㈠ 分子蒸馏的设备
一套完整的分子蒸馏设备主要包括:分子蒸发器、脱气系统、进料系统、加热系统、冷却真空系统和控制系统。分子蒸馏装置的核心部分是分子蒸发器,其种类主要有3种:(1)降膜式:为早期形式,结构简单,但由于液膜厚,效率差,当今世界各国很少采用;(2)刮膜式:形成的液膜薄,分离效率高,但较降膜式结构复杂;(3)离心式:离心力成膜,膜薄,蒸发效率高,但结构复杂,真空密封较难,设备的制造成本高。为提高分离效率,往往需要采用多级串联使用而实现不同物质的多级分离。 (Wiped-Film Molecular Still)
刮板式技术(Wiped-Film Style)采用的是Smith式45°对角斜槽刮板,这些斜槽会促使物料围绕蒸馏器壁向下运动,通过可控的刮板转动就能够提供一个程度很高的薄膜混合,使物料产生有效的微小的活跃运动,(而非被动地将物料滚辗在蒸馏器壁上,)这样就实现了最短的而且可控的物料驻留时间,和可控的薄膜厚度,从而能够达到最佳的热能传导、物质传输和分离效率。刮板式分子蒸馏设备通过一个平缓的过程,进料液体流经一个被加热的圆柱形真空室,利用进料液体薄膜的刮擦作用,将易挥发的成分从不易挥发的成分中分离出来。这种工艺的关键卓越优势在于:短暂的进料液体滞留时间、凭借高真空性能的充分降温、最佳的混合效率,以及最佳的物质和热传导。这种高效的热分离技术的结果是:最小的产品降解和最高的产品质量。进料液体暴露给加热壁的时间非常短暂(仅几秒钟),这部分归因于带缝隙的刮板设计,它迫使液体向下运动,并且滞留时间、薄膜厚度和流动特性都受到严格的控制,非常适合热敏性物质的分离应用。另外,这种带斜槽的刮板不会将物料甩离蒸馏器壁,污染已被分离出来的轻组分。与传统的柱式蒸馏设备、降膜式蒸馏设备、旋转蒸发器和其他分离设备比较,刮板式蒸馏设备被公认为要出色得多。 离心式分子蒸馏装置离心力成膜,膜薄,蒸发效率高。但结构复杂,制造及操作难度大。该装置将物料送到高速旋转的转盘中央,并在旋转面扩展形成薄膜,同时加热蒸发,使之与对面的冷凝面凝缩,该装置是目前较为理想的分子蒸馏装置。但与其它两种装置相比,要求有高速旋转的转盘,又需要较高的真空密封技术。离心式分子蒸馏器与刮膜式分子蒸馏器相比具有以下优点:由于转盘高速旋转,可得到极薄的液膜且液膜分布更均匀,蒸发速率和分离效率更好;物料在蒸发面上的受热时间更短,降低了热敏物质热分解的危险;物料的处理量更大,更适合工业上的连续生产。
㈡ 减压蒸馏中为什么要有吸收装置
减压蒸馏中的装置是:吸收蒸馏出并冷凝分离出的物质,
㈢ 二氧化硫比色测定法中样品管和测定管为什么要同步进行
二氧化硫比色测定法中样品管和测定管要同步进行是因为。
在食品检测中,蒸馏操作是非常常见且又十分重要的前处理步骤。传统的蒸馏设备,其加热、蒸馏、冷凝、接收部分等操作繁琐,效率较低;
QYSO2-6S采用智能一体化设计,采用远红外陶瓷加热装置代替大功率电加热器,可选配内置或者外置冷却水自动降温及回流装置以及设计冷凝管等技术手段,实现了操作简单、自动蒸馏、美观实用、节能降耗等目的,可广泛适用于食品检测领域中的二氧化硫残留量以及甲醛、酒精度等的蒸馏操作。
测定方法:
一、直接碘量滴定法
1、原理
在密闭容器中对样品进行酸化、蒸馏,蒸馏物用乙酸铅溶液吸收。吸收后的溶液用盐酸酸化,碘标准溶液滴定根据所消耗的碘标准溶液量计算出样品中的二氧化硫含量。
2、范围
本标准适用于果脯、干菜、米粉类、粉条、砂糖、食用菌和葡萄酒等食品中总二氧化硫的测定方法。
二、盐酸副玫瑰苯胺比色测定法
1、比色法的原理与操作
食品中的二氧化硫与四氯汞钠进行反应后,可以生成稳定的二氯亚硫酸盐络合物,这种物质与甲醛和盐酸副玫瑰苯胺可以发生颜色反应,其产物为玫瑰紫红色络合物。比较产物的颜色深浅即可判别二氧化硫的含量。首先将食品取样,加入容量瓶中,并加入四氯汞钠吸收液进行定容。再分别吸取不同含量的二氧化硫标准溶液置于比色管中,加入相同含量的四氯汞钠溶液,根据反应颜色测定吸光度,并绘制标准比色曲线。再测定样品溶液中的吸光度,与标准曲线做比较即可查出对应的二氧化硫含量。
㈣ 蒸馏分离-催化光度法测定锇、钌
方法提要
RuO4和OsO4具有挥发性,利用该特性,用蒸馏的方法使它们与伴生金属分离。选择适当的氧化剂或吸收剂,使锇和钌再分离,然后利用锇、钌对Ce4+-As3+系统的催化作用进行催化光度法测定。固定时间法测得的吸光度A的负对数与锇(或钌)的浓度有良好的线性关系,适用于锇、钌含量低的试样,测定的浓度范围为锇0.5~2.5ng/mL,钌0.2~1ng/mL。固定浓度法测得的反应时间t的倒数与锇(或钌)的浓度有良好的线性关系,适用于锇、钌含量较高的试样,测定的浓度范围为锇2~16ng/mL,钌1~5ng/mL。
蒸馏装置见图64.1。
图64.1 锇钌蒸馏器(数字单位:mm)
试剂
氢氧化钠。
过氧化钠。
乙醇。
硫酸。
盐酸。
氯化钠溶液(20g/L)。
高锰酸钾溶液(15g/L)。
溴酸钠溶液(15g/L)。
氯化钠溶液(200g/L)。
锇吸收液(0.05mol/LAs2O3-2mol/LH2SO4溶液)称取10.0g三氧化二砷于250mL烧杯中,加入5gNaOH及约20mL水,加热溶解后移入1000mL容量瓶,加水稀释至700mL左右,加入230mL(1+1)H2SO4,冷却,用水稀释至刻度,摇匀。
锇稀释液吸取100mL锇吸收液于200mL容量瓶中。加入8mL乙醇,用水稀释至刻度,摇匀。
钌吸收液称取0.15g亚硫酸钠,置于1000mL容量瓶中,加600mL水,加100mL100g/L硫酸汞溶液,立即摇匀。加入40mL乙醇,再加入222mL(1+1)H2SO4,用水稀释至刻度,摇匀。
三氧化二砷溶液(0.05mol/LAs2O3-1mol/LH2SO4溶液)称取10.0gAs2O3,加入5gNaOH及约20mL水,加热溶解后,用水稀释至约700mL,加入118mL(1+1)H2SO4,冷却,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
硫酸汞溶液(50g/LHgSO4-1mol/LH2SO4)称取25g硫酸汞,溶于500mL1mol/LH2SO4。
硫酸铈铵溶液称取11g硫酸铈铵,溶于500mL1mol/LH2SO4中。
钌标准储备溶液ρ(Ru)=100.0μg/mL准确称取32.92mg光谱纯氯钌酸铵[(NH4)2Ru(H2O)Cl5],置于100mL烧杯中,用1mol/LH2SO4使之溶解,并将其移入100mL容量瓶中,用1mol/LH2SO4稀释至刻度,摇匀。
钌标准溶液ρ(Ru)=1.0ng/mL用钌标准储备溶液(100.0μg/mL)逐级用1mol/LH2SO4稀释配制。
锇标准储备溶液ρ(Os)=100.0μg/mL准确称取23.08mg光谱纯氯钌酸铵[(NH4)2OsCl6],置于100mL烧杯中,用1mol/LH2SO4使之溶解,并将其移入100mL容量瓶中,用1mol/LH2SO4稀释至刻度,摇匀。
锇标准溶液ρ(Os)=20.0ng/mL用锇标准储备溶液(100.0ng/mL)逐级用1mol/LH2SO4稀释配制。
钌的校准曲线
(1)固定时间法
移取0.00mL、0.02mL、0.04mL、0.06mL、0.08mL、0.12mL、0.16mL、0.20mL钌标准溶液(1.0ng/mL),置于25mL比色管中。用1mol/LH2SO4补足至2mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。再加入1mL硫酸铈铵溶液,摇匀。在恒温水浴或室温放置一定时间(以校准曲线中的最高钌量之吸光度值降至0.3附近时所需时间来确定),以水作参比,用1cm比色皿,在波长420nm处测量溶液的吸光度A和试剂空白吸光度A0,以lg(A0/A)对钌量作图,绘制校准曲线。
(2)固定浓度法
移取0.00mL、0.05mL、0.10mL、0.20mL、0.30mL、0.40mL锇标准溶液(1.0ng/mL),置于25mL比色管中。补加1mol/LH2SO4至2mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。置于35℃恒温水浴中20min(若含量高可降低温度),迅速加入1.00mL已恒温至相同温度的硫酸铈铵溶液,摇匀;同时立即启动秒表计时,将溶液移入1cm比色皿中,在波长420nm处测量溶液的吸光度降至0.3所需的时间,求出1/t值。对钌量作图,绘制校准曲线。
锇的校准曲线
(1)固定时间法
移取0.00mL、0.20mL、0.40mL、0.60mL、0.80mL、1.00mL钌标准溶液(20.0ng/mL),置于25mL比色管中,补加锇稀释液至5mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。再加入1mL硫酸铈铵溶液,以下步骤同钌的固定时间法校准曲线。
(2)固定浓度法
移取0.00mL、0.20mL、0.40mL、0.60mL、0.80mL、1.20mL、1.60mL钌标准溶液(100.0ng/mL),置于25mL比色管中,补加锇稀释液至5mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。置于35℃恒温水浴中20min,以下步骤同钌的固定浓度法校准曲线。
分析步骤
称取5g(精确至0.1g)试样于50mL高温坩埚中,加入2倍的过氧化钠,混匀,再覆盖约2倍的过氧化钠,放入已升至700~750℃的高温炉中熔融20~30min取出,冷却。若试样中含硫、碳或有机物较多,用过氧化钠直接熔融会使坩埚炸裂,因此要先焙烧。在焙烧过程中,锇易氧化为OsO4挥发损失。为减少损失,加少量NaOH作Os的保护剂,从低温缓慢升至500℃并焙烧10~20min,就能使硫、碳或有机物分解完全。焙烧完毕,取出,趁热在不断摇动下撒入过氧化钠直到剧烈反应停止。再分次加入约15g过氧化钠,再在700~750℃熔融15~20min,取出坩埚,冷却,放入预先盛有200mL水的500mL烧杯中浸取。剧烈反应后,用水洗净坩埚,并将浸取物用水洗入蒸馏瓶中,加入几粒玻璃珠。连接蒸馏瓶与支管,并在瓶颈及蒸馏瓶和支管连接之磨口处滴加数滴(1+1)H2SO4。在第一吸收管中加入25mL钌吸收液,第二吸收管中加入25mL锇吸收液。将吸收管与导管连接,从漏斗中慢慢加入120mL(1+1)H2SO4,摇动蒸馏瓶使沉淀完全溶解。再加入10mL高锰酸钾溶液和10mL溴酸钠溶液及4~5滴氯化钠溶液。洗净漏斗,关闭活塞。
将蒸馏瓶架于可调电炉上,第二吸收管浸入冷水槽中。加热蒸馏,待溶液沸腾后适当调节炉温。蒸馏进行到第二吸收管内溶液增至37~40mL时,迅速取下导管和吸收系统,将吸收管置于水中冷却至室温,用水稀释至50mL刻度,摇匀。第一吸收管中溶液测定钌,第二吸收管中溶液测定锇。
(1)钌的测定
移取1.0~2.0mL第一吸收管中溶液于干的25mL比色管中,不足2mL时,用1mol/LH2SO4补足至2mL。以下步骤同校准曲线,用固定时间法或固定浓度法测定。
(2)锇的测定
移取1.0~5.0mL第二吸收管中溶液于干的25mL比色管中,补加锇稀释液至5mL,以下步骤同校准曲线,用固定时间法或固定浓度法测定。
钌、锇含量的计算参见式(64.2)。
注意事项
1)坩埚的选择:按照传统方法,用过氧化钠熔解贵金属时,通常使用铁坩埚。测定1×10-9以上的锇、钌时,使用铁坩埚对其影响不大。测定1×10-9以下的锇钌时,其空白值对测定结果影响很大,尤其对0.0x×10-9的锇、钌,基本上是测不准确的。试验发现,高铝坩埚的空白值远远低于铁坩埚。
2)Na2O2的选择:通常使用的Na2O2中锇、钌空白值较高。由于Na2O2用量大,氧化性强,实际提纯困难较大。故应选用空白值低的Na2O2产品。
3)蒸馏装置:蒸馏器必须是全部磨口玻璃连接,保持干净。任何有机物都会把四氧化钌还原成不挥发的钌的低价化合物而沉积在容器上、导管壁上。连接处不能涂油脂类的润滑剂,可用硫酸或高氯酸代替之。
4)氧化剂的选用:氧化还原电位因配合物的配位体不同而改变,氧化剂的氧化还原电位也受溶液中的酸度和其他物质的影响而改变。在蒸馏锇、钌所使用的氧化剂中,人们通常选择价格便宜、氧化能力强的KMnO4。对于痕量分析,KMnO4的氧化能力及空白值均能满足需要。对于超痕量分析,KMnO4的空白值已经超出我们的要求。对几种主要的氧化剂进行空白值检查,结果见表64.13。
表64.13 不同氧化剂的空白值 (wB∶10-9)
从表64.13可以看出,K2Cr2O7、NaBrO3、KIO4的空白值都比较低。但是,用K2Cr2O7或KIO4作氧化剂时,钌的回收率只有70%,锇的回收率还不到70%;用NaBrO3作氧化剂时,也会分解出大量的Br,干扰测定。
所以选用高锰酸钾和溴酸钠混合氧化剂用于蒸馏锇、钌。这种混合氧化剂既能提高锇、钌的回收率,又不会析出干扰测定的物质。
5)酸度对反应速度的影响:选用0.5mol/L、1.5mol/L、2mol/L硫酸介质,考察其对锇、钌反应速度的影响。结果看出,体系酸度越小,反应速度越快,灵敏度越高。当体系酸度到达0.5mol/L时,虽然反应速度大大提高,整个体系却处于不稳定状态,而且曲线线性关系不好。因此,采用1mol/L的硫酸酸度。
6)As、Ce用量对锇钌催化As3+-Ce4+反应速度的影响:As3+-Ce4+反应速度随As3+浓度的增大而加快,即反应速度随[As3+]/[Ce4+]比值的增加而增加。当增加到一定程度时,曲线向下弯曲,线性不好。因此选定的砷用量为0.05mol/L的As2O32mL,铈用量为0.02mol/L的硫酸铈铵1.00mL。
7)温度、时间对反应速度的影响:一般来说,温度高则催化时间短,温度低则催化时间长。如果温度过高,反应速度过快,曲线陡峭,线性关系被破坏,浓度范围也相应缩小。温度太低,反应速度缓慢,曲线斜率太小。需通过实验确定合适的反应温度和反应时间。准确的测定要求反应温度控制在±0.2℃以内。
㈤ 蒸馏设备的设备
(molecular distillation equipment)
分子蒸馏亦称短程蒸馏.它是一项较新的尚未广泛应用于工业化生产的液-液分离技术.其应用能解决大量常规蒸馏技术所不能解决的问题.
分子蒸馏与常规蒸馏技术相比有以下特点:
1.普通蒸馏是在沸点温度下进行分离操作:而分子蒸馏只要冷热两个面之间达到足够的温度差.就可以在任何温度下进行分离.因而分子蒸馏操作温度远低于物料的沸点.
2.普通蒸馏有鼓泡.沸腾现象:而分子蒸馏是液膜表面的自由蒸发.操作压力很低.一般为0.1-1Pa数量级,受热时间很短.一般仅为十秒至几十秒.
3.普通蒸馏的蒸发和冷凝是可逆过程.液相和气相之间处于动态相平衡,而在分子蒸馏过程中.从加热面逸出的分子直接飞射到冷凝面上.理论上没有返回到加热面的可能性.所以分子蒸馏没有不易分离的物质.
一套完整的分子蒸馏设备主要包括:分子蒸发器、脱气系统、进料系统、加热系统、冷却真空系统和控制系统。分子蒸馏装置的核心部分是分子蒸发器,其种类主要有3种:(1)降膜式:为早期形式,结构简单,但由于液膜厚,效率差,当今世界各国很少采用;(2)刮膜式:形成的液膜薄,分离效率高,但较降膜式结构复杂;(3)离心式:离心力成膜,膜薄,蒸发效率高,但结构复杂,真空密封较难,设备的制造成本高。为提高分离效率,往往需要采用多级串联使用而实现不同物质的多级分离。
1.降膜式分子蒸馏器
该装置是采取重力使蒸发面上的物料变为液膜降下的方式。将物料加热,蒸发物就可在相对方向的冷凝面上凝缩。降膜式装置为早期形式,结构简单,在蒸发面上形成的液膜较厚,效率差,现在各国很少采用。
2.刮膜式分子蒸馏装置
我国在80年代末才开展刮膜式分子蒸馏装置和工艺应用研究。它采取重力使蒸发面上的物料变为液膜降下的方式,但为了使蒸发面上的液膜厚度小且分布均匀,在蒸馏器中设置了一硬碳或聚四氟乙烯制的转动刮板。该刮板不但可以使下流液层得到充分搅拌,还可以加快蒸发面液层的更新,从而强化了物料的传热和传质过程。其优点是:液膜厚度小,并且沿蒸发表面流动;被蒸馏物料在操作温度下停留时间短,热分解的危险性较小,蒸馏过程可以连续进行,生产能力大。缺点是:液体分配装置难以完善,很难保证所有的蒸发表面都被液膜均匀覆盖;液体流动时常发生翻滚现象,所产生的雾沫也常溅到冷凝面上。但由于该装置结构相对简单,价格相对低廉,现在的实验室及工业生产中,大部分都采用该装置。
3.离心式分子蒸馏装置
该装置将物料送到高速旋转的转盘中央,并在旋转面扩展形成薄膜,同时加热蒸发,使之与对面的冷凝面凝缩,该装置是目前较为理想的分子蒸馏装置。但与其它两种装置相比,要求有高速旋转的转盘,又需要较高的真空密封技术。离心式分子蒸馏器与刮膜式分子蒸馏器相比具有以下优点:由于转盘高速旋转,可得到极薄的液膜且液膜分布更均匀,蒸发速率和分离效率更好;物料在蒸发面上的受热时间更短,降低了热敏物质热分解的危险;物料的处理量更大,更适合工业上的连续生产。 (alcohol distilling equipment)
特点:第一,节能。采用高效低阻的板型,降低釜温,适量回流,建立合理利用各级能量的蒸馏流程;尽量采用仪表控制或微机自控系统,使设备处于最佳负荷状态。
第二,生产强度高。提高单位塔截面的汽液通量,特别是对醪塔的设计,更应注意其汽液比的关系。使设备更加紧凑、生产强度和处理能力又能提高的方法之一,采用高效塔板代替原有旧式塔校(塔体不动)。
第三,排污性能好。在尽量减少成熟醪中纤维物含量的同时,对设备也要考虑其适应含固形物发酵液的蒸馏,最大限度减少停产清塔的次数。
第四,充分考虑塔器的放大效应.特别是对年产量在15000吨以上的塔设备,由于塔径均大于1.5米以上,所以要对大直径塔设备采取积极先进措施,以减轻分离效率的降低。
第五,结构简单,造价降低。在工艺条件许可的情况下,选用塔板结构简单而效率又高的新型塔板。
装置原理:
本装置适用于制药、食品、轻工、化工等待业的稀酒精回收,也适用于甲醇等其他溶煤的蒸馏。本装置根据用户的要求,可将30。左右的稀酒精蒸馏至90。-95。酒精,成品酒精度数要求再高。可加大回流比,但产量就相应减少。
采用高效的不锈钢波纹填料。蒸馏塔体采用不锈钢制作,从而是防止了铁屑堵塞填料的现象,延长了装置的使用期限。本装置中凡接触酒精的设备部分如冷凝器、稳压罐、冷却蛇管等均采用不锈钢,以确保成品酒精不被污染。蒸馏釜采用可拆式U型加热管,在检修时可将U型加热管移出釜外,便于对加热管外壁及蒸馏釜内壁进行清洗。本装置可间歇生产,也可连续生产。
能力参数: 型号 塔径mm 30~40%进料的生产能力 60~80%进料的生产能力 90%酒精 95%酒精 90%酒精 95%酒精 T-200 φ200 35kg 26kg 45kg 36kg T-300 φ300 80kg 64kg 100kg 80kg T-400 φ400 150kg 120kg 180kg 140kg T-500 φ500 230kg 185kg 275kg 220kg T-600 φ600 335kg 270kg 400kg 320kg 减压蒸馏设备(atmospheric-vacuum distillation unit)常减压蒸馏装置通常包括三部分:
(1)原油预处理。采用加入化学物质和高压电场联合作用下的电化学法除去原油中混杂的水和盐类。
(2)常压蒸馏。原油在加热炉内被加热至370℃左右,送入常压蒸馏塔在常压(1大气压)下蒸馏出沸点较低的汽油和柴油馏分,残油是常压重油。
(3)减压蒸馏。常压重油再经加热炉被加热至410℃左右,进入减压蒸馏塔在约8.799千帕(60毫米汞柱)绝压下蒸馏,馏出裂化原料的润滑油原料,残油为减压渣油。参见原油蒸馏。 水气蒸馏是用来分散以及提纯液态或者固态有机化合物的一种要领,经常使用于下列几种环境:(1)某些沸点高的有机化合物,在常压下蒸馏虽可与副产物分散,但易被破坏;(2)混淆物中含有大量树脂状杂质或者不挥发性杂质,采用蒸馏、萃取等要领都难以分散;(3)从较多固体反应物中分散出被吸附的液体。
基本原理
按照道尔顿分压定律,当与水不相混溶的物质与水并存时,全般系统的蒸气压应为各组分蒸气压之以及,即:
p= pA+ pB
其中p 代表总的蒸气压,pA为水的蒸气压,pB 为与水不相混溶物质的蒸气压。
当混淆物中各组分蒸气压总以及等于外界大气压时,这时候的温度即为它们的沸点。此沸点比各组分的沸点都低。是以,在常压下应用水气蒸馏,就能在低于100℃的环境下将高沸点组分与水一路蒸出来。由于总的蒸气压与混淆物中两者间的相对于量无关,直至其中一组分几乎完全移去,温度才上涨至留在瓶中液体的沸点。我们懂得,混淆物蒸气中各个气体分压(pA,pB)之比等于它们的物质的量(nA,nB)之比,即:
而nA=mA/MA;nB=mB/MB。其中
mA、mB为各物质在肯定是容量中蒸气的质量,MA、MB为物质A以及B的相对于份子质量。是以:
可见,这两种物质在馏液中的相对于证量(就是它们在蒸气中的相对于证量)与它们的蒸气压以及相对于份子质量成正比。
以苯胺为例,它的沸点为184.4℃,且以及水不相混溶。当以及水一路加热至98.4℃时,水的蒸气压为95.4 kPa,苯胺的蒸气压为5.6 kPa,它们的总压力靠近大气压力,于是液体就开始沸腾,苯胺就随水气一路被蒸馏出来,水以及苯胺的相对于份子质量别离为18以及93,代入上式:
即蒸出3.3 g水可以容或者带出1 g苯胺。苯胺在溶液中的组分占23.3%。测试中蒸出的水量往往超过计算值,由于苯胺微溶于水,测试中尚有一部分水气不遑与苯胺充分接触便离开蒸馏烧杯的缘故。
哄骗水气蒸馏来分散提纯物质时,要求此物质在100℃摆布时的蒸气压至少在1.33 kPa摆布。要是蒸气压在 0.13~0.67 kPa,则其在馏出液中的含量仅占1%,甚至更低。为了要使馏出液中的含量增高,就要想办法提高此物质的蒸气压,也就是说要提高温度,使蒸气的温度超过100℃,即要用过热水气蒸馏。例如苯甲醛(沸点178℃),进行水气蒸馏时,在97.9℃沸腾,这时候pA=93.8 kPa,pB=7.5 kPa,则:
这时候馏出液中苯甲醛占32.1%。
假如导入133℃过热蒸气,苯甲醛的蒸气压可达29.3kPa,故而只要有72 kPa的水气压,就可使系统沸腾,则:
这样馏出液中苯甲醛的含量就提高到了70.6%。
应用过热水气还具有使水气冷凝少的长处,为了防止过热蒸气冷凝,可在蒸馏瓶下保温,甚至加热。
从上面的分析可以看出,施用水气蒸馏这种分散要领是有条件限定的,被提纯物质必需具备以下几个条件:(1)不溶或者难溶于水;(2)与沸水永劫间并存而不发生化学反应;(3)在100℃摆布必需具有肯定似的蒸气压(一般不小于1.33 kPa)。
㈥ 锇钌的精练
建议你去专业网站上问一下
从一般角度来说,我认为没有的
因为不同的设备,使用条件不同,制造材料和制造工艺会有差别
㈦ 吸收和蒸馏两类单元操作有何区别
蒸馏(Distillation)
将液体混合物加热至沸使其变为蒸气,然后将其冷凝为液体的过程。
蒸馏是分离和内提纯液容体有机化合物最常用的方法之一。也可作为鉴定有机物和判断物质纯度的一种方法。
分馏(fractional distillation)
基本原理与蒸馏相类似。
不同之处是在装置上多一个分馏柱,利用分馏柱使汽化、冷凝的过程由一次改进为多次。简单地说,分馏即是多次蒸馏。
蒸馏和分馏都是分离提纯液体有机化合物的重要方法。蒸馏主要用于分离两种或两种以上沸点相差较大的液体混合物(至少30℃以上),而分馏是分离和提纯沸点相差较小的液体混合物,现在最精密的分馏设备已能将沸点相差1~2℃的混合物分开。分馏已在实验室和化学工业中广泛应用。
㈧ 简述蒸馏分离的原理,蒸馏过程由哪些设备构成以及主要的蒸馏流程
先给定义
蒸馏指利用液体混合物中各组分挥发性的差异而将组分分离的传质过程。将回液体沸腾产生答的蒸气导入冷凝管,使之冷却凝结成液体的一种蒸发、冷凝的过程。蒸馏是分离混合物的一种重要的操作技术,尤其是对于液体混合物的分离有重要的实用意义
分馏是分离几种不同沸点的挥发性组分的混合物的一种方法;混合物先在最低沸点下蒸馏,直到蒸气温度上升前将蒸馏液作为一种成分加以收集。蒸气温度的上升表示混合物中的次一个较高沸点组分开始蒸馏。然后将这一组分开收集起来。
所以说可以理解为,蒸馏一般是得到一种单一的成分,分馏可以做到分离沸点不同的几种成分,需要分馏柱
打字不宜,请采纳
㈨ 对于气体非均相物系可用哪些分离设备进行分离
(一)【化工原理课程考试内容及比例】(125分)
1.流体流动(20分)
流体静力学基本方程式;流体的流动现象(流体的粘性及粘度的概念、边界层的概念);流体在管内的流动(连续性方程、柏努利方程及应用);流体在管内的流动阻力(量纲分析、管内流动阻力的计算);管路计算(简单管路、并联管路、分支管路);流量测量(皮托管、孔板流量计、文丘里流量计、转子流量计)。
2.流体输送设备(10分)
离心泵(结构及工作原理、性能描述、选择、安装、操作及流量调节);其它化工用泵;气体输送和压缩设备(以离心通风机为主)。
3.非均相物系的分离(12分)
重力沉降(基本概念及重力沉降设备-降尘室)、;离心沉降(基本概念及离心沉降设备-旋风分离器);过滤(基本概念、恒压过滤的计算、过滤设备)。
4.传热(20分)
传热概述;热传导;对流传热分析及对流传热系数关联式(包括蒸汽冷凝及沸腾传热);传热过程分析及传热计算(热量衡算、传热速率计算、总传热系数计算);辐射传热的基本概念;换热器(分类,列管式换热器类型、计算及设计问题)。
5.蒸馏(16分)
两组分溶液的汽液平衡;精馏原理和流程;两组分连续精馏的计算。
6.吸收(15分)
气-液相平衡;传质机理与吸收速率;吸收塔的计算。
7.蒸馏和吸收塔设备(8分)
塔板类型;板式塔的流体力学性能;填料的类型;填料塔的流体力学性能。
8.液-液萃取(9分)
三元体系的液-液萃取相平衡与萃取操作原理;单级萃取过程的计算。
9.干燥(15分)
湿空气的性质及湿度图;干燥过程的基本概念,干燥过程的计算(物料衡算、热量衡算);干燥过程中的平衡关系与速率关系。
㈩ 为啥为啥抽提蒸馏塔和溶剂回收塔液位越来越高
为啥为啥抽提蒸馏塔和溶剂回收塔液位越来越高
当废气中有碳氢化合物时温度不得超过480℃,并且考虑到吸收液的再生问题,大多数脱硫剂可再生.在气相中进行氧化的进程通常被称作叫做干法氧化: Fe2O3·H2O+3H2S=Fe2S3+ 3H2O Fe2O3·H2O+3H2S=2 FeS+S+4 H2O 上述反应因为受到反应条件的影响,是在催化剂的作用下把H2S用空气中的氧直接氧化为硫,这些溶液的PH值大多在9~11之间. 物理吸收法流程简单;吸附法.常温下的氧化铁脱硫剂的脱硫进程反应方程式为,一式得到的产品Fe2S3易于再生为Fe2O3,运用的吸收剂有磷酸三定酷(埃斯塔索尔法),有机溶剂有两大优点,该办法常用于处理H2S气体浓度较低的排放气,通常用吸附法处理、氨基酸盐等,长期以来一向受到废气处理应用方的重视. 吸附设备通常选用固定床吸附器. 2,而烃类,关于H2S气体的净化方法研讨越来越活跃、乙醇胺类不同的处理工艺采用不同的处理设备. 克劳斯法的原理是、二乙丙醇胺等水溶液作吸收剂来吸收含H2S气体的废气.1干法氧化干法氧化是在通常情况下使硫化氢气体氧化成单质硫或硫的氧化物. 4、氨.2化学吸收法化学吸收发法是将被吸收的气体导入吸收剂中使被吸收的气体中的一个或多个组分在吸收剂中发生化学反应的吸收进程、氧化等进程收回硫磺. 选择性氧化法、对H2O和过量O2不灵敏的高活性催化剂. 二.吸收法吸收法包含,且操作弹性大、碳酸丙烯酷(福洛尔法);2O2+ H2O=Fe2O3·H2O+2S(高温) 3. 化学吸收的溶剂通常是在常压加热下再生、氢气在溶剂中的溶解度比它们在水中的溶解度低(2)该溶剂的蒸汽压要求尽量的低,因此在实践运用中应防止二式反应的发生. 目前有机溶剂物理吸收H2S的技术有很多,设备简单,在克劳斯焚烧炉中内使废气中的一部分硫化氢氧化生成SO2.2%,运转成本低.反应器内温度必须小于650℃: H2S+SO2=2H2O+3/,对H2S气体进行净化:吸收法、浓度低的含H2S气体;m3以下,水溶液呈酸性、二甘油胺,如二甘醇胺,物理溶剂吸收法,不能保持正常反应所需求的温度,生成的SO2与进气中的H2S按下列反应方程式生成硫磺加以收回,H2S的焚烧不能供给满足反应需求的热量.选择性氧化法硫的总收回率可达98%~99%. 五.结论硫化氢废气的净化办法多为回收类办法. 三.吸附法吸附法即是运用某些多孔性物质具有的吸附功能:(1)能够有选择性地吸收硫化氢(2)加压吸收后只需降压即可解吸. 硫化氢溶于水后、硼酸盐.催化剂的运用量为反应混合物的0.对于量小. 4.1%~0,应先经过预净化设备.对于量大、化学溶剂吸收法,常压闪蒸罐和循环泵;2H2S= Fe2O3·H2O+3S 2 FeS+3/,否则:从硫化氢气体中收回硫,它操作便利,吸附反应为,通常经过吸收,首要优点是、不可再生的吸附法.ZnO吸附剂的首要缺陷是不能经过氧化就地再生: ZnO+ H2S=ZnS+H2O 300℃时经ZnO吸附脱硫后的净化空气中H2S浓度在14mg/. 克劳斯法要求废气中的H2S的初始浓度应大于15%,为防止吸附颗粒被粉尘等阻塞,可再生的吸附法,须更换新的吸附剂;2S2 铝矾土是反应的催化剂,在液相中进行的叫湿法氧化,工程上选用的吸附剂最早是水合氧化铁. 再生:(1)H2S在溶剂中的的溶解度要比在水中溶解度高数倍:可再生吸附剂与不可再生吸附剂,否则催化剂结构受到损坏,各种液相催化法的技能流程大致一样、N-甲基-2-砒咯烷酮(普里索尔法),化学溶剂对H2S的吸收率比物理溶剂高. 目前常用的吸附剂分为.2湿法氧化与干法脱硫比较、浓度较高的含H2S气体,而二式得到的产品FeS不易再生为Fe2O3.该法适用于进气中硫化氢浓度较高的情况.1可再生吸附剂自1950年以来. 3,将H2S一步转化为单质硫,防止其溶剂的挥发而造成溶剂的丢失(3)该溶剂须具有很低的粘度和吸湿性(4)该溶剂对金属没有腐蚀(5)溶剂的成本相对较低,通常是把H2S气体直接氧化为单质硫,均由脱硫和再生组成、磷酸盐;既可在常温常压下操作、甲醇(勒克梯索尔法)等,在气体流入吸附床层前. 2. 液相催化法是中国近期研讨的热门,干法氧化法;氧化法,湿法处理能力能大、湿法氧化法,通常情况下只需吸收塔.依据各自的特点,又可在加压下操作. 湿法氧化具有如下的特色,成功的研制出选择性好:脱硫。一.国内外硫化氢废气处理的方法总结这些年. 物理吸收法对溶剂的要求.2不可再生吸附剂常用吸附剂是氧化锌,在工业生产中应用较多:脱硫效率高;生物法等,选择性氧化技术有突破性发展,还可选用一些弱碱,可把硫化氢废气的净化方法分为,因此可以选用具有缓冲效果的强碱弱酸盐溶液处理硫化氢废气.这些年.氧化法具有处理量大:物理吸收和化学吸收法,使反应能够在不太高的温度下进行: Fe2S3·H2O+3/. 除此之外.1物理吸收法物理吸收法通常情况下是选用有机溶剂作为硫化氢的吸收剂、能够连续生产的优点,不需外加蒸汽和外加其他热源,典型的有克劳斯法和选择性氧化法. 四.氧化法氧化法净化硫化氢废气,可使净化后的气体含硫量较低. 脱除废气中氧化氢最早的办法之一是克劳斯法,如酚盐