離子交換反應是可逆反應,這種反應是在固態的樹脂和水溶液接觸的界面間發生的。在水溶液中,連接在離子交換樹脂骨架上的功能基能離解出可交換的離子B+,該離子在較大范圍內可以自由移動並能擴散到溶液中。同時,溶液中的同類型離子A+也能擴散到整個樹脂結構內部,這兩種離子之間的濃度差推動著它們之間進行交換。其濃度差越大,交換速度就越快。離子交換樹脂對不同的離子表現出了不同的交換親和吸附性能,這種選擇性與樹脂本身所帶有的功能基、骨架結構、交聯度有關,也與溶液中離子的濃度、價數有關。一般情況下,離子價數越高,與樹脂功能基的靜電吸引力越大,親和力越大;對同價離子而言,原子序數增加,樹脂對其選擇性也增加。由於陽離子交換劑可以與水中的陽離子進行交換,陽離子交換劑可以與水中的陰離子進行交換,因此,選用合適的交換劑便可去除水中所有的雜質離子,製得純凈的水。制備純水用的陽離子交換樹脂呈酸性,交換基因主要有磺酸基、羧基或酚基等,它們以H+與被處理水中的金屬離子交換。陰離子交換樹脂呈鹼性,其交換基團主要有季胺基【-N(CH3)3OH】、伯胺基(-NH2)等鹼性基因,它們在水中能以OH_與水中的陰離子進行交換反應。採用聯合處理裝置,使被處理水相繼通過H+型陽離子交換劑和OH_型陰離子交換劑,與之進行交換,便可得到純水。
2. 離子交換
鉬(Ⅵ)與大量鐵(Ⅲ)的0.5mol/LHCl溶液,通過陽離子交換樹脂後,可用0.04mol/L硫氰酸銨溶液淋洗鉬(Ⅵ版)。鉬(Ⅵ)與錸權的氫氧化鈉溶液通過陰離子交換樹脂後,可用1mol/L草酸鉀溶液淋洗鉬(Ⅵ),再用7mol/LHCl淋洗錸。
去離子水
設備,是
離子交換
系統。離子交換系統是通過陰、陽
離子交換樹脂
對水中的各種陰、陽離子進行置換的一種傳統
水處理工藝
,陰、
陽離子交換樹脂
按不同比例進行搭配可組成離子交換
陽床
系統,離子交換
陰床
系統及離子交換
混床
系統,而混床系統又通常是用在反滲透等水處理工藝之後用來製取
超純水
,
高純水
的終端工藝,它是用來制備超純水、高純水不可替代的手段之一。
去離子水的工藝大致可分為四種:
第一種:採用陽陰離子交換樹脂取得的去離子水,一般通過之後,出水
電導率
可降到10us/cm以下,再經過混床就可以達到1us/cm以下了。但是這種方法做出來的水成本極高,而且顆粒雜質太多,達不到理
想的要求。已較少採用了。
第二種:預處理(即砂碳過濾器+
精密過濾器
)+反滲透+混床工藝
這種方法是目前採用最多的,因為反滲透投資成本也不算高,可以去除90%以上的水中離子,剩下的離子再通過混床交換除去,這樣可使出水電導率:0.06左右。這樣是目前最流行的方法。
第三種:採用兩級反滲透方式
其流程如下:
自來水→
多介質過濾器
→
活性炭過濾器
→
軟化水
器→中間水箱→
低壓泵
→精密過濾器→一級反滲透→PH調節→
混合器
→
二級反滲透
(
反滲透膜
表面帶
正電荷
)→純水箱→純水泵→
微孔過濾器
→用水點
第四種:前處理與第二種方法一樣使用反滲透,只是後面使用的混床採用EDI連續除鹽膜塊代替,這樣就不用酸鹼
再生樹脂
,而是用電再生。這就徹底使整個過程無污染了,經過處理後的水質可達到:
15M
以上。但這這種方法的前期投資比較多,
運行成本
低。根據各公司的情況做適當的投資。
最好不過
了。
其流程如下:
原水→多介質過濾器→活性炭過濾器→軟化水器→中間水箱→低壓泵→PH值
調節系統
→高效混合器→精密過濾器→高效反滲透→中間水箱→EDI水泵→
EDI系統
→微孔過濾器→用水點
4. 什麼是離子交換技術水處理方面有什麼應用
離子交換法(ion exchange process)是液相中的離子和固相中離子間所進行的一種可逆性化學反應,當液相中的某些專離子較為離子交換屬固體所喜好時,便會被離子交換固體吸附,為維持水溶液的電中性,所以離子交換固體必須釋出等價離子回溶液中。離子交換技術在水處理領域應用比較廣泛,純水物軟化器即指鈉離子交換器,而離子交換器分為鈉離子交換器、陰陽床、混合床等種類。主要用於鍋爐、熱電站、化工、輕工、紡織、醫葯、生物、電子、原子能及純水處理的前道處理,工業生產所需進行硬水軟化、去離子水制備的場合,還可用於食品葯物的脫色提純,貴重金屬、化工原料的回收,電鍍廢水的處理等。
5. 水處理工藝中的一體化凈水器或者離子交換器能不能除去三價鐵離子和鋁離子,可以的話去除率多少
水處理工藝中的一體化凈水器或者離子交換器能不能除去三價鐵離子和鋁版離子,可以的話去除率權多少?
[(Fe)3+]+3NH3·H2O=Fe(OH)3↓+3[(NH4)+]
[(Al)3+]+3NH3·H2O=Al(OH)3↓+3[(NH4)+]
裹在一起沉澱啦~想想明礬KAl(SO4)2就是靠Al離子為正電中心,吸附水中游離的雜質灰塵等,然後形成Al(OH)3沉澱以達到凈化水的目的.而近年來用的高鐵酸鈉Na2FeO4也是同樣的道理,不過高鐵酸鈉的Fe(Ⅵ)能夠氧化一些細菌,使得這些有害細菌死亡,然後自身被還原成Fe(Ⅲ),以鐵離子為中心吸附那些雜質,最後形成氫氧化鐵沉澱達到凈水目的.
6. 水處理工藝有哪些
不同的原水處理有不同的水處理工藝:
例如:反滲透工藝流程經常會被應用到純專水,純屬凈水,純化水等。
離子交換技術:肯定是軟化水制備過程所需要應用到的。
EDI技術是被應用到:超純水,高純水等制備過程當中。
中水回用技術:被應用到水回收再利用的處理工程當中。
沉澱.絮凝等技術:一般會應用到廢水處理工藝當中。
純手打:不知道對我的答案滿意否?
7. 離子交換樹脂在水處理方面有哪些優勢
離子交換樹脂在水處理應用中的優點:
1、工業超純水處理工藝,是目前工業用超回純水的制答備上應用最多的一種工藝之一。
2、食品工業離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。
3、制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。
4、合成化學和石油化學工業在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。
5、電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6、濕法冶金及其他離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。
8. 離子交換的水處理中的應用
EDI(Electro-de-ionization)是一種將離子交換技術、離子交換膜技術和離子電遷移技術(電滲析技術)相結合的純水製造技術。該技術利用離子交換能深度脫鹽來克服電滲析極化而脫鹽不徹底,又利用電滲析極化而發生水電離產生H和OH離子實現樹脂自再生來克服樹脂失效後通過化學葯劑再生的缺陷,是20世紀80年代以來逐漸興起的新技術。經過十幾年的發展,EDI技術已經在北美及歐洲占據了相當部分的超純水市場。
EDI裝置包括陰/陽離子交換膜、離子交換樹脂、直流電源等設備。其中陰離子交換膜只允許陰離子透過,不允許陽離子通過,而陽離子交換膜只允許陽離子透過,不允許陰離子通過。離子交換樹脂充夾在陰陽離子交換膜之間形成單個處理單元,並構成淡水室。單元與單元之間用網狀物隔開,形成濃水室。在單元組兩端的直流電源陰陽電極形成電場。來水水流流經淡水室,水中的陰陽離子在電場作用下通過陰陽離子交換膜被清除,進入濃水室。在離子交換膜之間充填的離子交換樹脂大大地提高了離子被清除的速度。同時,水分子在電場作用下產生氫離子和氫氧根離子,這些離子對離子交換樹脂進行連續再生,以使離子交換樹脂保持最佳狀態。EDI裝置將給水分成三股獨立的水流:純水、濃水、和極水。純水(90%-95%)為最終得到水,濃水(5%-10%)可以再循環處理,極水(1%)排放掉。圖2表示了EDI的凈水基本過程。
EDI裝置屬於精處理水系統,一般多與反滲透(RO)配合使用,組成預處理、反滲透、EDI裝置的超純水處理系統,取代了傳統水處理工藝的混合離子交換設備。EDI裝置進水要求為電阻率為0.025-0.5MΩ·cm,反滲透裝置完全可以滿足要求。EDI裝置可生產電阻率高達15MΩ·cm以上的超純水。 EDI裝置不需要化學再生,可連續運行,進而不需要傳統水處理工藝的混合離子交換設備再生所需的酸鹼液,以及再生所排放的廢水。其主要特點如下:
EDI的凈水基本過程
·連續運行,產品水水質穩定
·容易實現全自動控制
·無須用酸鹼再生
·不會因再生而停機
·節省了再生用水及再生污水處理設施
·產水率高(可達95%)
·無須酸鹼儲備和酸鹼稀釋運送設施
·佔地面積小
·使用安全可靠,避免工人接觸酸鹼
·降低運行及維護成本
·設備單元模塊化,可靈活的組合各種流量的凈水設施
·安裝簡單、費用低廉
·設備初投資大 EDI裝置與混床離子交換設備屬於水處理系統中的精處理設備,下面將兩種設備在產水水質、投資量及運行成本方面進行比較,來說明EDI裝置在水處理中應用的優越性。
(1)產品水水質比較
EDI裝置是一個連續凈水過程,因此其產品水水質穩定,電阻率一般為15MΩ·cm,最高可達18MΩ·cm,達到超純水的指標。混床離子交換設施的凈水過程是間斷式的,在剛剛被再生後,其產品水水質較高,而在下次再生之前,其產品水水質較差。
(2)投資量比較
與混床離子交換設施相比EDI裝置投資量要高約20%左右,但從混床需要酸鹼儲存、酸鹼添加和廢水處理設施及後期維護、樹脂更換來看,兩者費用相差在10%左右。隨著技術的提高與批量生產,EDI裝置所需的投資量會大大的降低。另外,EDI裝置設備小巧,所需廠房遠遠小於混床。
(3)運行成本比較
EDI裝置運行費用包括電耗、水耗、葯劑費及設備折舊等費用,省去了酸鹼消耗、再生用水、廢水處理和污水排放等費用。
在電耗方面,EDI裝置約0.5kWh/t水,混床工藝約0.35kWh/t水,電耗的成本在電廠來說是比較經濟的,可以用廠用電的價格核算。
在水耗方面,EDI裝置產水率高,不用再生用水,因此在此方面運行費用低於混床。
至於葯劑費和設備折舊費兩者相差不大。
總的來說,在運行費用中,EDI裝置噸水運行成本在2.4元左右,常規混床噸水運行成本在2.7元左右,高於EDI裝置。因此,EDI裝置多投資的費用在幾年內完全可以回收。 EDI裝置屬於水精處理設備, 具有連續產水、水質高、易控制、佔地少、不需酸鹼、利於環保等優點, 具有廣泛的應用前景。隨著設備改進與技術完善以及針對不同行業進行優化, 初投資費用會大大降低。可以相信在不久的將來會完全取代傳統的水處理工藝中的混合 。
控制氮含量的方法(4種):生物硝化-反硝化(無機氮延時曝氣氧化成硝酸鹽,再厭氧反硝化轉化成氮氣);折點氯化(二級出水投加氯,到殘余的全部溶解性氯達到最低點,水中氨氮全部氧化);選擇性離子交換;氨的氣提(二級出水pH提高到11以上,使銨離子轉化為氨,對出水激烈曝氣,以氣體方式將氨從水中去除,再調節pH到合適值)。每種方法氮的去除率均可超過90%。
9. 水處理用離子交換樹脂有什麼作用
作用是吸附水中的各種陰陽離子,以達到凈化的目的。
離子交換樹脂在乾燥回的情況下內部沒有毛細孔。答它在吸水時潤脹,在大分子鏈節間形成很微細的孔隙,通過分子間的范德華引力產生分子吸附作用。
離子交換樹脂能夠象活性炭那樣吸附各種非離子性物質,擴大它的功能。一些不帶交換功能團的大孔型樹脂也能夠吸附、分離多種物質,例如化工廠廢水中的酚類物。
離子交換樹脂在應用中的優點:
1、工業超純水處理工藝,是目前工業用超純水的制備上應用最多的一種工藝之一。
2、食品工業離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。
3、制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。
4、合成化學和石油化學工業在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。
5、電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6、濕法冶金及其他離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。
10. 水處理用離子交換樹脂有什麼作用
水處理特種離子交換樹脂分為陽離子樹脂和陰離子樹脂,陽離子樹脂又細回分為鈉型和氫型,在水答溶液中能離解出某些陽離子(如H+或Na+),鈉型樹脂將水中的鈣鎂離子交換成鈉離子,使水變軟;氫型樹脂是將水中的鈣鎂離子交換成氫離子使水軟化,陰離子樹脂中含被可置換的氫氧根離子,水溶液中能離解出陰離子(如OH-或Cl-),能與水中的酸根離子交換.即樹脂中的離子與溶液中的離子互相交換,從而將溶液中的離子分離出來。同時使用陰離子樹脂和氫型陽離子樹脂可以將水變為純凈水。水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。使水質雜質與有益成分分離