )銆 闂存瓏寮忓惊鐜寤舵椂鏇濇皵娲绘ф薄娉ユ硶( ICEAS )銆
銆銆3.4 娣峰悎澶勭悊娉
銆銆涓婅堪鐨勮嚜鐒跺勭悊娉曘 鍘屾哀娉曘 濂芥哀娉曠敤浜庡勭悊鐣滅藉吇娈栧簾姘村悇鏈変紭缂虹偣鍜岄傜敤鑼冨洿, 涓轰簡鍙栭暱琛ョ煭,鑾峰緱鑹濂界ǔ瀹氱殑鍑烘按姘磋川, 瀹為檯搴旂敤涓鍔犲叆鍏朵粬澶勭悊鍗曞厓銆傛贩鍚堝勭悊灏辨槸鏍规嵁鐣滅藉簾姘寸殑澶氬皯鍜屽叿浣撴儏鍐 , 璁捐″嚭鐢变互涓 3 绉嶃 鎴栦互瀹冧滑涓轰富浣撳苟缁撳悎鍏朵粬澶勭悊鏂规硶杩涜屼紭鍖栫殑缁勫悎鍏卞悓澶勭悊鐣滅藉簾姘淬 杩欑嶆柟寮忚兘浠ヨ緝浣庣殑澶勭悊鎴愭湰 , 鍙栧緱杈冨ソ鐨勬晥鏋溿
銆銆褰鍐涚瓑閫夋嫨鍘屾哀 - 鍏兼哀缁勫悎寮忕敓鐗╁樹綔涓轰富浣撳伐鑹, 灏嗕笂娴佸紡鍘屾哀姹℃偿搴婄Щ妞嶅埌鍏兼у, 鐚鍦哄簾姘寸粡澶勭悊鍚, 鍏 BOD 5 銆 COD Cr 銆 NH 4 - N 鍙鍒嗗埆浠 9 000 銆14 000 銆 1 200 闄嶈嚦 20 銆 60 銆 65 mg - L -1 , 鎴愬姛鍦拌В鍐充簡鐑甯﹀湴鍖鸿勬ā鍖栫尓鍦烘薄姘存薄鏌撹礋鑽烽珮鍜屽吇鐚琛屼笟鍒╂鼎浣庣殑涓ゅぇ闅鹃樸傛澀宸炶タ瀛愬吇娈栧満閲囩敤浜嗗帉姘уソ姘х粨鍚堢殑澶勭悊宸ヨ壓 , 缁忓勭悊鍚 , 姘翠腑 COD Cr 绾︿负 400 mg - L -1 ,BOD 5涓 140 mg - L -1 , 鍩烘湰杈惧埌搴熸按鎺掓斁鏍囧噯銆傞煩鍔涘钩绛夐噰鐢ㄧ洿鎺ユ姇鍔犱紭鍔胯弻鐨勬柟娉, 鍙澶уぇ鏀瑰杽鍘熻嚜鐒跺勭悊绯荤粺鐨勮兘鍔, 鎻愰珮瀵规按浣撴垨鍦熷¥涓闅鹃檷瑙f湁鏈虹墿鐨勯檷瑙h兘鍔涖傛繁鍦冲啘鐗у疄涓氬叕鍙哥殑姹℃按澶勭悊宸ョ▼宸ヨ壓娴佺▼涓烘薄姘 鈫 鍥烘恫鍒嗙 鈫 璋冭妭姹 鈫 涓婃祦寮忓帉姘ф秷鍖 鈫 妞嶇墿濉 鈫 楸煎 鈫 鎺掓斁 , 澶勭悊鍚庡簾姘翠篃鑳借揪鍒版繁鍦冲競搴熸按鎺掓斁鏍囧噯銆 鏉庨噾绉绛夐噰鐢 ASBR- SBR 缁勫悎鍙嶅簲鍣ㄧ郴缁 ,ASBR 浣滀负棰勫勭悊鍣 ( 鍘屾哀 ) , 涓昏佺敤浜庡幓闄ゆ湁鏈虹墿 , SBR ( 濂芥哀 ) 鐢ㄤ簬鐢熺墿鑴辨爱澶勭悊銆傝啘鐢熺墿鍙嶅簲鍣ㄦ槸鐢辫啘鍒嗙绘妧鏈涓庣敓鐗╁弽搴斿櫒鐩哥粨鍚堢殑鏂板瀷鐢熺墿鍖栧﹀弽搴旂郴缁熴 瀹冪敤鑶滃彇浠d簡浼犵粺鐨勪簩娌夋睜, 鍏锋湁鍑烘按绋冲畾銆 娲绘ф薄娉ユ祿搴﹂珮銆 鎶楀啿鍑昏礋鑽疯兘鍔涘己銆 鍓╀綑姹℃偿灏戙 瑁呯疆缁撴瀯绱у噾銆 鍗犲湴灏戠瓑鐗圭偣銆傝繎骞存潵, 宸茬粡閫愭笎搴旂敤浜庡悇绉嶆薄姘寸殑澶勭悊銆 鑼冨缓浼, 寮犳澃閲囩敤鑶滅敓鐗╁弽搴斿櫒瀵逛笂娴峰競閮婁竴鐣滅藉満鐨勬帓鍑哄簾姘磋繘琛屽勭悊, 閫氳繃涓娈垫椂闂寸殑璋冩暣, 澶勭悊绯荤粺閫愭ョǔ瀹, 鍑烘按杈惧埌鍥藉朵竴绾ф帓鏀炬爣鍑 銆傜暅绂藉吇娈栧簾姘存槸姣旇緝闅惧勭悊鐨勬湁鏈哄簾姘, 涓昏佹槸鍥犱负鍏舵帓閲忓ぇ, 娓╁害杈冧綆, 搴熸按涓鍥烘恫娣锋潅, 鏈夋満鐗╁惈閲忚緝楂, 鍥哄舰鐗╀綋绉杈冨皬, 寰堥毦杩涜屽垎绂, 鑰屼笖鍐叉礂鏃堕棿鐩稿归泦涓, 浣垮緱澶勭悊杩囩▼鏃犳硶杩炵画杩涜屻傜敱浜庡簾姘翠腑鐨 COD , BOD 绛夋寚鏍囦弗閲嶈秴鏍, 鎮娴鐗╅噺澶, 姘纾峰惈閲忎赴瀵, 姘ㄦ爱鍚閲忛珮涓斾笉鏄撳幓闄, 鍗曠函閲囩敤鐗╃悊銆 鍖栧︽垨鑰呯敓鐗╁勭悊鏂规硶閮藉緢闅捐揪鍒版帓鏀捐佹眰銆 鍥犳や竴鑸鍏绘畺鍦虹殑搴熸按澶勭悊閮介渶瑕佷娇鐢ㄥ氱嶅勭悊鏂规硶鐩哥粨鍚堢殑宸ヨ壓銆傛牴鎹鐣滅藉簾姘寸殑鐗圭偣鍜屽埄鐢ㄩ斿緞, 鍙閲囩敤浠ヤ笂涓嶅悓鐨勫勭悊鎶鏈銆傚吀鍨嬬殑宸ヨ壓娴佺▼瑙佸浘 1 銆
銆銆4 缁撹
銆銆鐣滅藉吇娈栧簾姘寸殑澶勭悊鏂规硶杩樻湁寰堝 , 鏌愪竴绉嶅勭悊鏂规硶鑳藉惁琚鎺ュ彈 , 涓嶄粎瑕佽冭檻杩欑嶅勭悊鏂规硶鍦ㄦ妧鏈涓婄殑浼樺娍 , 杩樿佽冭檻璇ユ柟娉曠殑鎶曡祫銆 鏃ュ父杩愯岃垂鐢ㄥ拰鎿嶄綔鏄鍚︽柟渚跨瓑闂棰樸備负浜嗗仛濂界暅绂藉吇娈栦笟姹℃煋闃叉不宸ヤ綔 , 瀹炵幇搴熸按鍥炴敹鍐嶅埄鐢, 鍑忓皯搴熸按鐨勬帓鏀惧拰鍖栧︾墿璐ㄥ圭幆澧冪殑杈撳叆, 浣挎薄鏌撳噺杞诲埌鏈浣庨檺搴, 涓嶄粎瑕佸疄鐜板勭悊杩囩▼鐨勬棤瀹冲寲, 鑰屼笖瑕佸疄鐜板勭悊杩囩▼鐨勮祫婧愬寲, 鏈夋晥鍦颁繚鎶ゅ拰鏀瑰杽鍐滄潙鐢熸佺幆澧 , 淇冭繘鐣滅藉吇娈栫幆澧冧笌缁忔祹鐨勫彲鎸佺画鍗忚皟鍙戝睍銆
鏇村氬叧浜庡伐绋/鏈嶅姟/閲囪喘绫荤殑鏍囦功浠e啓鍒朵綔锛屾彁鍗囦腑鏍囩巼锛屾偍鍙浠ョ偣鍑诲簳閮ㄥ畼缃戝㈡湇鍏嶈垂鍜ㄨ锛https://bid.lcyff.com/#/?source=bdzd