『壹』 毕业设计(污水处理厂设计)
7月16日 16:30 你可以参考一下: 建设污水处理厂是为了城市污水,净化环境,达到排放标准,满足环境保护的要求。
一 污水处理程度的确定
基本资料:某城市设计人口11.5万,城市中共有5个工厂。资料如下:
名称 流量(L/S) BOD5(mg/L) SS(mg/L)
化工厂 91 360 258
印染厂 87 480 300
棉纺厂 90 250 200
食品厂 129 420 160
屠宰场 84 680 380
生活污水 200 320 300
要求离排放口完全混合断面自取水样,BOD5不大于4mg/L 、SS不大于5 mg/L,河水流量按枯水季节最不利情况考虑。河水流量25m3/s、流速为3m/s。河水本底的BOD5=2 mg/L 、SS=3 mg/L经预处理及一级处理SS去除率为50%、BOD5去除率为30%考虑。根据以上资料设计污水厂。
(一):污水处理程度确定
1生活污水量(Qmax)===153L/S=0.153m3/s
式中: ns——120(L/人·d)
N——110000(人)
KZ——1.55
2总污水量(Q)=1.55·(153+91+87+90+129+84) =1008 L/S= 1.002m3/s
3混合后污水的BOD5
BOD5=
=406 mg/L
4苏联统计表(岸边排水与完全混合断面距离Km)
河水流量与废水流量之比(Q/q) 河水流量Q(m3/s)
5 5~60 50~500 >500
5:1~25:1 4 5 6 8
25:1~125:1 10 12 15 20
125:1~600:1 25 30 35 50
>600:1 50 60 70 100
5河水流量与污水理的比值
==25:1
6查上表完全混合时离排放口的距离L=5(Km)
7处理程度确定
(1)C0/===4.02mg/L
式中:k1=0.1 t==0.02(天)
C===54.41mg/L
E=×100%==86.60%
8混合后SS的浓度
SS==262 mg/L
C===54.89mg/L E=×100%=×100%=79.05%
9工艺流程图
(二)·格栅的设计
1栅条间隙数
设:栅前水深(h)为0.4m 过栅流速(v)为1.0m/s 栅条间隙(b)为0.021m 格栅倾角(α)为60°
n===56
2栅槽宽度(B)
设:s为0.01m
B=s(n-1)+bn=0.01×(56-1)+0.021×56=1.726(m)
3通过格栅的水头损失(h1)
h0=£sinα=0.9×=0.04m
h1=k h0=3×0.04=0.12m
式中:k=3 β=2.42 £=β=0.9
4栅后槽总高度(H)
H=h+h1+h2=0.40+0.12+0.3=0.82m
式中:栅前渠道超高(h2)为0.3m
5进水渠道渐宽部分长度
设:进水渠道宽(B1)为1.5m 渐宽部分展开角度α1为20°
===0.31m
==0.155m
6栅槽总长度(L)
L=++1.0+0.5+=0.31+0.155+1.0+0.5+=2.37m
式中:H1=h+h2=0.7m tgα=1.732
7每日栅渣量
W===4.356(m3/日)
式中:W1=0.08(m3/103m3污水) KZ=1.55
(三)·平流式沉砂沉池
1长度
设:v= 0.25(m/s) t=40(s)
L= v× t=0.25×40=10(m)
2水流断面面积
A===4.008(m2)
3池总宽度
设:n=8 每格宽b=0.6
B=n×b=8×0.6=4.8(m)
4有效水深
h2===0.835m
5沉砂斗所需容积
设:T=2(天) X=30m3/10m3污水
V===3.35m3
6每个沉泥斗所需容积
设:每一格有2个泥斗
V0= =0.21m3
7沉砂斗各斗各部分尺寸
设:泥斗底宽a1=0.5m 斗壁与水平面的倾角为斗高h3/=0.4m 沉砂斗上口宽:
a=+ a1=1.0m
沉砂斗容积:
V0===0.23 m3
8沉砂室高度
采用重力排砂,设池底坡度为0.02,坡向砂斗
h3=h3/+0.022=0.4+0.02×3.9=0.478
式中L2=(10-2×1-0.2)/2=3.9
9池总高度
设:超高h1=0.3m
H=h1+h2+h3=0.3+0.835+0.478=1.613m
(四)·一级沉淀池(平流式沉淀池)
1池子总表面积
设:表面负荷q/=2.0(m3/m2·h)
A===1803.6(m2)
2沉淀部分有效水深h2
设:污水停留时间t=1.5h
h2=q/×t=2×1.5=3(m)
3沉淀部分有效容积
V/=Qmax×t×3600=1.002×1.5×3600=5410.8(m3)
4池长
设:水平流速v=5mm/s
L=v×t×3.6=5×1.5×3.6=27(m)
5池子总宽度
B===66.8(m)
6池子个数
设:每个池子宽b=6(m)
n===11
7校核长宽比
==4.5
8污泥部分需要的总容积
设:T=2天
V= =1463.36(m3)
9每格池污泥所需容积
V//===133.03(m3)
10污泥斗容积
h//4===4.76(m)
V1==×4.76×(36+0.25+3)=62.3(m3)
11污泥斗以上梯形部分污泥容积
h/4=(L+0.3-b)×0.02=(27+0.3-6)×0.02=0.426(m)
=L+0.3+0.5=27.8(m)
=6(m)
V2===43.2(m3)
12污泥斗和梯形部分污泥容积
V1+V2=62.3+43.2=105.5(m3)
13池子总高度
H=h1+h2+h3+h4=0.3+3+0.5+5.19=8.99(m)
(五)·生物滤池的设计
1
(1) 混合污水平均日流量
Q==55853.42m3/d=646.45L/s
(2) 混合污水BOD5的浓度
406×(1-30%)=284(mg/L)
(3) 因为>200 mg/L必须使用回流水稀释,回流稀释后混合污水BOD5浓度
取回流比r=2 =54.41( mg/L)
===130.94 (mg/L)
(4) 回流稀释倍数n
n===2
(5) 滤池总面积A
设NA=2000Gbod5/m2d
A===10970.27(m2)
(6) 滤池滤料总体积V
取滤料层高为H=2m
V=H×A=2×10970.27=21940.54(m3)
(7) 每个滤池面积,采用8个滤池
A1===1371.28 (m2)
(8) 滤池的直径
D=m
(9) 校核水力负荷
Nq=m3/m2d
2旋转布水器的计算
(1) 最大设计流量Qmax
Qmax=1.002×24×3600=86572.8m3/d
(2) 每个滤池的最大设计流量
Q/==125.25L/s
(3) 布水横管直径D1与布水小孔直径d
取D1=200mm d=15mm 每台布水器设有4个布水横管
(4) 布水器直径D2
D2=D-200=41800-200=41600mm
(5) 每根布水横管上的布水小孔数目
m=(个)
(6) 布水小孔与布水器中心距离
a·第一个布水小孔距离:
r1=
b. 第174布水小孔距离
r174=R
c第348布水小孔距离
r348= R
(7) 布水器水头损失H
=3.98m
(8) 布水器转速
n=(转/min)
(六)·辐流式二沉池的设计
1沉淀部分水面面积
设:池数n=2 表面负荷q=2(m3/m2·h) Qmax=1.002×3600=3607.2m3/hr
F==(m2)
2池子直径
D==m
3沉淀部分有效水深
设:沉淀时间t=1.5(h)
h2=q/×t=2×1.5=3(m)
4沉淀部分有效容积
m3
5污泥部分所需的容积
设:设计人口数N=110000 两次清除污泥相隔时间T=2天
V=
=731.68(m3)
6污泥斗容积
设:污泥斗高度h5=1.73(m) 污泥斗上部半径r1=2(m) 污泥斗下部半径r2=1(m)
=12.7m3
7污泥斗以上圆锥体部分污泥容积
设: 坡度为0.05
圆锥体高度h4=(R-r1)×0.05=0.75(m)
×=256.7(m3)
8沉淀池总高度
设:超高h1=0.3(m) 缓冲层高度h3=0.5(m)
H=h1+h2+h3+h4+h5=0.3+3+0.5+0.75+1.73=6.28(m)
9沉淀池池边高度
H/= h1+ h2+h3=0.3+3+0.5=3.8(m)
10径深比
(符合要求)
(七)·接触消毒池
1接触容积
(m3)
2表面积
取有效水深4(m)
(m2)
3 接触池长
取池宽B=5m 则廊道长L=(m)
(m)
4长宽比
>8(符合要求)
5池总高
取超高h1=0.3m 池底坡度0.05
h3=0.05×15.03=0.75(m)
H=h1+h2+h3=0.3+4+0.75=5.05(m)
(八)·污泥浓缩池
1剩余污泥量
△ X=a×Qmax×()-b×Xv×V=0.6×86572.8×(0.2842-0.05441)-0.08×4×0.75×731.68
=11760.54(kg/d)
式中:Qmax=0.99561×3600×24=86572.8(m3/d)
(mg/L)=0.2842(kg/ m3)
(mg/L)=0.05441(kg/ m3)
Qs==1306.73( m3/d)
2浓缩池有效水深
浓缩前污泥含水率99%,(由于初沉污泥含水率较低96%,因此仅对二沉池污泥进行浓缩)浓缩部分上升流速v=0.1(mm/s),浓缩时间T=14hr,采用4个竖流式重力浓缩池
h2=0.1×10-3×14×3600=5.04(m)
3中心管面积
设:中心管流速v0=0.03(m/s)
(m2)
4中心管直径
(m)
5喇叭口直径,高度
取(m)
高度(m)
6浓缩池有效面积
(m2)
7浓缩池直径
(m)
8浓缩后剩余泥量
( m3/d)
9浓缩池污泥斗容积
设:=50° 泥斗D1=0.6(m)
(m)
(m3)
10污泥的停留时间
(hr)在10~16之间,符合要求
11池子高度
设:缓冲层高h4=0.3(m) 超高h1=0.3(m)
中心管与反射板缝隙高度h3=0.3(m)
H=h1+h2+h3+h4+h5=0.3+5.04+0.3+0.3+3.81=9.75(m)
『贰』 流体流动 处理量为4万吨的污水处理厂如何应该怎样设计集水井、泵、和细格栅的
设计用水量,处理量制乘以kz,,集水井停留时间1h,算出集水井体积,确定集水井实际尺寸,泵采用两用一备,查找手册11,选取泵,格栅可按城市污水处理厂计算,里面公式计算,求得细格栅尺寸,以及查找手册1,选取格栅除污机
『叁』 污水处理站设计运行能力与实际运行能力不符
池子的大小决定处理能力的大小,如果池子太小,水流进来都还没有反应的时间就流走了肯定不行,50吨的池子如果是化学处理是可以处理50吨水的。
『肆』 污水处理厂设计的问题
仅供参考:生化磁分离工艺
BFMS水处理工艺技术
20000吨/日市政污水处理技术建议书
1、工程概况
污水处理厂的日处理能力为20000吨/日,设计出水水质达到一级B标准(暂)
2、工程规模
正常处理量:20000吨/日
峰值处理量:24000吨/日
3、设计进出水水质
1)进水水质(需业主提供实际数据)
PH=6~9;CODcr≤500mg/L;BOD5≤280mg/L;
悬浮物≤300mg/L;总磷≤5.0mg/L;氨氮≤40.0mg/L
2)出水水质(需业主提供出水标准,暂定为一级B)
PH=6~9;CODcr≤60mg/L;BOD5≤20mg/L;
悬浮物≤20mg/L;总磷≤1.0mg/L;氨氮≤15.0mg/L;
总氮≤20.0mg/L;粪大肠杆菌≤10000/L。
4、加载絮凝磁分离(简称BFMS)工艺原理和优势
BFMS技术是在传统的絮凝工艺中,加入磁粉,以增强絮凝的效果,形成高密度的絮体和加大絮体的比重,达到高效除污和快速沉降的目的。磁粉的离子极性和金属特性,作为絮体的核体,大大地强化了对水中悬浮污染物的絮凝结合能力,减少絮凝剂用量,在去除悬浮物,特别是在去除磷、细菌、病毒、油、重金属等方面的效果比传统工艺要好。由于磁粉的比重高达5.0×10³kg/m³,大约是砂子的两倍,混有磁粉的絮体比重增大,絮体快速沉降,速度可达20米/时以上,整个水处理从进水到出水可在10分钟左右完成。污泥中的磁粉,利用磁粉本身的特性使用磁鼓进行分离后回收并在系统中循环使用。高梯度磁过滤器捕集流过水中的残余微小颗粒,磁过滤器依照设定的要求被自动清洗,以达到高度净化出水的目的。根据在美国采用BFMS作深度水处理的报告,磁过滤器可达到去除26纳米病菌的结果。下面图示说明了BFMS工艺的处理过程。
BFMS Process 加载絮凝磁分离工艺
絮凝/ + 加载絮凝+ 沉淀分离+磁过滤
Coagulation+Baiiasted Flocculation+Solids Separation+Magnetic Separation
该工艺以前在工程中应用很少,原因是磁种的回收技术一直没有很好的解决,而现在这一技术难点已成功地被突破,磁种的回收率达到99%以上,该工艺技术在美国也进行了项目示范和商业项目运行。我们公司已在国内申请多项专利,形成了公司的自主知识产权。在过去三年中,我们公司用250吨/日的中试车已在城市污水处理、中水回用、地表水和地下水以及自来水处理、江水、湖水、河道水处理、高磷废水处理、造纸废水处理、采矿废水处理、炼油和油田废水处理方面成功的做了多项不同运行参数的试验,取得很好的结果;10000吨/日的中试车已于2007年5月在青岛李村河入海口的城市污水投入运行一个月,运行良好。在北京金源经开污水处理厂的出水进行除高磷深度处理运行月余,处理效果佳。作为奥运会应急城市污水处理工程,在北京清河污水厂安装了4×10000吨/日和2×5000吨/日共6组BFMS系统,综合处理效果好。该技术在胜利油田应用于处理采油废水的东营胜利油田一期工程(5000吨/日)已经投入使用,油田500吨/日地下水BFMS项目和30000吨/日采油水BFMS项目也在实施中。
与其他工艺相比,磁分离技术具有以下优点:
1) BFMS工艺能应用于城市污水的一级、二级、三级、中水和各种工业污水以及饮用水。
2) 处理效果好,其出水质与超滤膜出水相媲美,BFMS工艺能有效地从水中除去微粒污染物、微生物污染物和部分已溶解于水中的污染物,如:COD、BOD、悬浮物、总磷、色度、浊度等,特别是对磷有强大的去除效果。也能结合生物工艺非常有效和经济地脱氮。
3) 耐冲击负荷能力强,对水质的冲击有独特的耐冲击能力。当前段工序出现故障时,或其他有害金属离子进入污水处理系统,污水可直接进入磁分离系统,系统仍然能够保持较高的去除效果,大幅度去除水中污染物。
4) 占地极小,20000吨/日BFMS系统的占地约为400㎡左右,另加走道、加药及操作设施总占地约700㎡左右。
5) 投资低,比膜处理有明显的优势。
6) 运行成本低,设备使用寿命长,除了正常的维护外,不用更换部件而造成高昂的二次投资。
7) 运行管理方便,启动快捷,运行管理简单。
5、污水处理厂工艺设计建议
根据工程运行经验,去除污水中的漂浮物和泥砂,保证污水厂的连续运行,进入BFMS系统的污水进行预处理是必备的。依据BFMS系统的工作原理,常规预处理即可,即粗、细格栅和沉淀池。预处理也可考虑采用污水粉碎泵。
BFMS技术具有强大除磷和悬浮物能力,同时对其他指标(氮除外)也有较强的去除能力。对处理城市污水,因BFMS技术脱氮能力较差,建议后续的生化工艺(如BAF、SBR、A/O等)仅按氨氮负荷进行设计,通过调整BFMS系统的加药量即可保证剩余的CODcr和BOD5达到排放要求。因生化脱氮需要必须的碳源,若BFMS系统去除率太高会导致生化系统的碳源不足,微生物生长缓慢,脱氮能力达不到,因此建议对污泥贮池铺设备用管道系统,回流污泥作为备用碳源。
6、工艺流程
考虑市政污水的水质特点,结合BFMS技术的工艺优点,综合考虑投资和运行效果,建议污水处理厂的工艺流程如下:
市政污水
定期外运
达标排放
BFMS技术是污水厂处理工艺的重要部分,对BFMS系统排除的剩余污泥必须进行处理。
下图仅为BFMS工艺流程图:
污水厂来水 出水
污泥脱水系统
BFMS系统平面图布置如下:
7、BFMS系统设计
1)BFMS系统共2套,单套处理量10000吨/日。
2)其他
(1)BFMS系统建议放在室内,设备空间要求L30×W20×H10米,采用轻钢结构形式。
(2)污泥处理建议不采用浓缩池,直接采用污泥贮池和污泥浓缩脱水一体机,处理BFMS系统排出的剩余污泥。在正常运行时BFMS系统排除的污泥的含水率在98-99%。
(3)配套电压为380V,每套BFMS系统装机容量为61KW(不含进水泵),运行负荷为40KW。总装机容量为122KW,总运行负荷为80KW。
(4)每套BFMS系统配套操作人员每班1人,4班3运转,均应经过上岗培训。
(5)污泥产量:0.4kgGS/m³废水。
8、BFMS系统水处理成本
1)直接运行成本:0.2446元/吨污水
A药剂:
絮凝剂干粉(29%纯度):2500元/吨;投加浓度以20ppm(AL2O3)计,成本为0.17元/吨污水;
PAM晶体:25000元/吨;投加浓度以1ppm计,成本为0.025元/吨污水.
B电耗
0.041度/吨污水,电费以0.57元/度计,则成本为0.0234元/吨污水.
C人工:0.014元/吨污水
D维修、维护0.012元/吨污水
2)总成本:0.3244元/吨污水
A直接运行成本:0.252元/吨污水
B固定资产折旧(平均年限法)15年:0.052元/吨污水
C经营管理及其他费用:0.031元/吨污水
9、20000吨/日BFMS系统投资
本工程共需2套10000吨/日BFMS系统,20000吨/日BFMS系统投资为********元(包括设计、安装、调试及系统设备)。
10、说明:
*由于对实际污水状况不了解,未进行水的测试,故BFMS系统的运行费用只是估算,具体数据需待做试验后再确定。
*本文内容仅供内部使用。
『伍』 污水处理站设计需要什么资质么
环境工程设计资质。
1.企业将填写好的《环境标志产品认证申请表》、环境标志保障体系文件连同认证要求中有关材料报中环联合(北京)认证中心有限公司(以下简称认证中心)。认证中心收到申请认证材料后,产品部办公室进行初审,与申请认证企业签订合同,合同中明确认证费用及年度监督检查费用,并向企业下发环境标志产品认证受理通知书。
2.认证中心检查室对申请材料进行文件审核,向企业下发文件审核意见,企业按认证中心提出的文审意见进行整改;认证中心检验室根据申请认证企业及产品情况确定抽样方案。
3.认证中心收到企业的认证费后,产品部检查室向企业发出组成现场检查组的通知,同时通知省市环保局派员参加;并在现场检查一周前将检查组组成和检查计划正式报企业确认。
4.现场检查按环境标志产品保障体系要求和相对应的环境标志产品认证技术要求进行,对需要进行检验的产品,由检查组负责对申请认证的产品进行抽样并封样,送指定的检验机构检验。
5.检查组根据企业申请材料、现场检查情况、产品环境行为检验报告撰写环境标志产品综合评价报告,提交技术委员会审查。
6.认证中心收到技术委员会审查意见后,汇总审查意见,报认证中心总经理批准。
7.认证中心向认证合格企业颁发环境标志认证证书,组织公告和宣传。
8.获证企业如需标识,可向认证中心订购;如有特殊印制要求,应向认证中心提出申请并备案。
9.年度监督审核每年一次。
《环境工程设计资质》
第八条 申领《设计证书》的单位,必须具备下列条件:
(一)有符合国家规定,依照法定程序批准设立该单位的文件,具有独立的法人资格;
(二)有稳定的组织机构和固定的办公、设计及试验场所;
(三)符合所申请的《设计证书》级别和业务范围要求的条件。
第九条 申领甲、乙级《设计证书》适用如下程序:
(一)申请单位向国家环境保护局提出书面申请,领取《环境工程设计证书申请表》一式三份,并按要求填写;
(二)申请单位为国务院各部门直属单位的,应将填写的《环境工程设计证书申请表》报其所属行业主管部门签署意见,然后报国家环境保护局审核;其他申请单位应将填写的《环境工程设计证书申请表》报所在省、自治区、直辖市人民政府行业主管部门和环境保护行政主管部门签署意见,然后报国家环境保护局审核。
(三)国家环境保护局经过审查,对符合条件的,核发甲级或者乙级《设计证书》;对不符合条件的,驳回申请,并告之理由。
『陆』 污水处理站设计要求8小时连续运行,此处8小时在计算中有什么意义环境工程设计问题
污水处抄理站不是24小时运行啊,一天就只运行8小时嘛。如果流量是100m3/d=4.167m3/h,,就是24小时处理100方水。现在要求8小时就处理完。设计流量就应该是100/8=12.5m3/h.
这样设计水量增加3倍,后续构筑物的尺寸也会增加。我看 ,可以增大调节池嘛。调节流量,让它24小时工作吧。
『柒』 谁有污水处理厂的设计说明书,越详细越好
第一章 设计资料
一、自然条件
1、 气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。
2、 水文:最高潮水位 6.48m(罗零高程,下同)
高潮常水位 5.28m
低潮常水位 2.72m
二、城市污水排放现状
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d;
(2)生产废水量按近期1.5万m3/d,远期2.4万m3/d;
(3)公用建筑废水量排放系数按近期0.15,远期0.20考虑;
(4)处理厂处理系数按近期0.80,远期0.90考虑。
2、污水水质
(1) 生活污水水质指标为
CODcr 60g/人.d
BOD5 30g/人.d
(2) 工业污染源参照沿海开发区指标,拟定为:
CODcr 300mg/L;
BOD5 170mg/L
(3) 氨氮根据经验确定为30md/L。
三、污水处理厂建设规模与处理目标
1、 建设规模
该污水处理厂服务面积为10.09km2, 近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。处理水量近期3.0万m3/d,远期6.0万m3/d。
2、 处理目标
根据该城镇环保规划,污水处理厂出水进入的水体水质按国家3类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为
CODcr≤100mg/L; BOD5≤30mg/L; SS≤30mg/L ; NH3-N≤10mg/L
四、建设原则
污水处理工程建设过程中应遵从下列原则:污水处理工艺技术方案,在达到治理要求的前提下应优先选择基建投资和运行费用少、运行管理简便的先进的工艺;所用污水、污泥处理技术和其他技术不仅要求先进,更要求成熟可靠;和污水处理厂配套的厂外工程应同时建设,以使污水处理厂尽快完全发挥效益;污水处理厂出水应尽可能回用,以缓解城市严重缺水问题;污泥及浮渣处理应尽量完善,消除二次污染;尽量减少工程占地。
第二章 污水处理工艺方案选择
一、工艺方案分析
本项目污水以有机污染为主,BOD/COD=0.54 可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标,针对这些特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。由于将来可能要求出水回用,处理工艺尚应硝化。
根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用“普通活性污泥法”或“氧化沟”法。
普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计运行经验,处理效果可靠,如设计合理,运行得当,出水BOD5可达10-20mg/L,它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理困难,运行费用高。
氧化沟处理技术是20世纪50年代有荷兰人首创。60年代以来,这项技术在国外已被广泛采用,工艺及构筑物有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点的逐步深入认识,目前已成为普遍采用的一项污水处理技术。
氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实行脱氮,成为A/O工艺,由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。
氧化沟污水处理技术已被公认为一种成功的革新的活性污泥法工艺,与传统活性污泥系统相比较,它在技术、经济等方面具有一系列独特的优点。
1、 工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气和空气扩散器,不建厌氧硝化系统,运行管理方便。
2、 处理效果稳定,出水水质好。
3、 基建投资省,运行费用低。
4、 污泥量少,污泥性质稳定。
5、 具有一定承受水量、水质冲击负荷的能力。
6、 占地面积少。
污水处理厂的基建投资和运行费用与各厂的污水浓度和建设条件有关,但在同等条件下的中、小型污水厂,氧化沟比其他方法低,据国内众多已建成的氧化沟污水处理厂的资料分析,当进水BOD5在120-180mg/L时,单方基建投资约为700-900元/(m3.d),运行成本为0.15-0.30元/m3污水。
由以上资料,经过简单的分析比较,氧化沟工艺具有明显优势,故采用氧化沟工艺。
二、工艺流程确定:(如图所示)
说明:由于不采用池底空气扩散器形成曝气,故格栅的截污主要对水泵起保护作用,拟采用中格栅,而提升水泵房选用螺旋泵,为敞开式提升泵。为减少栅渣量,格栅栅条间隙已拟定为25.00mm。
曝气沉砂池可以克服普通平流沉砂池的缺点:在其截流的沉砂中夹杂着一些有机物,对被有机物包裹的沙粒,截流效果也不高,沉砂易于腐化发臭,难于处置。故采用曝气沉砂池。
本设计不采用初沉池,原则上应根据进水的水质情况来确定是否采用初沉池。但考虑到后面的二级处理采用生物处理,即氧化沟工艺。初沉池会除去部分有机物,会影响到后面生物处理的营养成分,即造成C/N比不足。因此不予考虑。
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准,故污泥负荷和污泥泥龄分别低于0.15kgBOD/kgss*d和高于20.0d。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
为了使沉淀池内水流更稳定(如避免横向错流、异重流对沉淀的影响、出水束流等)、进出水更均匀、存泥更方便,常采用圆形辐流式二沉池。向心式辐流沉淀池采用中心进水,周边出水,多年来的实际和理论分析,认为此种形式的辐流沉淀池,容积利用率高,出水水质好。设计流量 Q=2.85万m3/d=1208.3 m3/h,回流比 R=0.7。
第三章 污水处理工艺设计计算
一、水质水量的确定
1. 水量的确定
近期水量:生活废水Q生活=6.0×104×300L/人•天=1.8×104m3/d
工业废水Q工业=1.5×104m3/d
公用建筑废水Q公用=1.8×104×0.15=0.27×104m3/d
所以近期产生的废水量为Q
Q=Q生活+Q工业+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d
近期的处理系数为0.8,故近期污水处理厂的处理量
Qp=3.57×104×0.8=2.856×104m3/d
远期水量:生活废水Q生活=10.0×104×300L/人•天=3.0×104m3/d
工业废水Q工业=2.4×104m3/d
公用建筑废水Q公用=3.0×104×0.2=0.6×104m3/d
所以远期产生的废水量为Q
Q=Q生活+Q工业+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d
远期的处理系数为0.9,故远期污水处理厂的处理量
Qp=6.0×104×0.9=5.4×104m3/d
通常设计污水处理厂时远期的设计处理量为近期的两倍,综合考虑近期和远期的处理水量,取近期的设计处理水量Qp=3.0×104m3/d,远期的设计处理水量Qp=6.0×104m3/d。
2. 水质的确定
近期COD:
COD = =242mg/L
近期BOD5:
BOD5= =129mg/L
远期COD:
COD= =240 mg/L
远期BOD5:
BOD5= =128mg/L
NH3-N按规定取为30 mg/L
所以处理厂的处理水质确定为COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝气沉砂池设计计算说明书
沉砂池的作用是从污水中去除砂子、煤渣等比重比较大的无机颗粒,以免这些杂质影响后续构筑物的正常运行。常用的沉砂池有平流式沉砂池、曝气沉砂池、竖流沉砂池和多尔沉砂池等。平流式沉砂池构造简单,处理效果较好,工作稳定,但沉砂中夹杂一些有机物,易于腐化散发臭味,难以处置,并且对有机物包裹的砂粒去除效果不好。曝气沉砂池在曝气的作用下颗粒之间产生摩擦,将包裹在颗粒表面的有机物除掉,产生洁净的沉砂,通常在沉砂中的有机物含量低于5%,同时提高颗粒的去除效率。多尔沉砂池设置了一个洗砂槽,可产生洁净的沉砂。涡流式沉砂池依靠电动机机械转盘和斜坡式叶片,利用离心力将砂粒甩向池壁去除,并将有机物脱除。后3种沉砂池在一定程度上克服了平流式沉砂池的缺点,但构造比平流式沉砂池复杂。
和其它形式的沉砂池相比,曝气沉砂池的特点是:一、可通过曝气来实现对水流的调节,而其它沉砂池池内流速是通过结构尺寸确定的,在实际运行中几乎不能进行调解;二、通过曝气可以有助于有机物和砂子的分离。如果沉砂的最终处置是填埋或者再利用(制作建筑材料),则要求得到较干净的沉砂,此时采用曝气沉砂池较好,而且最好在曝气沉砂池后同时设置沉砂分选设备。通过分选一方面可减少有机物产生的气味,另一方面有助于沉砂的脱水。同时,污水中的油脂类物质在空气的气浮作用下能形成浮渣从而得以被去除,还可起到预曝气的作用。只要旋流速度保持在0.25~0.35m/s范围内,即可获得良好的除砂效果。尽管水平流速因进水流量的波动差别很大,但只要上升流速保持不变,其旋流速度可维持在合适的范围之内。曝气沉砂池的这一特点,使得其具有良好的耐冲击性,对于流量波动较大的污水厂较为适用,其对0.2mm颗粒的截流效率为85%。
由于此次设计所处理的主要是生活污水水中的有机物含量较高,因此采用曝气沉砂池较为合适。
曝气沉砂池的设计参数:
(1)旋流速度应保持0.25—0.3m/s;
(2)水平流速为0.08—0.12 m/s;
(3)最大流量时停留时间为1—3min;
(4)有效水深为2—3m,宽深比一般采用1~1.5;
(5)长宽比可达5,当池长比池宽大得多时,应考虑设置横向挡板;
(6)1 污水的曝气量为0.2 空气;
(7)空气扩散装置设在池的一侧,距池底约0.6~0.9m,送气管应设置调节气量的阀门;
(8)池子的形状应尽可能不产生偏流或死角,在集砂槽附近可安装纵向挡板;
(9)池子的进口和出口布置,应防止发生短路,进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并考虑设置挡板;
(10)池内应考虑设置消泡装置。
一、 曝气沉砂池的设计与计算
1. 最大设计流量Qmax
Qmax=Kz×Qp
式中的Kz为变化系数,Kz=1.42
Qmax=1.42×0.347=0.493 m3/s
2. 池子的有效容积
V=60Qmaxt
式中 V——沉砂池有效容积,m3;
Qmax——最大设计流量,m3/s;
t——最大设计流量时的流动时间,min,设计时取1~3min。
所以 V=60×0.493×1.5=44.37m3
3. 水流断面面积
A=
式中 A——水流断面面积,m2
Qmax——最大设计流量,m3/s;
V——水流水平流速,m/s。
所以 A=4.11m2
取 A=4.2m2
4.池宽B
B=
h——沉砂池的有效水深,m。
取h=2m。所以B= =2.1m
B/h=1.05,满足要求。
5. 池长
L= = m,取L=10.5m
此时L/B=5满足要求
6.流速校核
Vmin= m/s,在0.8~1.2m/s之间,满足要求
7.曝气沉砂池所需空气量的确定
设每立方米污水所需空气量 d=0.2m3空气/m3污水
8.沉砂槽的设计
若设吸砂机工作周期为t=1d=24h,沉砂槽所需容积
式中Qp的单位为m3/h
设沉砂槽底宽0.5m,上口宽为0.7,沉砂槽斜壁与水平面夹角60°,
沉砂槽高度为 h1=
沉砂槽容积为
9.沉沙池总高
设池底坡度为0.3,坡向沉砂槽,池底斜坡部分的高度为
h2=0.3×0.7=0.21m
设超高 ,沉沙池水面离池底的高
m
10.曝气系统的设计
采用鼓风曝气系统,罗茨鼓风机供风,穿孔管曝气
(1)干管直径d1:由于设置两座曝气沉砂池,可将空气管供应两座的气量,即主管最大气量为q1=0.0694×2=0.1388m3/s,取干管气速v=12m/s,
干管截面积A= = =0.0116m2
d1= = m=120mm,
因为没有120mm的管径,所以采用接近的管径100mm。
回算气速v=17.7m/s 虽然超过15 m/s,但若取150的管气速又过小,所以还是选择管径100mm。
(2)支管直径d2:由于闸板阀控制的间距要在5m以内,而曝气的池长为10.5米,所以每个池子设置三根竖管,设支管气速为v=5m/s,
支管面积 A= m2
d2= = mm,
取整管径d2=80mm
校核气速v=4.6m/s (满足3—5m/s)
(3)穿孔管:采用管径为6mm的穿孔管,孔出口气速为设5m/s,孔口直径取为5mm(在2~6mm之间)
一个孔的平均出气量 q= =9.81×10-5m3/s
孔数:n= 个
孔间隔 为 ,在10~15mm之间,符合要求。
穿孔管布置:在每格曝气沉砂池池长一侧设置1根穿孔管曝气管,共两根。
二、细格栅的选型和计算
选用XG1000型细格栅,参数如下
设备宽B:1000mm 有效栅宽B1:850㎜ 有效栅隙:5㎜ 耙线速度:2 m/min 电机功率:1.1kw 安装角度:60° 渠宽B3:1050㎜ 栅前水深h2:1.0m/s 流体流速:0.5~1.0m/s
栅条宽度s=0.01m
1. 栅前后的水头损失
水流断面面积 m2
栅前流速
在0.4~0.9m/s范围内,复合要求
设过栅流速为v=0.6m/s
设栅条断面为锐边矩形断面,取k=3 ,则通过格栅的水头损失为:
。
3. 栅槽总长度
栅前的渠道超高设为0.45m,所以渠道高度为1.45m
因为安装高度是取60°,所以格栅所占的渠道长为1.45×ctg =1.45×ctg60°=0.84m
栅后长1米。
所以渠道的总长度
L=0.5+0.84+1=2.34m
三、水面标高
根据经验值污水每经过一个障碍物水面标高下降3~5cm,根据曝气沉砂池的有效水深以及砂斗的高度可推算出各个构筑物的水面标高,本次设计以经过一个障碍物水位下降5cm来计算,以曝气沉砂池的砂槽底为0米进行计算。
曝气沉砂池的水面标高:2.38m
细格栅与曝气沉砂池之间的配水井的水面标高: 2.43m
细格栅栅后水面标高: 2.48m
细格栅栅前水面标高:2.48+0.29=2.77m
配水井外套桶水面标高: 2.82m
配水井内套桶水面标高: 2.88
设配水井超高为0.35m
则整个曝气沉砂池系统的最高标高为3.23m
则曝气沉砂池的超高为h1=3.23-2.38=0.85m
四、配水井的计算
设配水井的平均停留时间为T=1.5min,Qp=0.347 m3/s,假设配水井水柱高为5.03米。
配水井面积为
配水井直径为
因为进水管径为1000,管离底为200mm。所以覆土厚度为1.28m。
五、砂水分离器和吸砂机的选择
(1)选用直径LSSF型螺旋式砂水分离器
(2)根据池宽选用LF-W-CS型沉砂池吸砂机,其主要参数为:
潜污泵型号:AV14-4(潜水无堵塞泵)
潜水泵特性 扬程:2m,流量:54m3/h,功率:1.4kw
行车速度为2-5m/min,提耙装置功率 0.55kw
驱动装置功率: 0.37×2kw
钢轨型号 15kg/mGB11264-89
轨道预埋件断面尺寸(mm) (b1-20) 60 10(b1:沉砂池墙体壁厚)
轨道预埋件间距 1000mm
四、氧化沟
1、设计说明
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准。采用卡式氧化沟的优点:立式表曝机单机功率大,调节性能好,节能效果显著;有极强的混合搅拌与耐冲击负荷能力;曝气功率密度大,平均传氧效率达到至少2.1kg/(kW*h);氧化沟沟深加大,可达到5.0以上,是氧化沟占地面积减小,土建费用降低。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
2、设计计算
(1).设计参数:
qv=30000m3/d(设计采用双池,则单池流量=15000 m3/d),
设计温度15℃,最高温度25℃,
进水水质:近期:CODCr=242mg/L,BOD5=129.4mg/L, NH3-N=30mg/L,
远期:CODCr=240mg/L,BOD5=128mg/L, NH3-N=30mg/L,
出水水质:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L
(2).确定采用的有关参数:
取MLSS=3500mg/L,假定其70%是挥发性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L
y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,
α=0.90,β=0.94,
剩余碱度:100mg/L(以CaCO3),所需碱度7.14mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原,硝化安全系数:3。
(3).设计泥龄:
确定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1
θcm=1/=1/0.22=4.5d,设计泥龄θc=3*4.5=13.5d
为了保证污泥稳定,应选择泥龄为30d
(4).设计池体体积:
①确定出水中溶解性BOD5的量:
出水中悬浮固体BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L
②好氧区容积计算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3
水力停留时间t1= V1/ qv =9278/30000=0.31d=7.4h
③脱氮计算:
产生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d
假设污泥中大约含12.4%的氮,这些氮用于细胞合成,
用于合成的氮=0.124*860=106.6kg/d,转化为:106.6*1000/30000=3.55mg/L
故脱氮量=30-10-3.55=16.45mg/L。
④碱度计算:
剩余碱度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)
大于100mg/L,可以满足pH>7.2
⑤缺氧区容积计算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d
V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3
水力停留时间t2=V2/qv=6295/30000=0.21d=5h
⑥总池容积计算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h
(5).曝气量计算
①计算需氧气量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px
=30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000
-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h
②实际需氧量
Ro’=1.2*R=1.2*211=253.2kg/d
校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h (在400-500之间 符合)
6.沟型尺寸设计及曝气设备选型
采用卡式氧化沟(两座并联):
取有效水深H=3.5m,单沟的宽度b=7.8m,进水量15000 m3/d,
则单沟长=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m,
单沟好氧区总长度=单沟长*4* V1 /V=126m
单沟厌氧区总长度=单沟长*4* V2 /V=76m
采用四沟道,两台55kW的立式表曝气机(单池)
曝气设备:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,
7.配水井设计
污水在配水井的停留时间最少不低于3min(不计回流污泥的量),
设截面中半圆的半径为r,矩形的宽度为r,长度为2r,设计的有效水深为4.0m
(2*r*r+0.5πr2)*4=30000*3/24/60
r=2.7m
8.其它附属构筑物的设计
工程设计中墙的厚度为250mm;氧化沟体表面设置走道板的宽度为800mm;;倒流墙的设计半径为3.9m;配水井的进水管道采用的规格为DN900,污泥回流管道采用的规格为DN500;出水井的设计尺寸为3000mm*1000mm*1000mm,出水堰高为100mm,堰孔直径为40mm,出水管采用的规格为DN700。
五、辐流式二沉池
1.设计说明
1.1二沉池的类型
二沉池的类型有:平流式二沉池、竖流式二沉池、辐流式二沉池、斜流式二沉池。其中,辐流式二沉池又分为:中进周出式、周进周出式、中进中出式。
1.2选择辐流式(中进周出)二沉池的原因
由于平流式二沉池占地面积大;竖流式二沉池多用于小型废水中絮凝性悬浮固体的分离;斜流式二沉池较多时候,在曝气池出口污泥浓度高,而且没有设置专门的排泥设备,容易造成阻塞。因此选择辐流式二沉池。从出水水质和排泥的方面考虑,理论上是周进周出效果最好。但是,实际上,考虑异重流,是中进周出的效果最好。因此,选择了选择辐流式(中进周出)二沉池。
2.设计计算
2.1污泥回流比:
2.2沉淀部分水面面积:
流量: ;
最大流量(设计流量):
单个池子的设计流量:
污泥负荷q取1.1m3/(m2.h), 池子数n为2 。
沉淀部分水面面积:
2.3校核固体负荷:
因为142<150,符合要求。
2.4池子直径
池子直径: 根据选型取池子直径为35.0m。
2.5沉淀部分的有效水深
沉淀时间t为2.5s 有效水深:
2.6沉淀池总高
2.7校核径深比:
径深比为 符合要求。
2.8进水管的设计
单体设计污水流量:
进水管设计流量:
取管径D=700mm ,流速为
因为,0.697>0.6符合要求,所以进水管直径为D=700mm。
2.9稳流筒
进水井的流速为0.8m/s ,则过水面积为
过水面积和泥管面积的总和:
由过水面积和泥管面积的总和求出直径为
筒壁厚为250mm, 取管径为900mm。
进行校核:过水面积为
流速为 。
筒上有8个小孔 ,孔面积为S2= ,所以 。
二沉池采用的是ZBX型周边传动吸泥机,稳流筒的直径为3880mm。
取稳流筒出流速度为0.1m/s, 则过水面积为
稳流筒下部与池底距离为
所以稳流筒下部与池底距离大于0.2m,即符合要求。
2.10配水井
配水井设计为马蹄形,在外围加宽700mm为污泥井。
时间取3分钟 流量为
取配水井直径为D=3000mm 则配水井高度
其中,设计水深为7.0m,超高为0.6m。
2.11出水部分单池设计流量:
出水溢流堰设计
(1) 堰上水头 H=0.05mH2O
(2) 每个三角堰的流量0.783L/s
(3) 三角堰个数 因此取n=223(个)
2.12排泥部分
回流污泥量为
剩余污泥量为
因为剩余污泥量小,所以忽略不计,即总污泥量为0.188m3/s。
取流速为0.8(m/s) 直径为 取直径为D=400mm
校核:流速为 0.6<0.75<0.9 因此符合要求。
综上, 二沉池采用的是ZBX型周边传动吸泥机 池径为35000mm.
希望能够帮助你,污水净化团队竭诚为你服务!
『捌』 某城市污水处理厂设计 急急急
模板
第一节 设计任务和内容
以一座二级处理的城市污水处理厂为对象,对主要污水处理构筑物的工艺尺寸,进行设计计算,确定污水厂的平面布置和高程布置。
完成设计计算说明书和设计图纸(污水厂平面布置图和污水厂高程布置图)。
设计深度一般为方案设计的深度。
第二节 基 本 资 料
1. 污水水量、水质
污水处理水量16万m3/d;
污水水质为:CODcr450mg/L,BOD5200 mg/L, SS250 mg/L,氨氮25mg/L。
2. 处理要求
污水经二级处理后应符合以下具体要求:
CODcr≤70mg/L, BOD5≤20mg/L, SS ≤30mg/L,氨氮≤12mg/L。
3. 处理工艺流程
原水→格栅→泵→沉砂池→初沉池→曝气池→二沉池→出水
4. 气象与水文资料
风向:多年主导风向为北北东风;
气温:最冷月平均为-3.5℃;
最热月平均为32.5℃;
极端气温,最高为41.9℃,最低为-17.6℃,最大冻土深度:0.18m;
水文:降水量,多年平均为每年728mm;
蒸发量,多年平均为每年1210mm;
地下水水位,地面下5-6m。
5. 厂区地形
污水厂选址区域海拔标高在64-66米之间,平均地面标高为64.5米。平均地面坡度为0.3-0.5‰,地势为西北高,东南低。
厂区征地面积为东西长380米,南北长280-300米。
污水进水管相对标高为-2.50米。
第二章 处理工艺流程说明
根据污水处理量、原污水水质、处理要求,污水厂主要去除CODcr,BOD5和SS,对氨氮也有一定的去除率,选择以好氧生物处理为主的二级处理工艺流程如下:
原水→格栅→泵→沉砂池→初沉池→曝气池→二沉池→出水
第一节 格 栅
格栅是用以去除废水中较大的悬浮物,漂浮物,纤维物质和固体颗粒物质,以保证后续处理单元的正常运行,减轻后续处理单元的处理负荷,防止阻塞排泥管道和设备。
按形状分为平面格栅和曲面格栅两种。按格栅栅条的净间隙,可分为粗格栅,中格栅和细格栅。按清楂方式可分为人工清楂和机械清楂两种。
本设计选用间隙b=20mm的中格栅,机械式平面清渣。
第二节 沉 砂 池
沉砂池的作用是从废水中分离密度比较大的无机颗粒,例如:直径为0.1mm,密度为2.5g/cm3以上的砂粒。目前常用沉砂池,按池型可分为平流式沉砂池,曝气沉砂池、多尔式沉砂池和钟式式沉砂池[1]。
本设计选用停留时间t=250s的曝气沉砂池。因为平流式沉砂池的主要缺点是沉砂中约夹有15%的有机物,使沉砂的后续处理难度加大,而曝气池就能克服这一缺点。曝气池的优点还有通过调节曝气量可以控制污水旋流速度,使除砂效率较稳定,受流量变化的影响较小,同时还起预曝气的作用,但其构造比平流式沉砂池复杂。
第三节 初 沉 池
初次沉淀池的作用是对污水中的以无机物为主的相对密度大的固体悬浮物进行沉淀分离。污水中的悬浮颗粒以重力为主,在初沉池中主要进行自由沉淀和絮凝沉淀。污水处理厂用沉淀池,按水流方向分平流式,辐流式,竖流式,斜流式四种。每种沉淀池都分为五个区,即进水区,沉淀区,缓冲区,污泥区和出水区。
此处选择表面负荷q=1.8的平流式沉淀池,其优点是沉淀效果好,对冲击负荷和温度变化的适应能力强,布置紧凑,排泥过程稳定,施工简易,已趋定型。缺点是配水不易均匀,如果采用多斗排泥时每个泥斗需单独设排泥管各自排泥,操作量大,因此多采用新型排泥方法与机械。
第四节 曝 气 池
曝气池,属于好氧生物处理单元,对污水中的(胶体和悬浮的)有机物作进一步的处理,COD、BOD、NH3-N的去除率一般为85%、90%、65%左右,可使出水达到二级要求。
曝气池按流动形态分主要有推流式,完全混合式和循环混合式三种。按平面形状方面可分为长方形廊道形,圆形,方形以及环状跑道形等四种。按采用的曝气方法可分为鼓风曝气池,机械曝气池以及两者混合使用的机械-鼓风曝气池。
此处选用传统活性污泥法,污泥负荷取0.2 kgBOD5/(kgMLSS•d),推流式廊道、鼓风曝气、形状为长方形。
第五节 二 沉 池
二沉池有别于其他沉淀池,首先在作用上有其特点。它除了进行泥水分离外,还进行污泥浓缩,并由于水量、水质的变化,还要暂时贮存污泥。由于二次沉淀池需要完成污泥浓缩的作用,所需要的池面积大于只进行泥水分离所需要的池面积。
其次,进入二次沉淀池的活性污泥混合液在性质上有其特点。活性污泥混合液的浓度高,具有絮凝性能,属于成层沉淀。
活性污泥的另一特点是质轻,易被出水带走,并容易产生二次流和异重流现象,使实际的过水断面远远小于设计的过水断面。
池型说明:分为平流、斜管、辐流、竖流四类,本设计选用中心进水周边出水辐流式二沉池。
第六节 消 毒 池
城市污水经一级处理或二级处理后,水质改善,细菌含量也大幅度减少,但其绝对值仍很可观,并有存在病原菌的可能,因此污水排放水体前应进行消毒,特别是医院、生物制品所及屠宰场等有致病菌污染的污水,更应严格消毒。
消毒设备应按连续工作设置,消毒设备的工作时间,消毒剂投加量,可根据所排放水体的卫生要求及季节条件掌握。
目前最常用的污水消毒剂是液氯。其优点是效果可靠,投配设备简单,投量准确,价格便宜。
第三章 污水处理构筑物设计计算
第一节 格 栅
1. 设计参数
处理设施数量:两组
设计流量为: ,
最大设计流量Qmax = KzQ
栅前水深h=1.0 m
过栅流速v=0.9m/s
栅条间隙b=0.02m
安装倾角α= 60°
1. 栅条的间隙数n
h=1.0 m ,v=0.9m/s, b=0.02m, α= 60°,n=2,
最大设计流量Qmax = KzQ =1.2×1.85/2 =1.11 m3/s
2. 栅槽宽度B
设栅条宽度S=0.01
B=(n-1)S+bn=(72-1)×0.01+0.02×72=2.15m
3. 进水渠道渐宽部分长度l1
设进水渠宽 ,其渐宽部分展开角度为 ,
4. 栅槽与出水渠道连接处的渐宽部分长度l2
5. 通过格栅的水头损失h1
设栅条断面为锐边矩形断面
6. 栅后槽总高度H
设栅前渠道的超高 ,
7. 栅槽总长度L
8. 每日栅渣量W
在格栅间隙20mm 的情况下,设栅渣量为每1000m3污水产生0.07m3.
,宜用机械清渣。
格栅计算简图如下:
第二节 曝气沉砂池
1. 参数的确定
处理设施数量:两组,n=2
设计流量为:
,
水力停留时间t=240s=250s ,水平流速v=0.1m/s,有效水深
含砂量X=0.05L/ =50 /1000000 ,
2. 池子总容积:
3. 水流断面积:
4. 池长:
5. 池宽: 池子总宽度为 , 池子分两格n=2,
每格池子宽度b=
6. 池高:池底坡度为0.2,超高 ,集砂槽高度 ,集砂槽宽度 ,池底斜面高度 ,全池总高:
7. 每格沉砂池实际进水断面面积:
8. 每格沉砂池沉砂斗容量:
9. 每格沉砂池实际沉砂量:每两天排一次砂,则:
10. 每小时所需空气量:取曝气管浸水深度为3.2m,查表得单位池长所需空气量为28 ,故q=28×24×(1+15%)×2=1545.6 /h,式中(1+15%)为考虑到进出口条件而增长的池长。
第三节 初 沉 池
1. 参数确定:
表面负荷 =1.8 ,
沉淀时间t=2.1h,
SS去除率η=55%,
设计流量
2. 沉淀池各部尺寸:
总有效沉淀面积 ,
采用四(8)座沉淀池, 每池处理量Q= ,
每池表面积A= ,
沉淀池有效水深 ,
每个池宽b取12m
池长:L=
长宽比 ,合格
3. 污泥区尺寸:
每日产生的污泥量 每日每座沉淀池的污泥量 ,
污泥斗容积:
式中污泥斗上口 ,污泥斗下底面积 ㎡,污泥斗为方斗,α=60°,故 ,则每个污泥斗的容积为
4. 沉淀池总高度
采用机械刮泥,缓冲层高 (含刮泥板),平底,故
0.3+3.78+0.6+10.4=15.08m
5. 沉淀池总长度
L=0.5+0.3+83.3=84.1m
式中 0.5为流入口至挡板距离,0.3为流出口至挡板的距离。
6. 放空管径
放空时间设为T=6h,则放空管 取d=360mm, 式中H为平均水深
7. 进出水措施
进水端采用穿孔花墙配水,出水端采用三角溢流堰
第四节 曝 气 池
一、 设计数据:
污泥负荷Ns = 0.30kgBOD5/(kgMLSS•d)
设计流量Q=16×104m3/d=1.86m3/s
二、 计算:
1. 污水处理程度的计算:
原污水的BOD值为200mg/L, 经初次沉淀池处理后BOD5按降低25%考虑,则进入曝气池的污水,其BOD5值(Sa)为: 。
计算去除率,对此,首先按下式计算处理水中非溶解性BOD5值 ,式中b为微生物自身氧化率,取0.09,Xa活性微生物在处理水中所占的比例,取0.4,Ce为处理水中悬浮固体浓度。
处理水中溶解性BOD5值为Se=20-5=15mg/L,
去除率
2. BOD-污泥负荷率的确定
拟定采用的BOD-污泥负荷率为0.3kgBOD5/(kgMLSS•d),但为稳妥需加以校核。
,式中
代入各值,计算得 ,
计算结果确定, 值取0.3是适宜的。
3. 确定混合液污泥浓度X
由基本资料得SVI值为120-150 mg/L,取120mg/L
计算确定混合液污泥浓度X,对此r=1.2,R=0.5,代入各值得:
4. 确定曝气池容积计算
曝气池容积按下式计算:
5. 确定曝气池各部位尺寸
设4组曝气池,每组容积为 ,
池深取4m,则每组曝气池的面积 ㎡,
池宽取4.5m,, 介于1-2之间,符合规定。
池长: ,符合规定。
设五廊道式曝气池,廊道长: ,
取超高0.5m,则,池总高度H=4+0.5=4.5m
在曝气池面对初沉池和二沉池的一侧各设横向配水渠道,并在1,2和3,4号沉淀池之间设置纵向中间配水渠道与横向配水渠道相连接。在两侧横向配水渠道上设进水口,每组曝气池共有5个进水口。
6. 曝气系统的设计与计算(本设计采用鼓风曝气系统)
1) 平均时需氧量的计算
由公式: 取 , , 代入各值,得:
2) 最大时需氧量的计算
查表得K=1.4,代入各值,得:
3) 每日去除的BOD5值
4) 去除每千克BOD的需氧量
5) 最大时需氧量与平均时需氧量之比
7. 供气量的计算
采用网状膜型中微孔空气扩散器,敷设于距池底0.2m处,淹没水深3.8m,
计算污水温度为30°C,
查表得水中溶解氧饱和度:
1) 空气扩散器出口处的绝对压力 按下式计算,即:
2) 空气离开曝气池面时,氧的百分比按下式计算,即:
式中EA是空气扩散器的氧转移效率,对网状膜型中微孔空气扩散器,取值12%。
3) 曝气池混合液中平均氧饱和度(按最不利的温度30°C考虑)按下式计算,即:
4) 换算为在20°C条件下,脱氧清水的充氧量,按下式计算,即:
取值α=0.82,β=0.95,C=2.0,ρ=1.0
代入各值,得:
相应的最大时需氧量为:
5) 曝气池平均时供气量,按下式计算,即:
6) 曝气池最大时供气量:
7) 去除每kgBOD5的供气量:
8) 每立方米污水的供气量:
9) 本系统的空气总量:除采用鼓风曝气外,本系统还采用空气在回流污泥井提升污泥,空气量按回流污泥量的6倍考虑,污泥回流比R取值60%,这样,提升回流污泥所需空气量为:
总需气量:36525+32000=68525
8. 空气管系统计算
在相邻的2个廊道的隔墙上设1根干管,共10根干管。每根干管上设5对配气竖管,每根干管上共10条配气竖管。全曝气池共设100条配气竖管。每根竖管的供气量为: ,曝气池的平面面积为:66.6×4.5×5×4=5994㎡。每个空气扩散器的服务面积按0.49㎡计,则所需空气扩散器的总数为: ,为安全计,本设计采用12300个空气扩散器,每个竖管上安设的空气扩散器的数目为: 个,每个空气扩散器的配气量为: 。
空气管道系统的总压力损失估算为:3kPa。网状膜空气扩散器的压力损失为5.88kPa,总压力损失为:5.88+3=8.88kPa。为安全计,设计取值10kPa。
9. 空压机的选定
空气扩散装置安曝气池池底0.2m处,因此,空压机所需压力为:P=(4-0.2+1)×9.8=47kPa
空压机供气量,最大时:36525+32000=68525
平均时:30186+32000=62186
根据所需压力及空气量,决定采用LG80型空压机15台,该型空压机风压50kPa,风量80 。正常条件下,13台工作,2台备用;高负荷时14台工作,1台备用。
第五节 二 沉 池
二沉池的池型是中心进水周边出水的辐流式沉淀池,其剖面图如下:
一、 参数的确定:
表面水力负荷q=1.2m3/(㎡•h),
二沉池个数n=4,
水力停留时间T=2.5h
二、 主要尺寸计算:
1. 池总表面积
2. 单池面积:
3. 池直径:
4. 沉淀部分有效水深
5. 沉淀部分有效容积: V=
6. 沉淀池底坡落差: 取池底底坡 i=0.05,则:
7. 沉淀池周边水深(有效)水深:
,满足规范要求6—12之间,
式中 为缓冲层高度,取0.5m;
为刮泥板高度,取0.5m
8. 沉淀池总高度: ,
式中 为沉淀池超高,取0.3m
为沉淀池中心斗高度,取1.73m。
三、 每池产生的污泥量
估计经过曝气池后污泥的SS去除率能达到80%,采用机械刮泥,所以污泥在斗内贮存时间约2h,并考虑到曝池回流比取最大值80%,则:
四、 贮泥斗贮泥量计算
泥斗容积用几何公式计算:
,
式中泥斗高
故
池底可贮存污泥的体积为:
共可贮存污泥的体积
>57.6 ,合要求。
五、 中心进水管的计算
单池设计流量: ,
中心进水管设计流量:
,
选用管径 ,
六、 进出水配水设施
进水采用进水管,进水竖井,稳流筒等设施;出水采用环形集水槽,以及出水溢流三角堰。
第六节 污泥处理
一、污泥处理工艺
典型的污泥处理工艺流程包括四个阶段。第一阶段为污泥浓缩,主要目的是使污泥初步减容,缩小后续处理构筑物的容积或设备容量,第二阶段为污泥消化,使污泥中的有机物分解,使污泥趋于稳定;第三阶段为污泥脱水,使污泥进一步减容,便于运输;第四阶段为污泥处置,采用某种适宜的途径,将最终的污泥予以消化处置。以上各阶段产生上清液或滤液其中含有大量的污泥物质,因而应送回污水处理系统中继续处理。
以上是典型的污泥址理工艺流程。但由于各地的条件不同,也可采用一些简化流程。
当污泥果用自然干化法脱水时,可果用以下工艺流程
二、污泥浓缩池
污泥浓缩主要有重力浓缩,气浮浓缩和离心浓缩三种工艺形式。国内目前以重力浓缩为主,但随着氧化沟、A2/0 等污在处理新工艺的不断增多,气浮浓缩和离心浓缩将会有较大的发展。在此选用重力浓缩。
1. 设计参数:
二沉池剩余污泥量:691.2m3/d
含水率99.2%,浓度7875mg/l
浓缩后含水率96%浓度3937mg/l
二座浓缩池固体通量Nwg=55Kg
2. 设计计算:
(1) 每座浓缩池面积
设计泥量Qw=
A=
(2) 浓缩池直径
D= =
(3) 浓缩池工作部分高度
取污泥浓缩时间T=14h。则浓缩池工作部分高度
h1= =
(4) 浓缩池高度
设池超高0.5m。缓冲层高0.3m
浓缩池总高:
H=h1+h2+h3=2.3+0.5+0.3=3.1m
(5) 浓缩后污泥总体积:
V2=
第四章 污水厂总体布置
一、厂址选择
在城镇总体规划中,污水厂的位置范围已有规定。但是,在污水厂的具体设计时,对具体厂址的选择,仍须进行深入的调查研究和详尽的技术经济比较。其一般原则如下:
(1)厂址与规划居住区或公共建筑群的卫生防护距离应根据当地具体情况,与有关环保部门协商确定,一般不小于300m 。
(2) 厂址应在城镇集中供在水源的下游,至少500m。
(3) 厂址应尽可能少占农田或不占良田.便于农田灌溉和消纳污泥。
(4) 厂址应尽可能设在城镇和工厂夏季主导风向的下方。
(5) 厂址应设在地形有适当坡度的城镇下游地区,使污水有自流的可能,以节约动力消耗。
二、平面布置及总平面图
污水处理厂的平面布置包括处理构筑物、办公、化验且其他辅助建筑物,以及各种管道、道路、绿化等的布置。根据处理厂的规模大小,采用l:200-1:50比例尺的地形图绘制总平面图,管道布置可单独绘制。
平面布置的一般原则如下:
(1)处理构筑物的布置应紧凑,节约用地且便于管理。
(2) 处理构筑物应尽可能地按流程的顺序布置,以避免管线迂回,同时应充分利用地型,以减少士方量。
(3) 经常有人工作的建筑物如办公、化验等用房应布置在夏季主风向的上风一方,在北方地区,并应考虑朝阳。
(4 )在布置总图时,应考虑安装充分的绿化地带。
(5) 总图布置应考虑远近期结合,有条件时,可按远景规划水量布置,将处理构筑物分为若干系列,分期建设。远景设施的安排应在设计中仔细考虑,除了满足远景处理能力的需要而增加的处理池以外,还应为改进出水水质的设施安排场址。
(6) 构筑物之间的距离应考虑敷设管渠的位置,运转管理的需要和施工的要求,一般采用5-10m.
(7) 污泥处理构筑物应恩可能布置成单独的组合,以策安全,并方便管理。污泥消化池应距初次沉淀池较近,以缩短污泥管线,但消化池与其他构筑物之间的距离不应小于20m。贮气罐与其他构筑物的间距则应根据容量大小按有关规定办理。
1、水厂面积为380m*280m,
平面图采用1:1000比例。所有构筑物应在厂区的范围内。
三、高程布置
在整个污水处理过程中,应尽可能使污水和污泥为重力流,但在多数情况下,往往须抽升。高程布置的一般规定如下:
(1)为了保证污水在各构筑物之间能顺利自流,必须精确计算各构筑物之间的水头损失,包括沿程损失、局部损失及构筑物本身的水头损失。此外,还应考虑污水厂扩建时预留的储备水头。
(2) 进行水力计算时,应选择距离最长,损失最大的流程,井按最大设计流量计算。当有二个以上并联运行的构筑物时,应考虑某构筑物发生故障时,其余构筑物须负担全部流量的情况。计算时还须考虑管内淤积,阻力增大的可能。因此,必须固有充分的余地,以防止水头不够而发生涌水现象。
(3) 污水厂的出水管渠高程,须不受水体洪水顶托,并能自由进行农田灌溉。
(4)各处理构筑物的水头损失(包括进出水渠的水头损失) .
『玖』 污水处理泵站和污水提升泵站有什么区别
污水处理泵站是污水处理厂的进口泵站,它的作用是把城市地下污水管网汇专流来的污水抽升到属污水厂地面上水池中,以便进行处理。
污水输送过程中,由于路途较远,污水管道在地下有很大的埋深,为了减少后续输送管道的埋深,在污水输送的中途设置泵站,污水经提升后再通过污水管道送到更远的地方(污水处理厂或下一个污水提升泵站),所以污水提升泵站只是一个中转站。
有时这两种泵站都是需要的,但是污水泵站本身的作用原理并无不同,只是所处的位置不同而已。
『拾』 污水处理设计原则
城市污水处理厂的设计原则
1. 贯彻执行国家关于环境保护的政策,符合国家的有关法规、规范及标准。
2. 从城市的实际情况出发,在城市总体规划的指导下,使工程建设与城市的发展相协调,既保护环境,又最大程度地发挥工程效益。
3. 根据设计进水水质和出厂水质要求,所选污水处理工艺力求技术先进、成熟、处理效果好、运行稳妥可靠、高效节能、经济合理、确保污水处理效果,减少工程投资及日常运行费用。
4. 妥善处理和处置污水处理过程中产生的栅渣、沉砂和污泥,避免造成二次污染。
5. 为确保工程的可靠性及有效性,提高自动化水平,降低运行费用,减少日常维护检修工作量,改善工人操作条件,本工程中的关键设备拟从国外引进。其它设备和器材则采用合资企业或国内名牌产品。
6. 采用现代化技术手段,实现自动化控制和管理,做到技术可靠、经济合理。
7. 为保证污水处理系统正常运转,供电系统需有较高的可靠性,采用双回路电源,且污水厂运行设备有足够的备用率。
8. 在污水厂征地范围内,厂区总平面布置力求在便于施工、便于安装和便于维修的前提下,使各处理构筑物尽量集中,节约用地,扩大绿化面积,并留有发展余地。使厂区环境和周围环境协调一致。
9. 竖向设计力求减少厂区挖、填土方量和节省污水提升费用。
10. 厂区建筑风格力求统一,简洁明快,美观大方,并与厂区周围景观相协调。
11. 积极创造一个良好的生产和生活环境,把污水处理厂设计成为现代化的园林式工厂。