1. 垃圾渗滤液处理DTRO工艺与STRO工艺比较
1、结构构成不同:垃圾渗滤液处理DTRO工艺流程简洁紧凑,设备成套装置标准化,DTRO两级工艺成套装置中集成了用于预处理的砂滤系统、保安过滤器,用于反渗透分离的膜组件、高压泵、循环泵,用于系统清洗的清洗水箱以及用于设备供电及控制的MCC柜和PLC柜等。
STRO系统所采用的PT/ST膜组件具有膜污染低,填充密度高,盐分通过率低和能够实现内置标准清洗和维护的优势。同时STRO系统具有反渗透单元可拆卸、系统安装及维修简单、设备占地小及可安置在集装箱移动等特点。非常适用于小规模垃圾渗滤液处理。
2、各自的性能点偏向不同:垃圾渗滤液处理DTRO工艺工艺稳定性强、维护简单、能耗低DTRO膜组件有效避免膜的结垢,膜污染减轻,使反渗透膜的寿命延长。
采用STRO工艺处理渗滤液,系统运行效能高且稳定,对氨氮去除率99.2%-99.5%,对COD去除率在99.5%以上,对电导率去除在92%-95%,出水中未检测处SS,结合浓缩液回灌,实现了污染物零排放。
(1)st废水处理工艺扩展阅读:
垃圾渗滤液的性质随着填埋场的运行时间的不同而发生变化,这主要是由填埋场中垃圾的稳定化过程所决定的。垃圾填埋场的稳定化过程通常分为五个阶段。
即初始化调整阶段(Initial
adjustment phase)、过渡阶段(Transition phase)、酸化阶段(Acid phase)、甲烷发酵阶段(Methane fermentation phase)和成熟阶段(Maturation phase)。
垃圾渗滤液处理在堆放和填埋过程中由于发酵、雨水冲刷和地表水、地下水浸泡而渗滤出来的污水。来源主要有四个方面:垃圾自身含水、垃圾生化反应产生的水、地下潜水的反渗和大气降水,其中大气降水具有集中性、短时性和反复性,占渗滤液总量的大部分。
渗滤液是一种成分复杂的高浓度有机废水,其性质取决于垃圾成分、垃圾的粒径、压实程度、现场的气候、水文条件和填埋时间等因素。
2. 污水处理厂的实验室都有什么仪器,哪些是必须的具体的流程是什么
污水处理厂一般抄采用二级处理,其袭流程包括:
粗格栅—提升—细格栅—(粉碎)—沉砂—初次沉淀—生物处理(活性污泥法、生物滤池、氧化沟等)—二次沉淀—(后曝气)—消毒—出水
当然现在有些处理厂还包括后续的深度处理和回用部分。
污水处理厂的实验室主要做国家排放标准里说的各项指标的实验,《污水综合排放标准》(GB8978-1996):pH、悬浮物SS、BOD5、COD
氨氮、总氮TN、总磷TP等。
对于污水处理厂,常规测样只监测进出水就可以了,只有在调试或者工艺有问题时才会监测各单元。
关于仪器,每种指标污染物都有自己的相关仪器(pH计、COD快速消解仪 、BOD5测试仪等),也可以采用简单的分析化学实验的方法测出,具体见国家环保总局编的《水和废水监测分析方法》,对于污水处理厂用的一般比较简单的国产设备,高校会有更好的研究设备。
你说的水质分析应该就是标准中提到的各项污染物质的监测分析方法,原子吸收只是其中某一个方法而已,一般用于测定离子含量(金属等),污水处理厂不大可能有,很贵的。
关于具体的设备,你可以看看各个设备商的网站,都有具体介绍和使用手册的。
3. 碱度的大小对厌氧生物处理有何作用求答案
处理过程的监视与控制系统由模型、传感器、局部调节器和上位监控策略等4个部分组成。其中,传感器是污水处理厂监控系统中最薄弱,也是最重要、最基础的环节。日益严格的污水排放标准导致了污水处理工艺流程和装备的复杂化,对用于污水处理过程监视与控制的传感器的性能也提出了更高的要求,促进了污水处理领域传感器技术的发展,一些适用于污水处理过程的新型传感器相继问世。污水处理过程是复杂的生化反应过程,所涉及的仪器仪表种类繁多,多数传感器是污水处理过程所特有的,分别应用于不同的场合,反映一个或多个特定变量的状态信息变化。
污水处理工艺一般由机械处理、生化处理和化学处理构成,其中涉及液相、固相、气相三种物质成分。监视这些相态的仪表可以简单地分为通用型和特殊性两大类。
2、污水处理过程的通用仪表
通用测量仪表包括温度、压力、液位、流量、pH值、电导率、悬浮固体等传感器。
①厌氧消化过程由于常常实施温度控制,温度传感器显得更加重要。典型的温度测量元件是热电阻
②压力测量值常常用作曝气和厌氧消化过程的报警参数。
③液位测量用于水位监视,通常采用浮标、差压变送器、容量测量、超声水位检测等方法测量。
④流量监测仪表主要有堪板、转子流量计、涡轮式流量计、靶式计量槽、电磁流量计、超声波流量计等。
⑤pH值是生化过程中的一个重要变量,更是厌氧消化和硝化过程的关键值,通常在污水处理厂都安装有pH电极浸人污泥中,通过不同的清洁策略可以实现长期免维护。对于具有高度缓冲能力的废水,pH值测量对过程变化可能不敏感,因此不适合于过程监督与控制,这种情况可以用碳酸盐测量系统代替。
⑥电导率传感器用于监视进水成分的变化,同时也是化学除磷控制策略的基础。
⑦传统的生物量测量是根据悬浮粒子对入射光的散射及吸光度进行估计。随着灵敏的光检测仪的出现,能够自动进行光效应测量的传感器得以问世。大多数商业传感器使用了一个发射低可视光或红外光的光源,在这个区域内大多数介质表现低吸光度。生物量浓度也可根据超声波在悬浮物和微生物之间游离溶液的速度差确定。
3、厌氧消化过程中的传感器
生物气流量的测量在厌氧消化过程中得到广泛采用,它可以表示反应器的总体活性。近年来一些专用技术被用来监视气体成分。典型的实验室方法是洗瓶分离方法,根据进瓶前和出瓶后的流量比可以确定气体成分。例如,碱洗瓶将能够收集所有的C02、H2S而允许CH4通过。更专业的气体分析仪可以直接监视气体成分含量,如红外吸收测量仪用来确定C02和CH4含量,专用氢分析仪也已基于化学电源研制而成。气相H2S测量仪可以通过监视硫化物对铅剥离的反应来确定H2S含量。
基于气体分析的监视系统的主要问题是不能直接预测液相中相应气体的浓度。可以直接测量溶解氢的浸入式传感器已经研制成功。燃料电池是此种传感器的核心。H2S和CH4的直接测量仪器至今未见报道。
pH测量不容易对不平衡厌氧消化槽进行检测,特别是当混合液的碱度高时。这种情况下可对混合液体中C02和碳酸盐进行测量。碱度主要取决于碳酸盐缓冲物,因此常常被用于厌氧消化的控制策略中。碳酸盐监视器已被开发应用于实际厌氧消化过程。
估计碳酸盐碱度的基本原理有两个。其一为滴定法,先进的在线滴定传感器可以同时监视氨、碳酸盐等不同的成分。对碱度进行在线确定的另一方法基于对样品酸化而得到的气态C02的定量。可以采用气体流量计测量所产生的气体的体积。
所有的生物活性都可用热量的产生来表征。通过热量计对热量的测量可以直接洞察生物过程变化。污水处理过程首选的是流量热量计。
挥发性脂肪酸(VFA)是厌氧消化过程最重要的中间产物。他们的聚集会引起pH值的降低而导致过程厌氧消化过程的失败。通常通过VFA浓度监视作为过程性能指示,但很少实施在线传感器。最先进的测量仪器包括气相色谱仪或高压液相色谱仪。傅立叶变换红外光谱仪(FT-IR)作为在线多参数传感器可以同时提供COD、TOC、VFA等参数的测量。FT-IR不需要添加任何化学品,且只需要很少的维护,但其校准比较困难。更具可靠性的测量是采用滴定计通过两步滴定或滴定反滴定提供采样中的VFA含量。
生物传感器近年来在污水处理行业得到发展应用。VFA分析仪可以决定消化液体中VFA浓度;MAIA生物传感器可对代谢活性进行测量;RANTOX生物传感器用于检测即将来临的有机物过载及毒性负载。
4、活性污泥过程中的传感器
氧在活性污泥过程中起着非常重要的作用,且相关的曝气费用约占全部运行费用的40%,因此氧传感器成为废水处理厂最广泛的测量监视仪表。氧测量基于液体中扩散氧的电化学反应。溶解氧(DO)传感器是可靠准确的测量仪表,但必须谨慎选择合适的测量位置,并防止结垢。目前自动清洁系统已经相当普遍,一些装备清洁系统并可进行自校准的溶解氧传感器已有应用。DO传感器被广泛用于曝气过程的控制,节省了大量投资,所获得的信息也可用于监视任何活性污泥处理过程。
呼吸量是对活性污泥呼吸速率的测量与解释,定义为在单位时间内单位体积活性污泥中微生物所消耗的氧。它是表征废水和污泥动力学的常用工具。呼吸计实质上是一个反应器,测量结果易受实验条件变动的影响。
废水的生物可降解成分通过离线测量生物需氧量(BOD5)的标准方法获得。BOD5是5天内有机溶质生物氧化所需溶解氧量。BOD5实验不适于自动监视和控制,因为完成实验需要较长时间,且很难达到一致的准确测量。废水负载的在线测量根据短期BOD估计实现。目前使用的在线BODst方法有两种:呼吸测量仪和微生物传感器。Vanrolleghem等提出的呼吸测量传感器RODTOX能够监视BODst和废水潜在毒性。该传感器有由一个恒定曝气、完全混合的批反应器构成,内含10升污泥,可以得到大动态范围内BODs。微生物传感器由固化电池、薄膜和一个溶解氧探测仪组成,最适合包含多种微生物的活性污泥系统。为了维护其功效,微生物BOD传感器需要精心维护与储藏。大多数微生物BOD传感器寿命较短,从几天到几个月。
废水处理厂最广泛监视的变量是化学需氧量COD。COD自动监测仪可以每隔1~2小时进行一次自动监测,根据氧化分解的条件分为酸性法监测仪和碱性法监测仪。COD实验的主要限制是不能区分可生物降解和惰性有机物。
TOC表示污水中总有机碳的含量,也是表征水体受有机物污染程度的一个指标。TOC测量的主要原理是将有机碳转化为C02,随后在气相中测量这种产物,据此求出水相中有机碳浓度。典型的测量仪器是红外线抽气分析仪。TOC被认为是一个很好的监视参数,特别是监视排水质量。
许多废水成分吸收紫外光。紫外线的吸收与废水中的有机物有着密切的关系。紫外线吸光度自动监测仪引人废水处理系统用于检测水污染程度或评价排放质量。最近10年,光学技术取得显著进步,使远程与多点测量成为可能,大大方便了污水处理过程监视的实施。红外光谱测量对于TOC、COD、BOD等特殊参数的估计与在线监视具有很大潜力。红外光谱仪的主要缺点是光电池成分的结垢会引起灵敏度的降低,需要频繁重校。
4. 污水处理中加ST的作用
要练此功,必先自宫。怕儿子
5. pta生产工艺比较
PTA是精对苯二甲酸(Pure Terephthalic Acid)的英文缩写,是重要的大宗有机原料之一,其主要用途是生产聚酯纤维(涤纶)、聚酯瓶片和聚酯薄膜,广泛用于与化学纤维、轻工、电子、建筑等国民经济的各个方面,与人民生活水平的高低密切相关。
PTA(精对苯二甲酸)2005年中国需求量1210万吨,占全球PTA需求总量2880万吨的42%;产量560万吨,进口650万吨,进口依存程度为54%,未来PTA需求仍在不断扩大,在未来几年,PTA的中国供需仍难以达到完全平衡。
EG(乙二醇)需求量达510.2万吨,占全球EG需求总量1133万吨的45%,产量110万吨,进口400万吨。2005年我国涤纶产量占世界涤纶产量的38%,已成为我国纺织工业的最主要原料。中国的动向,引起了世界其它国家和地区的关注,而且会对世界化纤业造成相当大的影响。
PTA的应用比较集中,世界上90%以上的PTA用于生产聚对苯二甲酸乙二醇酯(PET,简称聚酯),其它部分是作为聚对苯二甲酸丙二醇酯(PTT)和聚对苯二甲酸丁二醇酯(PBT)及其它产品的原料。
我国聚酯产量世界第一,是名副其实的聚酯大国。聚酯产能虽然仍以2位数的速率增加,但前2年经济效益大幅下滑。主要原因是PTA和EG价格居高不下,而聚酯产品价位低迷,企业盈利空间越来越小。国内这2种原料自给率都低于40%。
近4年来,国内PTA项目成为热点,几个大项目相继投产,但并没有缓解供不应求态势。到2010年, PTA项目在需求和利益驱动下,还将有一个快速发展期。
PTA生产工艺技术,也会在建设中有所发展。对我国近年来引进的各种PTA生产工艺,特别是低温氧化的EPTA工艺,进行比较和评价,就能够更全面地认识现有各种PTA工艺的技术特点。
(5)st废水处理工艺扩展阅读:
基本用途
PTA是重要的大宗有机原料之一,广泛用于与化学纤维、轻工、电子、建筑等国民经济的各个方面。同时,PTA的应用又比较集中,世界上90%以上的PTA用于生产聚对苯二甲酸乙二醇酯(简称聚酯,PET)。
生产1吨PET需要0.85-0.86吨的PTA和0.33-0.34吨的MEG(乙二醇)。聚酯包括纤维切片、聚酯纤维、瓶用切片和薄膜切片。国内市场中,有75%的PTA用于生产聚酯纤维;20%用于生产瓶级聚酯,主要应用于各种饮料尤其是碳酸饮料的包装。
5%用于膜级聚酯,主要应用于包装材料、胶片和磁带。可见,PTA的下游延伸产品主要是聚酯纤维。
聚酯纤维,俗称涤纶。在化纤中属于合成纤维。合成纤维制造业是化纤行业中规模最大、分支最多的子行业,除了涤纶外,其产品还包括腈纶、锦纶、氨纶等。2005年中国化纤产量1629万吨,占世界总产量4400万吨的37%。
合成纤维产量占化纤总量的92%,而涤纶纤维占合成纤维的85%。涤纶分长丝和短纤,长丝约占62%,短纤约占38%。长丝和短纤的生产方法有两种:一是PTA和MEG生产出切片、用切片融解后喷丝而成;一种是PTA和MEG在生产过程中不生产切片,而是直接喷丝而成。
涤纶可用于制作特种材料如防弹衣、安全带、轮胎帘子线,渔网、绳索,滤布及绝缘材料等等。但其主要用途是作为纺织原料的一种。国内纺织品原料中,棉花和化纤占总量的90%。我国化纤产量位列世界第一,2005年化纤产量占我国纺织工业纤维加工总量的2690万吨的61%。
化纤中涤纶占化纤总量的近80%。因此,涤纶是纺织行业的主要原料。涤纶长丝供纺织企业用来生产化纤布,涤纶短纤一般与棉花混纺。棉纱一般占纺织原料的60%,涤纶占30-35%,不过,二者用量因价格变化而替代。
简单地说,PTA的原料是PX,源头是石油。涤纶用PTA占总量的75%,而化纤中78%为涤纶。这就是“化纤原料PTA”说法的由来。
6. 急求一篇关于涂装废水处理的英文文献及相应翻译,请帮忙!!!
典型汽车涂装废水处理工艺
摘 要:本文针对汽车涂装废水中含有树脂、表面活性剂、重金属离子,Oil、颜料等污染物,特别是其中的电泳废水、喷漆废水成份复杂,浓度高,可生化性差的实际情况,采用分质处理、混凝沉淀、混凝气浮、砂滤等工艺对涂装废水进行处理,取得了良好效果:CODCr去除率大于80%。实际运行表明,该工艺在技术和经济上均是合理可行的。
Treatment technics of representative coating wastewater of automobile manufacturing
Abstract:In this article, in allusion to the contamination of coating wastewater of automobile manufacturing which contains resin, surface active agent, heavy metal ion, oil, paint, dyestuff etc, especially the ELPO wastewater and painting wastewater which is complex, and has high concentration. we use separated pre-treatment, coagulating sedimentation, air flotation and sand filtration to treat coating wastewater and obtains good results: the removal rate of CODCr could be higher than 80%. The operate of the set proved that under this condition, it would be practicable both in technology and economy.
关键词:涂装废水;分质处理;混凝沉淀;混凝气浮;砂滤;Fenton试剂
Keywords:coating wastewater;separated pre-treatment;coagulating sedimentation;air flotation;sand filtration;Fenton reagent
http://203.208.33.132/search?q=cache:1mMFbNqlHpAJ:www1.eere.energy.gov/instry/chemicals/pdfs/ppgind.pdf+Treatment+Technology+for+WasteWater+from+Automobile+Painting&cd=10&hl=zh-CN&ct=clnk&gl=cn&st_usg=
翻译
汽车及其零部件的涂装是汽车制造过程中产生废水排放最多的环节之一。涂装废水含有树脂、表面活性剂、重金属离子,Oil、PO43-、油漆、颜料、有机溶剂等污染物,CODCr值高,若不妥善处理,会对环境产生严重污染。对此类废水,传统的方法是直接对混合废水进行混凝处理,治理效果不理想,出水水质不稳定,较难达到排放标准。特别是其中的喷漆废水,含大量溶于水的有机溶剂,直接采用混凝法处理效果很差。我们在上海某汽车厂经过实地勘查、大量分析调研和小试,针对涂装废水的特点,采用分质预处理再进行后续处理的二步处理的方法,并选择芬顿氧化—混凝沉淀,气浮物化工艺进行处理,达到了排放标准,CODCr去除率达到80%以上。
1废水的来源和主要污染物
1.1 涂装废水的来源及有害物质
涂装废水主要来自于预脱脂、脱脂、表调、磷化、钝化等车身前处理工序;阴极电泳工序和中涂、喷面漆工序。
废水中含有的主要有毒、有害物质如下:
涂装前处理:亚硝酸盐、磷酸盐、乳化油、表面活性剂、Ni2+、Zn2+。
底涂:低溶剂阴极电泳漆膜、无铅阴极电泳漆膜、颜料、粉剂、环氧树脂、丁醇、乙二醇单丁醚、异丙醇、二甲基乙醇胺、聚丁二烯树脂、二甲基乙醇、油漆等。
中涂、面涂:二甲苯、香蕉水等有机溶剂、漆膜、颜料、粉剂。
1.2 废水水质、水量
本工程设计处理水量60m3/h。
油漆车间排放的废水分为间歇排放的废槽液和连续排放的清洗水。
间歇排放废水主要来源于前处理槽的倒槽废液、喷漆工段排放的废液等,废水浓度高,一次排放量大,水质如表1所示。
表1 间歇排放废水的水质
污
染
物
源
来
水
废
CODCr
mg/L
Oil
mg/L
PO43-
mg/L
Zn2+
mg/L
Ni2+
mg/L
Cd2+
mg/L
碳黑
mg/L
pH 其它
预脱脂槽、脱脂槽废槽液、后喷淋、浸渍槽废槽液 2500~
4000
300~
950
250~400 9.5~11
表调槽废槽液 15~30 8.5~10.5
磷化槽废槽液、后喷淋、浸渍槽废槽液 400~600 100~150 20~30 6
钝化槽废槽液、后喷淋、浸渍槽废槽液 50~100 1~3 4~5
电泳废槽液 3000~
20000
81 7~9
中涂、面漆喷漆室水槽废液 3000 5~6 漆渣
连续排放废水主要来自于前处理工序的后喷淋、浸渍槽的溢流废水等,相对间歇排放废水,其浓度低、总排放水量大,其水质如表2所示。
表2 连续排放废水的水质
源
来
水
废
污
染
物
CODCr
mg/L
Oil
mg/L
PO43-
mg/L
Zn2+
mg/L
Ni2+
mg/L
Cd2+
mg/L
碳黑
mg/L
pH
脱脂后冲洗废水 300 25 10~20 7~8
磷化后冲洗废水 20~30 12 8 6
钝化后冲洗废水 10~15 0.1 5~6
DI水喷淋槽喷淋废水 3900 1~3 4
循环去离子清洗废水 400 6
自泳后水洗溢流废水 100~1000 8 7~9
2.涂装废水处理工艺设计
汽车涂装废水处理工艺的关键之一在于合理的清浊分质。对部分难处理或影响后续处理的废水,根据其性质和排放规律,先进行间歇的预处理,再和其它废水集中连续处理,这样不仅可以取得较好的和稳定的处理效果,而且在经济上也合理可行。
2.1 涂装废水处理工艺流程
涂装废水处理工艺流程如图1所示。
图1某汽车厂涂装废水处理站处理流程
2.2 间歇预处理
2.2.1 脱脂废液
对脱脂废液采用酸化法进行破乳预处理,向脱脂废液中投加无机酸将pH调至2~3,使乳化剂中的高级脂肪酸皂析出脂肪酸,这些高级脂肪酸不溶于水而溶于油,从而使脱脂废液破乳析油。
另外,加酸后使脱脂废液中的阴离子表面活性剂在酸性溶液中易分解而失去稳定性,失去了原有的亲油和亲水的平衡,从而达到破乳。经预处理后CODCr从2500~4000mg/L降低到1500~2400mg/L,去除率在40%左右;而含油量从300~950 mg/L降至50~70 mg/L,去除率高达90%~95%。
2.2.2 电泳废液
在阴极电泳废水中含有大量高分子有机物,CODCr最高可达20000mg/L,还含大量电泳渣,这些物质在水中呈细小悬浮物或呈负电性的胶体状。处理中加入适当的阳离子型聚丙烯酰胺(PAM)和聚合氯化铝(PAC)作混凝剂,利用絮凝剂的吸附架桥作用来快速去除废水中的污染物。电泳废液在预处理时要求pH值在11~12之间,有较好的沉淀效果。反应后的出水CODCr在2000 mg/L左右。
2.2.3 喷漆废水
对喷漆废水先采用Fenton试剂(H2O2+FeSO4)对其进行预处理,使其中的有机物氧化分解,CODCr去除效率约在30%左右,再加入PAC和PAM对其进行混凝沉淀,经过此两步处理,CODCr的总去除率可达到60%~80%,由3000~20000mg/L降至1200~4000mg/L。出水排入混合废水调节池。
Fenton试剂具有很强的氧化能力,当pH值较低时(控制在3左右),H2O2被Fe2+催化分解生成羟基自由基(·OH),并引发更多的其他自由基,从而引发一系列的链反应[1]。通过具有极强的氧化能力的·OH与有机物的反应,使废水中的难降解有机物发生部分氧化、使废水中的有机物C—C键断裂,最终分解成H2O、CO2等,使CODCr降低。或者发生偶合或氧化,改变其电子云密度和结构,形成分子量不太大的中间产物,从而改变它们的溶解性和混凝沉淀性。同时,Fe2+被氧化生成Fe(OH)3在一定酸度下以胶体形态存在,具有凝聚、吸附性能,还可除去水中部分悬浮物和杂质。出水通过后续的混凝沉淀进一步去除污染物,以达到净化的目的[2]。
2.3 连续处理
经预处理的各类废水排入均和调节池中,与其它废水混合后进入连续处理流程。混合后的废水CODCr约为700~900mg/L。连续处理分为二级:混凝沉淀和混凝气浮。
在涂装废水中,油、高分子树脂(环氧树脂)、颜料(碳黑)、粉剂、磷酸盐等在表面活性剂、溶剂及各种助剂的作用下,以胶体的形式稳定地分散在水溶液中。可以靠投加化学药剂来破坏胶体的细微悬浮颗粒在水中形成的稳定体系,使其聚集成有明显沉淀性能的絮凝体,然后形成沉淀或浮渣加以除去[3]。
在废水中加入一定量的无机絮凝剂后,它们可中和乳化油或高分子树脂的电位,压缩双电层,胶粒碰撞促进凝集,完成脱稳过程,形成细小密实的絮凝物。这样可使涂装废水中的金属离子和磷酸根离子在碱性条件下生成的固体小颗粒形成沉淀物[4]。所以混凝处理可有效地去除汽车涂装废水中的油、高分子树脂、颜料和粉剂[5]。
重金属离子和磷酸盐中,由于Ni2+生成Ni(OH)2沉淀以及PO43-生成Ca3 (PO4) 2沉淀的最佳pH值是10以上;而Zn2+生成氢氧化物沉淀的最佳pH值范围是8.5~9.5,pH过高会形成ZnO22-而溶解。所以要分二级混凝反应以分别去除Ni2+,PO43-和Zn2+ 。同时,混凝反应后的固液分离分别采用的是斜板沉淀池和气浮池,这样既可以用斜板沉淀池来去除比重较大的重金属化合物沉淀,又可以用气浮池来去除比重较轻的有机物等。
2.3.1 混凝沉淀
第一级为混凝沉淀调节pH值为10~10.5。
反应槽采用推流式反应槽,分为三格。第一格加碱将pH调高至10~10.5,加入CaCl2,第二格加FeSO4,第三格加混凝剂PAM,反应后进入斜板沉淀池进行固液分离。三格停留时间分别为15min、15min、7.5min。斜板沉淀池表面负荷按2m3/m2·h设计。一级反应CODCr去除率为50%~60%。图2为一级反应槽示意图。
图2 一级反应槽示意图
2.3.2 混凝气浮
二级反应的反应槽,也采用推流式反应槽,分为三格。第一格加酸将pH回调至8.5~9,第二格加PAC,第三格加PAM,反应后进入气浮池进行固液分离。二级反应槽三格停留时间分别为10min、10min、5min。气浮池的溶气水按处理水量的30%设计。二级反应CODCr去除率为20%~25%,同时气浮也去除了Zn2+和一部分的表面活性剂。
2.4 深度处理
深度处理采用砂滤和活性炭过滤。从运行情况看,经砂滤后的出水即能达到排放标准(CODCr≤300mg/L)。砂滤装置的过滤速度控制在10~12m3/(m2·h)。反冲洗水由监测水箱中的水加压后提供,反冲洗强度控制在16~18L/(m2·s)。
砂滤后的出水已能达到排放要求,因此,活性炭过滤只是一个应急保证措施,一般情况下较少使用。
2.5 污泥处理
污泥处理的好坏,直接影响废水处理站的运行。由于污泥含油量高,直接进行压滤效果较差,在污泥浓缩槽中加入Ca(OH)2,pH调整至10左右,能达到较好的压滤效果。污泥含水率经板框压滤机后可由99%下降至75%~80%。
2.6 连续处理去除率分析
连续处理过程去除率如表3所示。
表3 连续处理效率
出水位置 CODCr去除率
斜板沉淀池出口 50%~60%
气浮池出口 20%~25%
砂滤出口 15%
3处理效果分析
该工程自2002年运行至今,处理效果稳定,表4为上海市环境监测中心2004年对该厂的监测分析报告数据汇总。监测时间为3天,每天取样12次(1小时取样一次,包括废水处理装置进口和出口)。
表4 废水处理设施总排口监测数据
监测
项目
废水处理装置进口* 废水处理装置出口 上海市《污水综合排放标准》(DB31/199–1997)
浓度最小值(mg/L) 浓度最大值(mg/L) 浓度平均值(mg/L) 浓度最小值(mg/L) 浓度最大值(mg/L) 浓度平均值(mg/L)
pH 6.94 8.96 8.32 7.57 8.85 7.8 6~9
CODCr 434 759 625 73 132 115.6 300 三级标准
SS 93 351 204 21 145 29 350 三级标准
BOD5 36 145 87 4 83 16.9 150 三级标准
Oil 2.6 11.5 5.1 0.1 0.9 0.6 10 二级标准
Zn2+** - - - 0.02 1.6 0.09 4.0 二级标准
Mn2+** - - - 0.05 0.26 0.16 5.0 二级标准
Ni2+** - - - ND 0.18 0.09 1.0 第一类污染物排放标准
苯 ND ND ND ND ND ND 0.2 二级标准
甲苯 ND ND ND ND ND ND 0.2 二级标准
二甲苯 ND ND ND ND ND ND 0.6 二级标准
*废水处理装置进口指连续处理装置进口。
** Zn2+、Mn2+、Ni2+本次监测未分析,表中所列为该厂废水处理站日常分析数据。
由上表可以看出,经处理后的废水以上海市《污水综合排放标准》(DB31/199—1997)进行评价,其中CODCr、BOD5、SS按三级标准评价(废水处理后排入安亭水质净化厂),其余采用二级标准及第一类污染物最高允许排放浓度,均能达到工程设计指标。
目前,处理装置运行稳定,出水均能达标。
4.技术经济分析
工程造价和运行费用是人们在选用处理方法时所必须考虑和关心的问题。本工程采用分质处理后,与一般的集中物化处理比较,节省了加药量,污泥产量也有所减少,在一定程度上减少了运行费用,更重要的是保证了出水水质的稳定达标。本项目的技术经济指标见表5。
表5 本处理工程技术经济指标
总投资/万元 单位体积污水投资/万元 年运行费用/万元 单位体积污水处理费/元/m3
800 1.11 30 1.67
*年工作日按250天计,日处理水量为720 m3。
5.结论
1、本工程采用分质处理、混凝沉淀、混凝气浮、砂滤等工艺对汽车涂装废水进行处理在技术和经济上是合理可行的。实际运行结果证明,此工艺对重金属、SS、Oil的去除效率超过90%,对CODCr的去除率大于80%。
2、汽车涂装废水水量和水质变化大,要特别的重视废水水量、水质均衡和分质预处理。根据工程实践证明,对脱脂废液,电泳废水、废液和喷漆废水这三股废水分别进行间歇预处理,这不仅有利于后续处理效率的提高,体现出技术和经济的统一,而且对整个系统的稳定运行和出水的稳定达标至关重要。
参考文献:
熊忠,林衍等 Fenton氧化法在废水处理中的应用[J] 新疆环境保护,2002,24(2):35~39
张林生,魏峰等 物理化学法处理汽车工业电泳涂装工艺中的超滤液废水[J] 给水排水,1999,25(10):33~36
刘绍根,汽车涂装废水处理技术[J] 工业用水与废水,2001,32(2):11~13
刘绍根,黄显怀 物化—生化法处理汽车生产废水[J] 给水排水,2001,27(12):53~56
廖亮,吴一飞等 磷化-喷漆线的废水处理工艺研究[J] 环境技术,2000,18,(4):18~21
7. 什么是STCC污水处理工艺
STCC污水处理及深度净化技术”是一种新型的多种介质填料的曝气生物滤池,是武汉版新天达美环境科技有限公司在权消化吸收国内外先进技术的基础上,经过应用实践和总结,根据我国国情开发研究的成果。该技术采用木炭等天然材料,加工制成填料组成填料床,处理城镇污水后的出水优于国家《城镇污水处理厂污染物排放标准》(GB18918—2002)的一级A标准,可以达到国家《地表水环境质量标准》(GB3838—2002)的Ⅳ类标准。其技术特点是将生物氧化和过滤结合在一起,出水水质优良,设施占地面积小。技术创新点是新型填料“不饱和炭”的运用,为微生物提供了良好的复合型新陈代谢环境,提高了净化效率。
STCC技术各水池单元的构造与曝气生物滤池(BAF)很相似,特点是采用升流式,其滤料采用粒状或块状,浸没入水中不悬浮。各单元均由以下几部分组成:①配水装置②填料支撑底座和支撑材料③各种介质填料④曝气或反冲洗气管路⑤污泥提取装置⑥顶盖⑦处理后的出水与排出设备。其结构形式采用钢砼,对小型污水净化也可以采用一体化处理装置。
8. 确定絮凝剂在生活污水处理中的配比是多少
混凝与絮凝的比较
絮凝剂是用来提高沉降、澄清、过滤、气浮、离心分离等工艺过程的速度和效率。絮凝过程就是悬浮液中许多单独颗粒形成聚集体(絮团或矾花)的过程。
水处理中,混凝和絮凝代表两种不同的机制。
混凝
水中悬浮的颗粒在粒径小到一定程度时,其布朗运动的能量足以阻止重力的作用,而使颗粒不发生沉降。这种悬浮液可以长时间保持稳定状态。而且,悬浮颗粒表面往往带电(常常是负电),颗粒间同种电荷的斥力使颗粒不易合并变大,从而增加了悬浮液的稳定性。
混凝过程就是加入带正电的混凝剂去中和颗粒表面的负电,使颗粒“脱稳”。于是,颗粒间通过碰撞、表面吸附、范德华引力等作用,互相结合变大,以利于从水中分离。
混凝剂是分子量低而阳电荷密度高的水溶性聚合物,多数为液态。它们分为无机和有机两大类。无机混凝剂主要是铝、铁盐及其聚合物。
絮凝
絮凝是聚合物的高分子链在悬浮的颗粒与颗粒之间发生架桥的过程。“架桥”就是聚合物分子上不同链段吸附在不同颗粒上,促进颗粒与颗粒聚集。
絮凝剂为有机聚合物,多数分子量较高,并有特定的电性(离子性)和电荷密度(离子度)。
实际过程要比上述理论复杂得多。由于混凝剂/絮凝剂都是高分子物质,同一产品中大大小小的分子都有,所谓“分子量”只是一个平均概念。所以,在用某一混凝剂或絮凝剂处理污水是,“电中和”和“架桥”作用会交织在一起同时发生。絮凝过程是多种因素综合作用的结果,目前仍有一些没有认清和解决的问题。就我们所知,絮凝过程与絮凝剂分子结构、电荷密度、分子量有关;与悬浮颗粒表面性质、颗粒浓度、比表面积有关;与介质(水)的pH值、电导、水中其他物质的存在、水温、搅动情况等因素有关。因此尽管有理论和经验可循,用实验来选择絮凝剂仍然是不可缺少的。
1、PAC(聚合氯化铝)的溶解与使用
1) PAC为无机高分子化合物,易溶于水,有一定的腐蚀性;
2) 根据原水水质情况不同,使用前应先做小试求得最佳用药量(具体方法可参见第2条:聚合硫酸铁的溶解与使用-加药量的确定);(参考用量范围:20-800ppm)
3) 为便于计算,实验小试溶液配置按重量体积比(W/V),一般以2~5%配为好。如配3%溶液:称PAC3g,盛入洗净的200ml量筒中,加清水约50ml,待溶解后再加水稀释至100ml刻度,摇匀即可;
4) 使用时液体产品配成5-10%的水液,固体产品配成3-5%的水液(按商品重量计算);
5) 使用配制时按固体:清水=1:5(W/V)左右先混合溶解后,再加水稀释至上述浓度即可;
6) 低于1%溶液易水解,会降低使用效果;浓度太高易造成浪费,不容易控制加药量;
7) 加药按求得的最佳投加量投加;
8) 运行中注意观察调整,如见沉淀池矾花少、余浊大,则投加量过少;如见沉淀池矾花大且上翻、余浊高,则加药量过大,应适当调整;
9) 加药设施应防腐。
2、聚合硫酸铁(PFS)的溶解与使用
1) PFS溶液配制
a. 使用时一般将其配制成5%-20%的浓度;
b. 一般情况下当日配制当日使用,配药如用自来水,稍有沉淀物属正常现象。
2) 加药量的确定
因原水性质各,应根据不同情况,现场调试或作烧杯混凝试验,取得最佳使用条件和最佳投药量以达到最好的处理效果。
a.取原水1L,测定其PH值;
b.调整其PH值为6-9;
c.用2ml注射器抽取配制好的PFS溶液,在强力搅拌下加入水样中,直至观察到有大量矾花形成,然后缓慢搅拌,观察沉淀情况。记下所加的PFS量,以此初步确定PFS的用量;
d. 按照上述方法,将废水调成不同PH值后做烧杯混凝试验,以确定最佳用药PH值;
e. 若有条件,做不同搅拌条件下用药量,以确定最佳的混凝搅拌条件;
f. 根据以上步骤所做试验,可确定最佳加药量,混凝搅拌条件等。
注意混凝过程三个阶段的水力条件和形成矾花状况。
a) 凝聚阶段:是药剂注入混凝池与原水快速混凝在极短时间内形成微细矾花的过程,此时水体变得更加浑浊,它要求水流能产生激烈的湍流。烧杯实验中宜快速(250-300转/分)搅拌10-30S,一般不超过2min。
b) 絮凝阶段:是矾花成长变粗的过程,要求适当的湍流程度和足够的停留时间(10-15min),至后期可观察到大量矾花聚集缓缓下沉,形成表面清晰层。烧杯实验先以150转/分搅拌约6分钟,再以60转/分搅拌约4分钟至呈悬浮态。
c) 沉降阶段:它是在沉降池中进行的絮凝物沉降过程,要求水流缓慢,为提高效率一般采用斜管(板式)沉降池(最好采用气浮法分离絮凝物),大量的粗大矾花被斜管(板)壁阻挡而沉积于池底,上层水为澄清水,剩下的粒径小,密度小的矾花一边缓缓下降,一边继续相互碰撞结大,至后期余浊基本不变。烧杯实验宜以20-30转/分慢搅5分钟,再静沉10分钟,测余浊。
表1:PFS适用范围及参考用量
名称 参考用量 名称 参考用量
生活饮用水 1:20000-1:200000 纸箱厂废水 1:5000-1:10000
工业用水 1:20000-1:200000 机加工乳化油废水 1:5000-1:12000
城市污水 1:10000-1:50000 化工废水 1:3000-1:10000
电厂废水 1:10000-1:30000 油田钻井废水 1:3000-1:10000
洗煤废水 1:10000-1:30000 造漆废水 1:3000-1:8000
钢铁工业废水 1:10000-1:20000 洗毛废水 1:2000-1:8000
有色选矿废水 1:8000-1:20000 制革废水 1:2000-1:6000
冶金选矿废水 1:8000-20000 印染废水 1:2000-1:6000
食品工业废水 1:8000-1:20000 造纸废水 1:2000-1:6000
电镀废水 1:5000-1:10000 污泥脱水 1:100-1:1000
注:上表为参考用量,具体用量应该通过实验确定。
3) PFS的投加
a. 根据烧杯混凝试验结果,调整废水PH值和搅拌条件;
b. 根据水量大小,调整加药泵流量,按所确定的加药比例投加;
c. 实际加药量可能与烧杯混凝试验有些差异,根据处理水质情况调整;
d. 若配合使用有机高分子絮凝剂如PAM,可取得更佳效果;
e. PAM加药量一般为2ppm左右。
3、聚丙烯酰胺(PAM)的溶解与使用
1) PAM是有机高分子化合物,可分为阴离子型,阳离子型和非离子型,为白色粉末或颗粒,可溶于水,但溶解速度很慢;
2) 阴离子型一般用于废水处理絮凝剂,阳离子型一般用于污泥脱水;
3) 作为絮凝剂时用药量一般为1-2ppm,即每处理1吨废水用药量约为1-2g;
4) 使用时阴离子型一般配制成0.1%左右的水溶液,阳离子型可配制成0.1%-0.5%;
5) 配制溶液时应先在溶解槽中加水,然后开启搅拌机,再将PAM沿着漩涡缓慢加入,PAM不能一次性快速投入,否则的话PAM会结块形成“鱼眼”而不能溶解;
6) 加完PAM后一般应继续搅拌30min以上,以确保其充分溶解;
7) 溶解后的PAM应尽快使用,阴离子型一般不要超过36h,阳离子型溶解后很容易水解,应24h内使用。
ST絮凝剂特性:
ST絮凝剂是种新型的水溶性高分子电解质。它具有离子度高、易溶于水(在整个PH值范围内完全溶于水,且不受低水温的影响)、不成凝胶、水解稳定性好等特点,由于ST絮凝剂的大分子链上所带的正电荷密度高,产物的水溶性好,分子量适中,因此具有絮凝和消毒的双重性能。它不仅可有效地降低水中悬浮物固体含量,从而降低水的浊度:而且还可使病毒沉降和降低水中三卤甲烷前体的作用,因而使水中的总含碳量(TOC)降低。ST絮凝剂可作为主絮凝剂和助凝剂使用(其用量0.5-0.7PPM相当于明矾50~60PPM),对水的澄清有明显的效果,特别是对低浊度水的处理,更是其它类型的高分子絮凝剂所不及。ST絮凝剂与传统使用的无机絮凝剂(如硫酸铝、碱式氯化铝等)相比,具有产生的淤泥量少,沉降速度快水质好,成本低等特点,而且还可采用直接过滤的新工艺,这对传统的上水处理无疑是一个重大改革。
ST絮凝剂产品的技术指标为:
外观:无色或淡黄色粘稠液体
含量:≥30%(m/m)
特性粘度:≥40%(m1/g)
离子度:≥50%(m/m)
2、ST絮凝剂的使用方法:
ST絮凝剂可单独使用,或与硫酸铝、碱式氯化铝复合使用。复合使用时、可减少无机絮凝剂添加量,并大大减少产生的污泥量。
ST絮凝剂的最佳使用浓度是使Zate电位零或接近于零时用量。当用量过多时,反而起分散作用。
ST絮凝剂单独使用时,其加药量范围为0.2-10ppm。
ST絮凝剂在低温贮存时,将使胶体或液体冻成冰块,影响它的絮凝活性。因此,应在0-32℃之间贮顾为宜。
ST絮凝剂应可能用中性不含金属盐的水来配制贮备液。贮备液一般配成1%、0.5%或0.1%的液体。与其它高分子絮凝剂一样,ST絮凝剂在剪切力较高的高速搅拌下,将会被切断分子链,从面降低絮凝剂性能。因此,溶解、输送和絮凝过程,都不要使用较高速度的旋转搅拌机和离心泵。一般溶解和絮凝时可用吹入空气或用约100转/分低速的螺旋式搅拌为宜。输送则尽可能利用位差或排液泵为宜。
ST絮剂的效果与加入方法有很大关系,为使ST絮凝剂与悬浮物能充分混匀,絮凝剂应尽可能稀释并多次加入。
为了使ST絮凝剂的分子链既不被剪断,同时又能与处理体系充分混合,可采用:(一)在处理物流动管中多次分散加入ST絮凝剂;(二)用压缩空气搅拌;(三)用螺旋桨搅拌器在100转/分低速下进行。形成絮凝块后,便要避免搅拌。
3、ST絮凝剂广泛应用于净水、破乳、造纸双元助留、造纸浆液阴离子杂质消除等领域。
9. 粘土矿物功能材料的制备及在含重金属元素废水处理中的应用
龚文琪 韩沛 王湖坤 刘艳菊 饶波琼
(武汉理工大学资源与环境工程学院,湖北武汉 430070)
摘要 研究了累托石-水淬渣及累托石-粉煤灰颗粒吸附材料制备的工艺条件、再生方法及其去除铜冶炼工业废水中重金属的条件。试验结果表明:累托石与水淬渣的比例为1∶1,另加入10%的添加剂(IS)和50%的水,焙烧温度为400℃时,制成的颗粒吸附材料不仅吸附效果好,而且散失率较低。在不调节铜冶炼工业废水pH值的条件下,颗粒吸附材料用量为0.05g/cm3,反应时间为40 min,吸附温度为25℃(常温)时,Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.2%、96.3%、78.6%、86.2%、64.2%。累托石与粉煤灰的比例为1∶1,另加入15%的添加剂(IS)和50%的水,焙烧温度为500℃时,制成的颗粒吸附材料不仅吸附效果好,而且散失率较低。在不调节铜冶炼工业废水pH值的条件下,颗粒吸附材料用量为0.07g/cm3,反应时间为60 min,吸附温度为25℃(常温)时,Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.9%、97.5%、96.7%、90.2%、79.1%。处理后的水均符合国家污水综合排放标准(GB8978—1996 )的一级标准。吸附饱和的颗粒吸附材料用1 mol/L氯化钠溶液再生效果好。该颗粒吸附材料具有分离容易、可重复使用、处理效果好、应用前景广阔等优点[1~11]。
关键词 累托石;水淬渣;粉煤灰;颗粒吸附材料;再生;铜冶炼工业废水
第一作者简介:龚文琪(1948—),男,汉族,湖北省武汉市人,教授,博士生导师,矿物加工专业。电话:027-62574946,E-mail:[email protected]。
累托石是二八面体云母和二八面体蒙脱石按1∶1构成的规则间层粘土矿物,具有独特的结构、较强的吸附性和阳离子交换性[1,2]。国内外学者研究了用累托石及其改性产物处理废水[3~5],已取得可喜的进展。但是,研究者们发现这些粉状吸附材料处理废水时存在的主要问题是:吸附材料粒度细,遇水后易分散粉化,造成后续固液分离十分困难,易形成新的工业污泥,这种工业污泥因吸附物质的富集对环境的二次污染危害性更大;吸附材料不能重复使用,所吸附的物质不能回收,处理成本大大增加[6]。为了解决这些问题,本文探讨了累托石-水淬渣和累托石-粉煤灰颗粒吸附材料制备的工艺条件、再生方法及其在铜冶炼工业废水处理中的应用,为铜冶炼工业废水中Cu2+、Pb2+、Zn2+、Cd2+、Ni2+等重金属离子的去除提供一种价格低廉、去除效果好的吸附材料。
一、试验部分
(一)试验材料
试验所用累托石产自湖北钟祥,由湖北名流累托石科技公司提供。其化学组成为:SiO243.82%,Al2O334.25%,Fe2O31.59%,CaO 3.76%,K2O 0.93%,Na2O 1.54%,MgO 0.36%,TiO22.97%;其矿物组成为:累托石85%;伊利石10%;高岭石5%。
试验所用高炉水淬渣取自武汉钢铁集团公司炼铁厂。其化学组成为:SiO232.98%,Al2O316.67%,Fe2O30.70%,CaO 35.99%,K2O 0.44%,MgO 8.52%,TiO21.43%。X射线衍射物相分析表明其为非晶相。
试验所用粉煤灰是湖北华电集团黄石发电股份公司的干排粉煤灰。其化学组成为:SiO254.72%,Al2O328.65%,Fe2O34.14%,CaO 3.39%,K2O 1.68%,MgO 0.78%,TiO21.22%。其矿物组成为:石英15%,莫来石15%,非晶相70%。
试验所用铜冶炼工业废水取自湖北省黄石市大冶有色金属公司铜冶炼厂的实际废水,水质分析结果为:Cu2+2.62 mg/dm3,Pb2+0.63 mg/dm3,Zn2+3.92 mg/dm3,Cd2+0.58 mg/dm3,Ni2+1.48 mg/dm3,pH 6.5。
(二)试验仪器
D/MAX-RB X射线衍射仪、ST-2000比表面积与孔径测定仪、XTLZ多用真空过滤机、F97-系列封闭化验制样粉碎机、XSB-70 B型ф200标准筛振筛机、20~400目标准检验筛、PHS-3C酸度计、SKFO-01电热干燥箱、SX2-4-13 马弗炉、THZ-82恒温水浴振荡器、AB204-N电子天平、JY38plus等离子体单道扫描直读光谱仪(ICP-AES)。
(三)试验方法
1.样品的制备
累托石样品采用反复分散-沉降的方法进行提纯,水淬渣和粉煤灰样品则直接使用。样品均经烘干及粉碎后筛分至小于240目备用。
2.累托石-水淬渣和累托石-粉煤灰颗粒吸附材料的制备
将经过制备的水淬渣或粉煤灰与累托石,另加添加剂(工业淀粉,简称IS)和水,按一定比例混合均匀,陈化24 h,制成粒径1~3mm的颗粒,送至马弗炉内焙烧2 h,自然冷却至室温即为所需颗粒吸附材料。
3.铜冶炼工业废水的处理
在250 mL锥形瓶中加入100 mL铜冶炼工业废水,加入一定量的颗粒吸附材料,放入恒温水浴振荡器中(振荡频率110 r/min)反应一定时间后,离心分离,取出上清液,测定重金属离子的浓度并计算其吸附去除率η(%):η=(Co-Ce)/Co×100%,式中Co和Ce分别为吸附前后溶液中重金属离子的浓度(mg/dm3)。
4.颗粒吸附材料散失率的测定
准确称取一定量的颗粒吸附剂(记为G1),置于250 mL具塞的锥形瓶中,加入100 mL去离子水,在恒温水浴振荡器中以110 r/min的振荡频率于一定温度条件下振荡一定时间后,用去离子水洗掉因粒状吸附材料破碎而产生的粉末,然后将湿颗粒吸附材料置于103~105℃烘箱中烘至恒重,冷却至室温后称重(记为G2),则散失率P(%)的计算公式为[7]:
P=(G1-G2)/G1×100%
二、试验结果与讨论
为了简化处理工艺,降低处理成本,本试验均在铜冶炼工业废水的自然pH(即不调节pH)的条件下进行,考查了颗粒吸附材料制备的工艺条件、废水处理工艺条件、颗粒吸附材料再生利用方法等对废水中重金属元素去除率的影响。
(一)颗粒吸附材料制备工艺条件的影响
1.焙烧温度的影响
由试验结果经过综合考虑Cu的去除率及颗粒吸附材料的散失率,确定累托石-水淬渣和累托石-粉煤灰颗粒吸附材料的焙烧温度分别为400℃和500℃,此时Cu的去除率较高而颗粒吸附材料的散失率较低。
2.累托石和水淬渣或粉煤灰混合比例的影响
累托石和水淬渣或粉煤灰混合比例对废水中Cu的去除率的影响试验结果可知,当累托石含量从10%增加到20%时,Cu的去除率有所增加,以后随着累托石含量的增加,Cu的去除率呈下降的趋势,而散失率随累托石含量的增加一直呈下降趋势。当累托石含量大于50%时,散失率接近0。从有效利用水淬渣和粉煤灰的角度考虑,确定累托石含量为50%,即水淬渣或粉煤灰与累托石的配比为1∶1,Cu的去除率较高且散失率很低。
3.添加剂比例的影响
由添加剂比例对累托石-水淬渣或累托石-粉煤灰颗粒吸附材料去除废水中Cu的影响试验结果可知:这两种颗粒吸附材料中添加剂的含量分别为10%与15%时,Cu的去除率都很高,而散失率都很低,从去除效果及成本的角度考虑,确定这两种颗粒吸附材料中添加剂的含量分别为10%与15%。
(二)颗粒吸附材料去除铜冶炼工业废水中重金属元素的效果
按上述试验确定的制备条件:累托石与水淬渣的比例为1∶1,另加入10%的添加剂和50%的水,焙烧温度为400℃;累托石与粉煤灰的比例为1∶1,另加入15%的添加剂和50%的水,焙烧温度为500℃;分别制成颗粒吸附材料,用以进行去除铜冶炼工业废水中重金属元素的条件试验。
1.反应时间的影响
在常温(25℃)、颗粒吸附材料用量为0.03g/cm3的条件下,反应时间对去除铜冶炼工业废水中重金属元素的影响试验结果表明,随着反应时间的延长,重金属元素去除率有逐渐增加的趋势,使用累托石-水淬渣颗粒吸附材料40 min以后,或使用累托石-粉煤灰颗粒吸附材料60 min以后,去除率趋于平衡。因此,确定使用这两种颗粒吸附材料的反应时间分别为40 min 和60 min。
2.吸附温度的影响
在颗粒吸附剂用量为0.03g/cm3,累托石-水淬渣颗粒吸附材料反应时间为40 min,累托石-粉煤灰颗粒吸附材料反应时间为60 min的条件下,进行吸附温度对去除铜冶炼工业废水中重金属元素的影响试验。结果表明在25℃时,两种颗粒吸附剂对重金属元素的去除率均最高。因此,确定吸附温度为25℃。
3.颗粒吸附材料用量的影响
在常温(25℃)、累托石-水淬渣和累托石-粉煤灰颗粒吸附材料的反应时间分别为40 min和60 min的条件下,进行这两种颗粒吸附剂的用量对去除铜冶炼工业废水中重金属元素的影响试验,结果表明随着吸附剂用量的增加,重金属元素去除率逐渐增加。当累托石-水淬渣颗粒吸附剂用量大于0.03g/cm3,累托石-粉煤灰颗粒吸附剂用量大于0.05g/cm3时,重金属元素去除率增加缓慢。因此,从成本角度考虑,确定这两种颗粒吸附剂用量分别为0.03g/cm3和0.05g/cm3。
(三)正交试验结果
以上探讨了各个单因素(时间、温度、用量)条件对于累托石-水淬渣或累托石-粉煤灰颗粒吸附材料对铜冶炼工业废水中重金属元素的去除效果。为了探讨在各个单因素的交互作用下颗粒吸附材料对该废水中重金属元素的最佳去除效果,进行了三因素两水平的正交试验,结果如表1和表2所示。
,烘干后再对铜冶炼工业废水进行吸附处理,试验结果见表3和表4。由表中可以看出,1 mol/L NaCl解吸再生效果最好,处理后的废水中Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的残留浓度仍低于国家污水综合排放标准(GB8978—1996 )的一级标准,去除率同新制备的颗粒吸附材料的去除率很接近,在解吸再生6次后,去除率为新材料去除率的80%,说明所制备的颗粒吸附材料重复使用效果较好。
三、结论
1)累托石-水淬渣和累托石-粉煤灰颗粒吸附材料制备的工艺条件为:累托石与水淬渣的比例为1∶1,另加入10%的添加剂(IS)和50%的水,焙烧温度为400℃;累托石与粉煤灰的比例为1∶1,另加入15%的添加剂(IS)和50%的水,焙烧温度为500℃。所制成的颗粒吸附材料不仅吸附效果好,而且散失率较低。
2)累托石-水淬渣颗粒吸附材料去除铜冶炼工业废水中重金属元素的适宜条件为:在自然pH值的条件下,颗粒吸附剂用量为0.05g/cm3,反应时间为40 min,温度为25℃(常温)。该条件下Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.2%、96.3%、78.6%、86.2%、64.2%。累托石-粉煤灰颗粒吸附材料去除铜冶炼工业废水中重金属元素的适宜条件为:在自然pH值的条件下,颗粒吸附剂用量为0.07g/cm3,反应时间为60 min,温度为25℃(常温)。该条件下Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.9%、97.5%、96.7%、90.2%、79.1%。处理后的废水中这些重金属元素的残留浓度均低于国家污水综合排放标准(GB8978—1996)的一级标准。
3)用1 mol/L NaCl对最佳吸附条件下吸附饱和的颗粒吸附材料进行解吸再生,然后用来处理铜冶炼工业废水,处理后的废水中Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的残留浓度仍低于国家污水综合排放标准(GB8978—1996)的一级标准,去除率同用新制备的颗粒吸附材料时的去除率很接近。相对于其他吸附材料,颗粒吸附材料具有分离容易、可重复使用、成本低廉、处理效果好等优势,因而具有良好的应用前景。
参考文献
[1]江涛,刘源骏.累托石.武汉:湖北科学技术出版社,1989:1-48
[2]张小庆.累托石的改性及在废水处理中的应用.西北工业大学学报,2003
[3]孙家寿,张泽强,刘羽.累托石层孔材料处理含铬废水的研究.岩石矿物学杂志,2001,20(4):555-558
[4]孙家寿,鲍世聪,李春领等.改性累托石处理含氰电镀废水研究.非金属矿,2001,(1)
[5]王湖坤,龚文琪.黏土矿物材料在重金属废水处理中的应用.工业水处理,2006,26(4):4-7
[6]孙秀云,王连军,周学铁.凹凸棒土-粉煤灰颗粒吸附剂的制备及改性.江苏环境科技,2003,16(2):1-3
[7]吴达华,吴永革,林蓉.高炉水淬矿渣结构特性及水化机理.石油钻探技术,1997,(1)
[8]许鹏举,岳钦艳,张艳娜等.PDMDAAC改性高炉渣处理印染废水的研究.工业水处理,2006,(5),62-64
[9]李亚峰,孙凤海,牛晚扬等.粉煤灰处理废水的机理及应用.矿业安全与环保,2001,(02)
[10]李春青,普红平.粉煤灰的改性及其在废水处理中的应用.中国资源综合利用,2006,(11)
[11]程爱华,王建东,姚改焕.粉煤灰在水处理中的应用.能源与环境,2006,(01)
Preparation of clay functional materials and their application in treatment of heavy metal-containing wastewater
Gong Wenqi,Han Pei,Wang Hukun,Liu Yanju,Rao Boqiong
(School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,Hubei,China)
Abstract:The preparation technological conditions and regeneration method of two novel granulated adsorbing materials of rectorite/fly ash composite(Material 1)and rectorite/water quenched-slag composite(Material 2 ) and the use of them to remove heavy metals from copper smelting plant wastewater have been studied.The experimental results showed that under the preparation conditions with the ratio of rectorite to fly ash or water quenched slag of 1∶1,the amount of the additive(Instrial Starch,IS) of 15%(Material 1) or 10%(Material 2),the addition of 50%water,and the calcination temperature of 500℃(Material 1) or 400℃(Material 2),the efficiency of heavy metal removal with the granulated materials was the best,whereas the ra tio of disintegration loss was low.Under the treatment conditions of natural pH,and with the addition of the granulated materials of 0.07g/cm3(Material 1) or 0.05g/cm3(Material 2),a reaction time of 60 minutes(Material 1 ) or 40 minutes(Material 2 ),and the adsorption temperature of 25℃,the efficiency for the gran ulated materials to remove Cu2+,Pb2+,Zn2+,Cd2+and Ni2+from copper smelting plant wastewater was 98.9%,97.5%,96.7%,90.2%and 79.1%(Material 1 ) or 98.2%,96.3%,78.6%,86.2%and 64.2%(Material 2),respectively,and the quality indexes of the wastewater after treatment conformed with the first level of integrated wastewater discharge standard(GB8978—1996 ) .The granulated materials saturat ed with heavy metal ions on the surface could be regenerated with quite good efficiency by washing with 1 mol/L sodium chloride(NaCl) solution.The granulated adsorbing materials had the advantages of high efficiency in wastewater treatment,easy method of solid-liquid separation and regeneration,and have a broad prospect of applications.
Key words:Rectorite,water quenched-slag,fly ash;granulated adsorbing material,regeneration,copper smelting plant wastewater.
10. 污水处理中msbr工艺和CASS工艺的区别
摘要 与传统序批式SBRT艺不同,CASST艺系统中的生物反应池分为2个区域,第1区为生物选择器;第2为主反应区.CASS1一艺原理是在1个或多个平行运行且反应容积可变的池子中,完成生物降解和泥水分离过程.因此.在该T艺系统中无需设置单独的沉淀池.在该系统中,活性污泥法按照”曝气一非曝气”阶段不断重复进行.