① 矿井提升机可以不用减速器吗,直接用变频器控制变频器可以变速,增大电机功率可以提高转矩!
呵呵,这样的话价格贵,能耗高,安全性能低。
② 矿井提升机1000kw/6kⅤ的,选变频器是1000/6kv还是1250/kv的好
最好是放大一档,建议选用1250kw的。
③ 矿井提升机ABB变频器出现3210 直流电压过高怎样解决
制动方式选择不对吧 不行就配上制动电阻
④ 矿井提升机PLC变频控制系统梯形图! 求大神!需要完整的梯形图程序
我也在问这个问专题属http://..com/question/551030812?quesup2&oldq=1
⑤ 变频电机怎样调速
机械调速。
机械调速方法有电磁离合器、液力耦合器和液粘离合器三类,其中使用较多的是液力耦合器,即在电机和负载之间串入一个液力耦合装置,通过液面的高低调节电机和负载之间耦合力的大小,实现负载的速度调节。
上世纪90年代,液力耦合器在高压大容量笼型电机拖动的风机、泵类上使用的较多。由于它的调速范围有限(99%~30%)、调速精度不够高、效率较低、只能单机使用、故障时必须停机修理等缺陷,使用范围很窄,使用量也非常有限。
串级调速方式。
串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网,这样相当于调节了转子的内阻,从而改变了电动机的滑差。由于转子的电压和电网的电压一般不相等,所以向电网逆变需要一台变压器,
为了节省这台变压器,现在国内市场应用中普遍采用内馈电机的形式,即在定子上再做一个三相的辅助绕组,专门接受转子的反馈能量,辅助绕组也参与做功,
这样主绕组从电网吸收的能量就会减少,达到调速节能的目的。由于在工业生产中绕线电动机的使用量不多,串级调速方式的应用范围也较窄。
变频调速方式。
变频调速就是通过变频器改变供电频率,从而实现对电动机转速的调节,提高电气传动系统的运行效率。从电流的变化方式来看,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
从电压高低的分类方面来看,我国习惯上把额定电压在3kV到10kV之间的电动机称为高压电机,因此一般把针对3kV至10kV高电压环境下运行的电动机而开发的变频器称为高压变频器,国外则从输电电压和用电电压的角度考虑,通常将之称为中压变频器。
从调速效果看,使用变频器调速是较好的调速技术,它的调速范围较宽,可达到100%~5%;调速精度较高,可达到±0.5%。由于它是无级调速,可实现电机的软起动和整个生产系统的全自动控制。
(5)矿井提升机变频器标准扩展阅读:
串级调速方法
串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,
投资省,适用于调速范围在额定转速70%-90%的生产机械上; 调速装置故障时可以切换至全速运行,避免停产; 晶闸管串级调速功率因数偏低,谐波影响较大。 本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
改变供电频率f、电动机的极对数p及转差率s均可达到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。
在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;
电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。
⑥ 煤矿提升机变频改造需要安全资质吗
这个真须要。
煤矿是个特殊的工业场所,涉及很多危险环境,相关设备对危险环境应具备安全对策,改造这些设备当然也须要资质了。
这个资质由国家煤科院来评定的,具体的资料、资质、技术条件、生产环境、技术资料是委托煤科分院完成的。
改造部分涉及电控部分,主要影响井下爆炸危险,这方面无资质改造,造成人身、生产事故是要触犯刑法的。
⑦ 关于矿井提升机
矿井提升机的电机有用同步机的,而且是低速直联它励式同步机,有的还选用双绕组。功率范围大概在1000KW-6800KW。电压等级在690V-3300V之间。是大功率。
⑧ 国产煤矿用(煤矿)变频器都有哪些
选三晶变频器S350系列重载型就可以
三晶变频器在煤矿提升机上的应用
矿井提升机是煤矿、铁矿、有色金属矿生产过程中的重要设备。提升机的安全、可靠运行,直接关系到企业的生产状况和经济效益。本文介绍的是煤矿斜井绞车提升机采用SAJ-8000Z(132kw)变频器进行改造的实例及所取得的节能等效益。
引言
矿井提升机是煤矿、铁矿、有色金属矿生产过程中的重要设备。提升机的安全、可靠运行,直接关系到企业的生产状况和经济效益。煤矿井下采煤,采好的煤通过斜井用提升机将煤车拖到地面上来。煤车厢与火车的运货车厢类似,只不过高度和体积小一些。在井口有一绞车提升机,由电机经减速器带动卷筒旋转,钢丝绳在卷筒上缠绕数周挂上一列煤车车厢,在电机的驱动下将装满煤的列车从斜井拖上来或放下去。这种拖动系统要求电机频繁的正、反转起动,减速制动,而且电机的转速按一定规律变化。斜井提升机的机械结构示意图如图1所示。斜井提升机的动力由绕线式电机提供,采用转子串电阻调速。提升机的基本参数是:电机功率55kW,卷筒直径Φ1200mm,减速器减速比24:1,最高运行速度2.5m/s,钢丝绳长度为120m。
图1提升机卷筒机械传动系统结构示意图
目前,大多数中、小型矿井采用斜井绞车提升,传统斜井提升机普遍采用交流绕线式电机串电阻调速系统,电阻的投切用继电器—交流接触器控制。这种控制系统由于调速过程中交流接触器动作频繁,设备运行的时间较长,交流接触器主触头易氧化,引发设备故障。另外,提升机在减速和爬行阶段的速度控制性能较差,经常会造成停车位置不准确。提升机频繁的起动﹑调速和制动,在转子外电路所串电阻的上产生相当大的功耗。这种交流绕线式电机串电阻调速系统属于有级调速,调速的平滑性差;低速时机械特性较软,静差率较大;电阻上消耗的转差功率大,节能较差;起动过程和调速换挡过程中电流冲击大;中高速运行震动大,安全性较差。
改造方案
为克服传统交流绕线式电机串电阻调速系统的缺点,采用变频调速技术改造提升机,可以实现全频率(0~50Hz)范围内的恒转矩控制。对再生能量的处理,可采用价格低廉的能耗制动方案或节能更加显著的回馈制动方案。为安全性考虑,液压机械制动需要保留,并在设计过程中对液压机械制动和变频器的制动加以整合。矿井提升机变频调速方案如图2所示。
图2矿井提升机变频调速方案
考虑到绕线式电动机比鼠笼式电动机的力矩大,且过载能力强,所以仍用原来的4极55kW绕线式电机,在用变频器驱动时需将转子三根引出线短接。提升机在运行过程中,井下和井口必须用信号进行联络,信号未经确认,提升机不能运行。为显示运行时车厢的位置,使用E6C3-CS5C40P旋转编码器,即电机旋转1圈旋转编码器产生40个脉冲,这样每两个脉冲对应车厢走过的距离为1200×π/(24×40)=3.927,约为3.9mm。则与实际距离的误差值为4-3.9=0.027mm,卷筒运行一圈误差为0.027×40×24=25.29mm,已知钢丝绳长度为120m,如果两个脉冲对应车厢走过的距离用近似值3.9mm计算,120m全程误差为25.92×120000/1200π≈825mm。再考虑到实际检测过程中有一个脉冲的误差,则最大的误差在821mm~829mm之间,对于数十米长的车厢来说误差范围不到1m,精度足够。因此,用计数器实时统计旋转编码器发出的脉冲个数,则可计算出车厢的位置并用显示器显示。另外一个问题是计数过程中有无累计误差存在?实际检测时,在一个提升过程开始前,首先将计数器复位,第一个重车厢经过某个位置时,打开计数器计数,车厢在斜井中的位置以此点为基准计算,没有累计误差。在操作台上,用8英寸触摸屏显示交流电压和电机工作电流以及车厢的位置。
方案实施
斜井提升负载是典型的摩檫性负载,即恒转矩特性负载。重车上行时,电机的电磁转矩必须克服负载阻转矩,起动时还要克服一定的静摩檫力矩,电机处于电动工作状态,且工作于第一象限。在重车减速时,虽然重车在斜井面上有一向下的分力,但重车的减速时间较短,电机仍会处于再生状态,工作于第二象限。当列重车上行时,电机处于反向电动状态,工作在第三象限和第四象限。另外,有占总运行时间10%的时间单独运送工具或器材到井下时,电机纯粹处于第二或第四象限,此时电机长时间处于再生发电状态,需要进行有效的制动。用能耗制动方式必将消耗大量的电能;用回馈制动方式,可节省这部分电能。但是,回馈制动单元的价格较高,考虑到单独运送工具或器材到井下仅占总运行时间的10%,为此选用价格低廉的能耗制动单元加能耗电阻的制动方案。
提升机的负载特性为恒转矩位能负载,起动力矩较大,选用变频器时适当地留有余量,因此,三晶132kW变频器。由于提升机电机绝大部分时间都处于电动状态,仅在少数时间有再生能量产生,变频器接入一制动单元和制动电阻,就可以满足重车下行时的再生制动,实现平稳的下行。井口还有一个液压机械制动器,类似电磁抱闸,此制动器用于重车静止时的制动,特别是重车停在斜井的斜坡上,必须有液压机械制动器制动。液压机械制动器受PLC和变频器共同控制,机械制动是否制动受变频器频率到达端口的控制,起动时当变频器的输出频率达到设定值,例如0.2Hz,变频器A、B端口输出信号,表示电机转矩已足够大,打开液压机械制动器,重车可上行;减速过程中,当变频器的频率下降到0.2Hz时,表示电机转矩已较小,液压机械制动器制动停车。紧急情况时,按下紧急停车按钮,变频器能耗制动和液压机械制动器同时起作用,使提升机在尽量短的时间内停车。
提升机传统的操作方式为,操作工人坐在煤矿井口操作台前,手握操纵杆控制电机正、反转共三挡速度。为适应操作工人这种操作方式,变频器采用无级(无档位)调速。变频调速原理图如图3所示。
图3变频调速原理图
节电率与投资回报分析
某铁底矿使用的煤矿提升机,原采用132KW三相异步电动机,转子串电阻调速,用交流接触器进行速度切换,由于功率比较大,所以启动换档时冲击电流大,中高速运行不平稳,大量的电能消耗在转子电阻上,告成能源的极大浪费。同时,工人的操作环境也极恶劣,急需进行改造。
由于变频器具有软启动、大范围内平滑调速、节能效果显著等优点,因此我矿经过多方考察,决定采用广州三晶电气有限公司生产的系列变频器对绞车系统进行变频改造,经过几个月的运行,证明改造的效果比较理想,主要表现在:
1、实现了启动时的软启动、软停车,减轻了对电网的冲击。
2、变频器的频率连续调节,使调速更加方便、可靠,运行更平稳。
3、使用变频器后省去原先的换档接触器及调速电阻,即节省了维修费用,又减少了停机维修时间,从而提高了产量。同时改善了恶劣操作环境,使工人避免在夏季调速电阻发热告成的高温条件下工作。
4、在低速时节能效果十分明显。矿井深300多米,测量时用4/50的电度表,在相同耗电量的情况下,用工频可拉17勾,而使用变频可拉26勾,即变频比工频多拉9勾。经估算节电率约为20%。由于使用了变频器,设备基本上是满载运行。即使我们采用保守算法,把132KW的电机功率折扣为120KW,每天只使用20小时,每年工作360天,一年节电仍高达30.24万度(120*0.35*20*360=302400度)。若以每度电0.5元计算(当地电价0.6元),则每年可节电费15万多元(302400*0.5=151200元)。
结束语
绕线式电机转子串电阻调速,电阻上消耗大量的转差功率,速度越低,消耗的转差功率越大。使用变频调速,是一种不耗能的高效的调速方式。提升机绝大部分时间都处在电动状态,节能十分显著,经测算节能20%以上,取得了很好的经济效益。另外,提升机变频调速使系统运行的稳定性和安全性得到大大的提高,减少了运行故障和停工工时,节省了人力和物力,提高了运煤能力,间接的经济效益也很可观。
⑨ 本人做矿井提升机的,变频器国内外都用过,国产品质参差不齐,朋友推荐四方的,四方变频器品质如何求证
四方变频器,没听说过,可能是我孤陋寡闻吧,要想省心建议用ABB等国外品牌。没办法,人家的就是好,所以钱都让帝国主义赚去了
⑩ 求变频器应用在煤矿提升机上的具体方案
三晶变频器在煤矿提升机上的应用
矿井提升机是煤矿、铁矿、有色金属矿生产过程中的重要设备。提升机的安全、可靠运行,直接关系到企业的生产状况和经济效益。本文介绍的是煤矿斜井绞车提升机采用SAJ-8000Z(132kw)变频器进行改造的实例及所取得的节能等效益。
引言
矿井提升机是煤矿、铁矿、有色金属矿生产过程中的重要设备。提升机的安全、可靠运行,直接关系到企业的生产状况和经济效益。煤矿井下采煤,采好的煤通过斜井用提升机将煤车拖到地面上来。煤车厢与火车的运货车厢类似,只不过高度和体积小一些。在井口有一绞车提升机,由电机经减速器带动卷筒旋转,钢丝绳在卷筒上缠绕数周挂上一列煤车车厢,在电机的驱动下将装满煤的列车从斜井拖上来或放下去。这种拖动系统要求电机频繁的正、反转起动,减速制动,而且电机的转速按一定规律变化。斜井提升机的机械结构示意图如图1所示。斜井提升机的动力由绕线式电机提供,采用转子串电阻调速。提升机的基本参数是:电机功率55kW,卷筒直径Φ1200mm,减速器减速比24:1,最高运行速度2.5m/s,钢丝绳长度为120m。
目前,大多数中、小型矿井采用斜井绞车提升,传统斜井提升机普遍采用交流绕线式电机串电阻调速系统,电阻的投切用继电器—交流接触器控制。这种控制系统由于调速过程中交流接触器动作频繁,设备运行的时间较长,交流接触器主触头易氧化,引发设备故障。另外,提升机在减速和爬行阶段的速度控制性能较差,经常会造成停车位置不准确。提升机频繁的起动、调速和制动,在转子外电路所串电阻的上产生相当大的功耗。这种交流绕线式电机串电阻调速系统属于有级调速,调速的平滑性差;低速时机械特性较软,静差率较大;电阻上消耗的转差功率大,节能较差;起动过程和调速换挡过程中电流冲击大;中高速运行震动大,安全性较差。
改造方案
为克服传统交流绕线式电机串电阻调速系统的缺点,采用变频调速技术改造提升机,可以实现全频率(0~50Hz)范围内的恒转矩控制。对再生能量的处理,可采用价格低廉的能耗制动方案或节能更加显著的回馈制动方案。为安全性考虑,液压机械制动需要保留,并在设计过程中对液压机械制动和变频器的制动加以整合。矿井提升机变频调速方案如图2所示。
考虑到绕线式电动机比鼠笼式电动机的力矩大,且过载能力强,所以仍用原来的4极55kW绕线式电机,在用变频器驱动时需将转子三根引出线短接。提升机在运行过程中,井下和井口必须用信号进行联络,信号未经确认,提升机不能运行。为显示运行时车厢的位置,使用E6C3-CS5C 40P旋转编码器,即电机旋转1圈旋转编码器产生40个脉冲,这样每两个脉冲对应车厢走过的距离为1200×π/(24×40)=3.927,约为3.9mm。则与实际距离的误差值为4-3.9=0.027mm,卷筒运行一圈误差为0.027×40×24=25.29mm,已知钢丝绳长度为120m,如果两个脉冲对应车厢走过的距离用近似值3.9mm计算,120m全程误差为25.92×120000/1200π≈825mm。再考虑到实际检测过程中有一个脉冲的误差,则最大的误差在821mm~829mm之间,对于数十米长的车厢来说误差范围不到1m,精度足够。因此,用计数器实时统计旋转编码器发出的脉冲个数,则可计算出车厢的位置并用显示器显示。另外一个问题是计数过程中有无累计误差存在?实际检测时,在一个提升过程开始前,首先将计数器复位,第一个重车厢经过某个位置时,打开计数器计数,车厢在斜井中的位置以此点为基准计算,没有累计误差。在操作台上,用8英寸触摸屏显示交流电压和电机工作电流以及车厢的位置。
方案实施
斜井提升负载是典型的摩檫性负载,即恒转矩特性负载。重车上行时,电机的电磁转矩必须克服负载阻转矩,起动时还要克服一定的静摩檫力矩,电机处于电动工作状态,且工作于第一象限。在重车减速时,虽然重车在斜井面上有一向下的分力,但重车的减速时间较短,电机仍会处于再生状态,工作于第二象限。当列重车上行时,电机处于反向电动状态,工作在第三象限和第四象限。另外,有占总运行时间10%的时间单独运送工具或器材到井下时,电机纯粹处于第二或第四象限,此时电机长时间处于再生发电状态,需要进行有效的制动。用能耗制动方式必将消耗大量的电能;用回馈制动方式,可节省这部分电能。但是,回馈制动单元的价格较高,考虑到单独运送工具或器材到井下仅占总运行时间的10%,为此选用价格低廉的能耗制动单元加能耗电阻的制动方案。
提升机的负载特性为恒转矩位能负载,起动力矩较大,选用变频器时适当地留有余量,因此,三晶132kW变频器。由于提升机电机绝大部分时间都处于电动状态,仅在少数时间有再生能量产生,变频器接入一制动单元和制动电阻,就可以满足重车下行时的再生制动,实现平稳的下行。井口还有一个液压机械制动器,类似电磁抱闸,此制动器用于重车静止时的制动,特别是重车停在斜井的斜坡上,必须有液压机械制动器制动。液压机械制动器受PLC和变频器共同控制,机械制动是否制动受变频器频率到达端口的控制,起动时当变频器的输出频率达到设定值,例如0.2Hz,变频器A、B端口输出信号,表示电机转矩已足够大,打开液压机械制动器,重车可上行;减速过程中,当变频器的频率下降到0.2Hz时,表示电机转矩已较小,液压机械制动器制动停车。紧急情况时,按下紧急停车按钮,变频器能耗制动和液压机械制动器同时起作用,使提升机在尽量短的时间内停车。
提升机传统的操作方式为,操作工人坐在煤矿井口操作台前,手握操纵杆控制电机正、反转共三挡速度。为适应操作工人这种操作方式,变频器采用无级(无档位)调速。
节电率与投资回报分析
某铁底矿使用的煤矿提升机,原采用132KW三相异步电动机,转子串电阻调速,用交流接触器进行速度切换,由于功率比较大,所以启动换档时冲击电流大,中高速运行不平稳,大量的电能消耗在转子电阻上,告成能源的极大浪费。同时,工人的操作环境也极恶劣,急需进行改造。
由于变频器具有软启动、大范围内平滑调速、节能效果显著等优点,因此我矿经过多方考察,决定采用广州三晶电气有限公司生产的系列变频器对绞车系统进行变频改造,经过几个月的运行,证明改造的效果比较理想,主要表现在:
1、实现了启动时的软启动、软停车,减轻了对电网的冲击。
2、变频器的频率连续调节,使调速更加方便、可靠,运行更平稳。
3、使用变频器后省去原先的换档接触器及调速电阻,即节省了维修费用,又减少了停机维修时间,从而提高了产量。同时改善了恶劣操作环境,使工人避免在夏季调速电阻发热告成的高温条件下工作。
4、在低速时节能效果十分明显。矿井深300多米,测量时用4/50的电度表,在相同耗电量的情况下,用工频可拉17勾,而使用变频可拉26勾,即变频比工频多拉9勾。经估算节电率约为20%。由于使用了变频器,设备基本上是满载运行。即使我们采用保守算法,把132KW的电机功率折扣为120KW,每天只使用20小时,每年工作360天,一年节电仍高达30.24万度(120*0.35*20*360=302400度)。若以每度电0.5元计算(当地电价0.6元),则每年可节电费15万多元(302400*0.5=151200元)。
结束语
绕线式电机转子串电阻调速,电阻上消耗大量的转差功率,速度越低,消耗的转差功率越大。使用变频调速,是一种不耗能的高效的调速方式。提升机绝大部分时间都处在电动状态,节能十分显著,经测算节能20%以上,取得了很好的经济效益。另外,提升机变频调速使系统运行的稳定性和安全性得到大大的提高,减少了运行故障和停工工时,节省了人力和物力,提高了运煤能力,间接的经济效益也很可观。