❶ 各位大侠,请问大孔吸附树脂和各种阴阳离子树脂是什么关系呢,,活化方法有什么不同么谢谢
大孔吸附树脂按形式一般分为极性与非极性。根据使用工况选择物理孔吸附还是带活性官能团吸附。活化的方法也多种多样,有用有机溶剂也有用酸碱处理的,具体要看你使用工况或吸附对象而定。比如像我公司生产的一些芳香族大孔吸附剂用于抗生素的吸附、食品饮料行业的脱色和净化、也会用于蔬果汁脱除农残,棒曲霉素,酚类物质等,也会有如非极性大孔吸附剂用于头孢菌素,多酚,皂角苷,花青素,秋水仙碱,紫杉醇,维生素E,鞣花单宁及多杀菌素的分离和提纯等。
阴阳离子交换树脂是骨架上带有活性基团的。具体说明如下:
(1)按骨架材料分类
按合成离子交换树脂骨架材料的不同,离子交换树脂可分为苯乙烯系、丙烯酸系、酚醛系、环氧系等。
(2)按交换基团的性质分类
根据交换基团的性质不同,离子交换树脂可分为两大类:凡与溶液中阳离子进行交换反应的树脂,称为阳离子交换树脂,阳离子交换树脂可电离的反离子是氢离子及金属离子;凡与溶液中的阴离子进行交换反应的树脂,称为阴离子交换树脂,阴离子交换树脂可电离的反离子是氢氧根离子和酸根离子。
离子交换树脂同低分子酸碱一样,根据它们的电离度不同又可将阳离子交换树脂分为强酸性阳树脂和弱酸性阳树脂;可将阴离子交换树脂分为强碱性阴树脂和弱碱性阴树脂。表1中归纳了离子交换树脂的类别。
表1 离子交换树脂的类别
树脂名称 交换基团化学式 名称 酸碱性
阳离子交换树脂 —SO3-H+ 磺酸基 强酸性
—COO-H+ 羧酸基 弱酸性
阴离子交换树脂 —N+OH- 季铵基 强碱性
—NH+OH- 叔胺基 弱碱性
—NH2+OH- 仲胺基 弱碱性
—NH3+OH- 伯胺基 弱碱性
此外,还可以根据交换基团中反离子的不同,将离子交换树脂冠以相应的名称,例如:氢型阳树脂、钠型阳树脂、氢氧型阴树脂、氯型阴树脂等。离子交换树脂由钠型转变为氢型或由氯型转变为氢氧型称为树脂的转型。
(3)按离子交换树脂的微孔型态分类
由于制造工艺的不同,离子交换树脂内部形成不同的孔型结构。常见的产品有凝胶型树脂和大孔型树脂。
a)凝胶型树脂。这种树脂是均相高分子凝胶结构,所以统称凝胶型离子交换树脂。在它所形成的球体内部,由单体聚合成的链状大分子在交联剂的链接下,组成了空间结构。这种结构像排布错乱的蜂巢,存在着纵横交错的“巷道”,离子交换基团就分布在巷道的各个部位。由巷道所构成的空隙,并非我们想象的毛细孔,而是化学结构中的空隙,所以称为化学孔或凝胶孔。其孔径的大小与树脂的交联度和膨胀程度有关,交联度越大,孔径就越小。当树脂处于水合状态时,水分子链舒伸,链间距离增大,凝胶孔就扩大;树脂干燥失水时,凝胶孔就缩小。反离子的性质、溶液的浓度及pH值的变化都会引起凝胶孔径的改变。
凝胶孔的特点是孔径极小,平均孔径约1~2nm,而且大小不一,形状不规则。它只能通过直径很小的离子,直径较大的分子通过时,则容易堵塞孔道而影响树脂的交换能力。凝胶型树脂的缺点是抗氧化性和机械强度较差,特别是阴树脂易受有机物的污染。
b)大孔型树脂。这种树脂在制造过程中,由于加入了致孔剂,因而形成大量的毛细孔道,所以称为大孔树脂。在大孔树脂的球体中,高分子的凝胶骨架被毛细孔道分割成非均相凝胶结构,它同时存在着凝胶孔和毛细孔。其中毛细孔的体积一般为0.5mL(孔)/g(树脂)左右,孔径在20~200nm以上,比表面积从几m2/g到几百m2/g。由于这样的结构,大孔型树脂可以使直径较大的分子通行无阻,所以用它去除水中高分子有机物具有良好的效果。
大孔型树脂由于孔隙占据一定的空间,骨架的实体部分就相对减少,离子交换基团含量也相应减少,所以交换能力比凝胶型树脂低。大孔型树脂的吸附能力强,与交换的离子结合较牢固,不容易充分恢复其交换能力。但大孔树脂的抗氧化性能比较好,因为它的交联度较大,大分子不易降解。再者,大孔树脂具有较好的抗有机物污染性能,因为被树脂截留的有机物,易于在再生操作中,从树脂的孔眼中清除出去。
希望以上的回答能帮到你。
❷ 单宁胶粘剂是什么
植物单宁与甲醛(或乙醛)在催化剂(酸或碱及少量金属离子)作用下,通过亚甲基桥与多聚黄酮类化合物分子中A环的反应位置键合,生成一种不溶性聚合物,聚合物与增强剂(苯酚、间苯二酚、酚醛或脲醛等)共聚,再加入填充剂(木粉、可可粉等),即可制成热固性或冷固性单宁胶粘剂。它可以部分代替酚醛胶或苯酚—间苯二酚胶,用于室外级胶合板、刨花板、层积木和指接木的生产。
简史
1918年姆克科伊(J.P.McCoy)提出单宁可作为酚醛缩合的一种成分的见解。1932~1942年摩根(G.J.Morgan)、菲利浦斯(R.Philips)等先后用单宁研制过各种模塑材料。1950年达尔顿(L.K.Dalton)用亚硫酸盐处理黑荆树单宁、桉树皮单宁,以降低粘度,制成的树脂优于脲醛树脂。1957年普洛姆里伊(K.F.Plomley)和希利斯(W.R.Hillis)等人用黑荆树单宁和红树皮单宁制成室外级胶合板用的胶粘剂。1961年安德森(A.B.Anderson)等人研制成刨花板用松树皮单宁胶粘剂。1971年南非联邦的博克瑟斯与舒克斯股份有限公司(Boxes&Shooks ltd.)取得黑荆树单宁胶的专利权,并开始用于刨花板生产。1975年以来,赛阿伊门(H.M.Saayman)、皮兹(A.Pizzi)等先后对单宁胶的质量问题进行研究,提出不少改进方案,使单宁胶推广应用取得很大成效。
中国在1949年以前,徐僖等人曾利用五倍子单宁制成热塑材料。1976年湖南一家木材厂曾试用红根栲胶作脲醛树脂填充剂、酚醛树脂促固剂和湿法纤维板的施胶剂。1977年张英伯等研制落叶松单宁胶并进行刨花板生产应用试验,取得良好结果。
20世纪70~80年代,单宁胶特别是黑荆树单宁胶代替酚醛胶已取得很大成就,南非联邦生产船用胶合板、室外级刨花板、瓦楞纸板、指接木等已全部使用黑荆树单宁胶。澳大利亚、新西兰、芬兰、巴西、印度、马来西亚等也大量使用单宁胶作木工胶粘剂。
性质
单宁胶以含缩合类单宁的栲胶为主要原料。缩合类单宁从化学结构上分间苯二酚型(如黑荆树单宁、6745木单宁)和间苯三酚型(如落叶松单宁)单宁(见图)。缩合类单宁由黄酮体化合物聚缩而成。黄酮体化合物包括黄烷-3-醇、黄烷-3,4-二醇和羟基芪。在两个芳香核之间以碳直链相连。黄烷醇分子直链有三个碳(C6·C3·C6 型)。羟基芪的直链有两个碳(C6·C2·C6 型)。黑荆树单宁中主要的黄酮体化合物是(—)-菲瑟亭醇和(—)-刺槐亭醇,黑荆树单宁由这类化合物聚缩而成聚合度不同的单宁,其分子量在600以上,平均分子量为1250。
单宁与甲醛作用时,通过亚甲基桥(—CH2—)与A环的反应活性基(4,6位或4,8位)键合生成聚合物,由不溶直至不熔,这是制胶的基本原理。
单宁胶的理化性质包括以下内容:
粘度
随栲胶含固量、栲胶中高分子的树胶量、胶的温度、pH值等变化而改变。单宁胶主要缺点是粘度高,影响施胶。可通过化学处理,降低胶的含固量或添加粘度低的树脂加以改进。
胶凝时间
不同单宁在不同pH值条件下反应活性差别较大。35%浓度的黑荆树、红树和辐射松单宁,pH值6时的胶凝时间分别为56、13和3分钟,说明单宁的反应速度辐射松>红树>黑荆树。
甲醛用量
单宁所需的甲醛量很少。黑荆树单宁需3~4%(作刨花板胶粘剂需6~8%),红树单宁需4%,辐射松单宁需6%的甲醛作交联剂。
从性质上讲,单宁胶应与合成树脂性质相同。如粘度适中,生活力长,有足够的陈化时间,胶合质量达到合成树脂的标准等。
配方应用
单宁胶可分热固(100℃以上固定)和冷固(20~30℃固定)两类。
热固胶配方
热固又分室内和室外两级。单宁代替苯酚制成的胶,主要用来制造室外级刨花板、胶合板、层积板、瓦楞纸板。冷固胶用于指接木和工艺品(如乐器等)制件的粘接。
胶合板用单宁胶的配方
①室内级胶。黑荆树单宁(份重)100,水100,氢氧化钠(1.15)、椰子壳粉(10~15)、多聚甲醛(10)。这种胶质量优于脲醛树脂,但成本较高。②室外级胶。配方如下:
单宁胶
单宁—酚醛—甲醛树脂100份(其中单宁50%)
面粉(200目)
20份
木粉(200目)
5份
水 25份
甲醛(37%)2.5份
胶合条件
单板(松木)
单板含水 6~8%
施胶量 200克/立方米
加压温度 120℃
压力 9.87×105帕
加压时间 1分/毫米厚度
胶合板性质
木材破坏率(干)90~100%
湿强度(12小时煮沸)59.22×105~69.09×105帕(60~70千克/平方厘米)
木材破坏率(湿)40~70%
商品化的用于室外级的黑荆树单宁胶,已有很大改进,单宁代替苯酚量已达90%左右,胶的质量符合要求。配方如下:
改性黑荆树栲胶 36.4(份重)
脲醛加强剂 6.78
多聚甲醛 4.10
水 41.22
消泡剂 0.15
防霉剂 0.40
椰子壳粉 6.75
胶的粘度 0.23帕秒
pH 4.8~5.1(使用时)
生活力 5小时
刨花板用单宁胶(室外级)的配方 室外级胶配方如下:
黑荆树栲胶 95.0(份重)
水 138.0
氢氧化钠 1.6
增强树脂 5.0(烘干重)
多聚甲醛 15.0
胶的粘度(25℃)0.015~0.02帕秒
胶压条件
温度 160℃
压力 13.82×105帕
树脂固体(表层)14%(芯层)10%
板的质量
容重 700千克/立方厘米
质量 加压浸泡厚度增加<12%,符合ASO115—1968要求
冷固胶配方
以单宁为原料制成具有高度活性的、交联度高的冷固化胶粘剂是80年代才发展起来的。1978年皮兹(A.Pizzi)推荐一种快速冷固单宁胶。先取90份含固66.7%的黑荆树栲胶,9.6份38%甲醛,30份甲醇和0.3份消泡剂,在室温下混合。于76℃下加热回流10~15分钟,在pH4.5时,保持回流120分钟,然后加30份99%的间苯二酚和30份水,将温度降到62℃,再加2.4份25%氢氧化钠溶液,混合物再回流60分钟,蒸出过量的甲醇,冷却、贮存。
使用时,上述树脂加16份96~97%粉状多聚甲醛,7份椰子壳粉(200目),7份木粉(200目),1份工业渗润剂,加适量水使粘度达到0.26~0.30帕秒。
用上述冷固单宁胶胶接木片,胶的干燥剪切强度为5508.9千帕(799磅/平方英寸),木材破坏率100%。达到商用苯酚—间苯二酚—甲醛冷固胶的标准。
标准
单宁胶应符合酚醛胶(室外级)和脲醛胶(室内级)标准。用作胶合板标准可分A级(相当于72小时煮沸)、B级(6小时煮沸)、C级(抗热水)和D级(抗冷水)。
趋势
缩合类单宁(特别是黑荆树单宁)能代替苯酚制成胶粘剂。胶的优点是:固化时间短、涂胶性能好、热压时间短、耐水性良好;胶的毒性小、无腐蚀作用;制造容易、成本低。这种胶已取得巨大成功,其使用价值和经济效果已受到世界各国木材加工业的关注和重视。
由于世界性的石油产品成本增高,苯酚价格昂贵,而人造板用胶粘剂的量有增无减,因而促使人们从再生资源开发质优价廉的制胶材料(如单宁)。利用再生资源生产胶粘剂,对于石油资源缺乏、石化产品短缺而又需发展木材加工业的发展中国家有着重要意义。在开发利用中,对生长快、含量高、性能好、成本低的黑荆树单宁应予高度重视。
中国需要大力发展人造板工业,与之相应的胶粘剂也要加快发展。因此,今后利用国内自然条件和加工能力,通过大力发展黑荆树,每年提供大量黑荆树单宁用来制胶,对人造板工业的发展将起到重要的保证作用。
❸ 植物单宁是什么
树皮、树叶、木材和果壳等植物原料中所含的能鞣皮成革的物质。又称单宁或植物鞣质。单宁能鞣皮成革的原因是:单宁分子具有较多的酚羟基,能与多肽形成多点结合;分子量500~3000,能进入胶原纤维的内部空间,在相邻的多肽链间产生交联结构。
植物单宁的组成很少相同。单宁的分子量较大,极性强,结构复杂,异构体多而其理化性质又相似,所以分离提纯及结构鉴定十分困难。20世纪60年代以来,随着色谱技术和波谱方法的广泛应用,许多成分纯一的单宁已被分离出来并确认出可靠的化学结构式。
单宁的分类
早期依据单宁在180~200℃受热分解后的产物分为:焦性没食子单宁(热解产物含焦性没食子酸);儿茶酚单宁(热解产物含儿茶酚);混合类单宁(热解产物同时含有上述两种产物)。目前公认的分类是按化学结构特征分为水解类单宁及缩合类单宁。
水解类单宁
没食子酸或与没食子酸有生源关系的酚羧酸和多元醇(主要是糖)结合形成的酯。又称可水解单宁。根据水解类单宁内酚羧酸的不同,又将水解单宁分为没食子单宁和鞣花单宁。
没食子单宁
是多元醇与多个没食子酸形成的脂。又称桔单宁。没食子单宁水解后产生没食子酸(结构式如下图),如五倍子单宁、土耳其桔子单宁、漆叶单宁、刺云实单宁、五-O-没食子酰-葡萄糖等。槭树单宁和金缕梅单宁分子中含没食子酰的个数太少,不具有鞣制能力,并不是真正的单宁。
五倍子单宁含于五倍子内,为中国特产。国际上称为中国棓子单宁。平均由一个分子葡萄糖与8~9个没食子酸结合成酯。五倍子单宁(结构式右上)可被分离为许多化学结构明确的、不同的多没食子酰葡萄糖。每个多没食子酰葡萄糖分子内的没食子酰基个数自5个到12个以上,多数为7到11个,均以β-1,2,3,4,6-五-O-没食子酰-D-葡萄糖分子为核心,在核心的2、3或4位上的没食子酰基以缩酚酸的形式与更多的没食子酰相连接,但连接的位置与个数各不相同。
土耳其棓子单宁含于染色栎桔子内,也是多没食子酰葡萄糖的混合物,平均由一个分子葡萄糖与5~6个没食子酸结合成酯。每个分子内的没食子酰基个数自3到9不等,多数为5到6个。分子结构式的核心部分有两种类型:一种以β-1,2,3,6-四-O-没食子酰葡萄糖为核心;另一种以β-1,2,3,4,6-五-O-没食子酰葡萄糖为核心。其余的没食子酰基以缩酚酸的形式与核心相连,但位置及个数各不相同。
刺云实单宁含于刺云实的豆荚内,是没食子酸与奎尼酸形成的酯,在3位上有缩酚酸链(结构式如下)。
鞣花单宁
由六羟基联苯二酸或其他与没食子酸有生源关系的多元酚羧酸与多元醇(主要是葡萄糖)结合成的酯。水解后产生多元醇和酚羧酸如鞣花酸、词子酸、云实素羧酸、橡碗酸二内酯、碗刺酸三内酯、黄桔酮酸、棓鞣花酸等(结构式如下)。鞣花单宁的种类繁多,制革业常用的鞣花单宁来自橡碗、栗木、诃子等。
橡碗单宁主要由栗木鞣花素、甜栗鞣花素、栗碗宁酸、甜栗碗宁酸、橡碗鞣花素酸、异橡碗鞣花素酸及甜栗素等组成。栗木单宁及栎木单宁主要由栗木素、甜栗素、栗木鞣花素、甜栗鞣花素组成(结构式如下)。诃子单宁主要由诃黎勒酸、诃黎勒鞣花酸、诃子素、鞣料云实素及几种多没食子酰葡萄糖组成。
缩合类单宁
具有鞣制能力的多聚原花色素。原花色素是植物体内的一种在酸/醇作用下能产生花色素的天然有机物。原花色素分子内芳香环之间通过C—C链相连,在水溶液中用酸处理时缩合成为不溶于水的沉淀。
多聚原花色素分子的组成单元是黄烷醇。黄烷醇具有C6·C3·C6型结构,即两个芳香环A、B之间以3个脂族碳原子相连。根据A、B环上羟基取代情况的不同而有不同的名称,例如C-7上有OH的(间苯二酚型A环)原花色素有原菲瑟啶、原刺槐啶等,C-5、C-7位上有OH(间苯三酚型A环)的原花色素有原花青啶、原翠雀啶等。在酸/醇作用下,原菲瑟啶、原刺槐啶、原花青啶及原翠雀啶产生的花色素分别是菲瑟啶、刺槐啶、花青啶及翠雀啶(结构式如上图)。混合型的原花色素如原花青啶—原翠雀啶则产生花青啶与翠雀啶。
多聚原花色素是复杂的混合物,多聚体的分子结构特征源于:组成单元的羟基取代和杂环构型不同,组成单元的连接位置、组合顺序及个数不同。这些聚合度不同结构上十分相似的多聚原花色素共存在一起,极难分离为结构式单一的纯体。
木单宁主要组分是多聚原菲瑟啶,平均分子量为1780,相当于六聚体。黑荆树皮单宁由多聚原刺槐啶及少量原菲瑟啶组成,平均分子量1250,相当于四聚体(结构式如下),具支链型聚合物结构。落叶松树皮、木麻黄树皮、山槐树皮内的单宁为多聚原花青啶(结构式如下),毛杨梅树皮单宁为多聚原翠雀啶,部分组成单元内连有没食子酰基。槲树皮及油柑树皮单宁由原翠雀啶与原花青啶组成,部分组成单元内也连有没食子酰基。
理化性质
单宁通常为非晶形固体,溶于水,也溶于或部分溶于丙酮、甲醇、乙醇、乙酸乙酯。不溶于乙醚、石油醚、氯仿、二硫化碳、苯等溶剂。单宁味苦涩,有收敛性。水溶液呈弱酸性,在碱性溶液中易氧化,使颜色变深。与明胶、生物碱产生沉淀。遇三价铁离子显蓝色或绿色。单宁在胶体溶液内以胶团形式存在。单宁胶粒带负电,有负的动电电位。向栲胶溶液中加入食盐,一部分单宁聚集而被盐析出,用分级盐析法可将大小不同的单宁分开。
水解类单宁在酸、碱、酶作用下,容易水解。五倍子单宁与橡碗单宁在水溶液中,甚至在常温条件下发生水解,前者产生没食子酸,后者产生鞣花酸(黄粉)。缩合类单宁在水溶液中不被水解,在酸性溶液中缩合产生红粉。在酸—醇溶液内能被降解,在有硫醇或间苯三酚等亲核试剂存在的条件下,多聚原花色素分子中的延伸单元形成硫醚或间苯三酚的加成物,终端单元则被游离出来。这是缩合单宁最重要的化学反应。
在碱性或有氧化酶存在条件下,单宁氧化很快。如单宁溶液pH值在2.5以下,溶液中有亚硫酸氢钠或二氧化硫存在时,单宁的氧化停止。
在鞣制过程中,单宁的酚羟基与胶原的肽基间通过多点氢键结合、产生交联而使生皮成革。
单宁为多基配位体,能与多种金属络合,在钢板表面产生单宁络合物薄膜,抑制金属腐蚀,有时作为防蚀防锈剂的配方材料。
缩合类单宁与亚硫酸盐的反应有重要的实用意义,可使单宁的水溶性增加,粘度降低,颜色浅化。亚硫酸氢钠与具有间苯二酚型A环的单宁(如黑荆树皮单宁)反应时,磺酸盐根进入被打开了杂环的C2碳原子上。与具有间苯三酚型A环的单宁(如松树皮单宁)反应时,单宁局部降解,磺酸盐根进入杂环C4位碳原子上。
缩合类单宁与甲醛—盐酸共沸后产生沉淀,而水解类单宁则不生沉淀。缩合类单宁分子内的间苯二酚或间苯三酚型的A环具有活泼的亲核中心,在酸或碱的催化下,A环的第6或8位碳原子通过甲醛产生的亚甲基桥将单宁分子交联在一起。
在栲胶生产或生皮鞣制过程中,栲胶溶液长期静置接触空气,导致单宁陈化变质,溶液聚集稳定性降低,单宁微粒增大,盐析度增加,颜色逐渐加深。
❹ 为什么经树脂整理的织物具有新的性能
如果你是个有心人,在百货大楼的服装柜台上,或者布料柜台上都会见到有的服装和布料上都醒目地写着,“防缩”、“防皱”、“免烫”、“防污染”等字样。这些服装和衣料写上上面的文字,并不是为了招徕顾客而是向顾客介绍此种服装和布料不是一般的服装和布料,它们具有特殊性能。服装和布料为什么具有“防缩”、“防皱”等优异性能呢?这得感谢化学工作者,他们创造出来的树脂整理技术,使织物锦上添花。我们所说的树脂整理织物,说穿了就是在织物上加上一层防护涂层。“的确良”衣料具有清爽挺括的的优点,但它也有弱点,不吸湿,因此用来做内衣,穿起来令人不舒服。棉布做的衣服穿着舒服,但它爱起皱、不挺括,缺乏弹性,又令人感到遗憾。能否把“的确良”的长处和棉织物的长处结合在一起呢?化学工作者采用的树脂整理技术就可以做到这一点。他们把棉布和一种合成树脂进行处理,用化学专门语言就是“化学交联”,就可以得到一种可以保持良好的穿着舒适性,又具有不起皱、挺括、滑爽等特性的织物。其实,树脂整理的技术,早在晋朝时,我国劳动人民就已应用。如广东的特产香云纱就是利用单宁质的块茎植物薯莨对广绫绸加工制成的。用现代化学来解释,薯莨液汁涂在纤维表面,同空气中的氧结合,薯莨液汁中的单宁胶变成一薄层红棕色膜,再涂上含铁的河泥,单宁就会和铁发生化学反应,变成蓝黑乌亮的单宁酸铁,而背面仍旧呈红棕色。由于织物表面增添了这样一层胶膜,穿在身上就感到轻快而又滑爽。随着科学技术的发展,化学工作者不断地增加新的树脂品种,各种新型的防水、防缩、防皱、防油、防霉、防电磁辐射等具有特种用途的织物不断出现,广泛地应用在登山、采矿和军事等领域,发挥着独特的作用。