❶ 肝素鈉工藝流程
肝素鈉工藝流程
1、將新鮮的豬肺(或冷凍豬肺自然解凍之後)用清水仔仔細清洗去除內外污物和外部皮膚脂肪後,絞碎成糜狀,並在充分攪拌下,加入等量的水混合後,再加入少許溶度為.01%的防腐劑混合均勻。
2、酶解提取:先將上述原料在充分攪拌下,用少量稀鹼液精細地調節至PH值為8-9。再加入事先已經絞碎的新鮮胰漿作為酶解劑,攪勻後,緩慢升溫至40度左右,
繼續攪拌,並保持料液PH=7.5-8,保持液溫於37-40度下,酶解3-4小時,然後升溫至47-50度,維持PH值=8.0-8.5,再酌情補加少許豬胰漿後,繼續酶解4-5小時。
3、離子交換吸附;先將上述酶解提取液冷卻至室溫,仔細撈除浮於液面的油脂薄片層,控制升溫至45度,停止加熱,在攪拌下加入事先預處理好的D-254型樹脂已有效的吸附料液中的肝素鈉成分。
4、精製:將所得肝素鈉粗品用2%的氯化鈉溶液完全溶解,製成其溶度大約為8%的溶液,在此過程中可適當的升溫助溶。 將上述料夜用5mol/L氫氧化鈉溶液精細地調節PH=8.0-8.2,升溫至78-80度。
沉澱物經無水乙醇脫水,研細,再經丙酮脫水,研細,再經丙酮脫水,遠紅外線真空烘乾(50-60度),即得肝素鈉精品。
(1)用稀鹼液溶解包涵體後進行陽離子交換擴展閱讀:
葯物相互作用
1、肝素與下列葯物合用,可加重出血危險:香豆素及其衍生物、阿司匹林及非甾體消炎鎮痛葯、雙嘧達莫、右旋糖酐、腎上腺皮質激素、促腎上腺皮質激素、組織纖溶酶原激活物、尿激酶、鏈激酶等。
2、肝素並用碳酸氫鈉、乳酸鈉等糾正酸中毒的葯物可促進肝素的抗凝作用。
3、肝素與透明質酸酶混合注射,既能減輕肌注痛,又可促進肝素吸收。但肝素可抑制透明質酸酶活性,故兩者應臨時配伍使用,葯物混合後不宜久置。
4、肝素可與胰島素受體作用,從而改變胰島素的結合和作用。
5、不能與鹼性葯物合用。
說明:上述內容僅作為介紹,葯物使用必須經正規醫院在醫生指導下進行。
❷ 各類離子交換樹脂的再生方法
再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低的酸、鹼或鹽:
1、大孔吸附樹脂簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。
2、鈉型強酸性陽樹脂可用10%NaCl 溶液再生,用葯量為其交換容量的2倍 (用NaCl量為117g/ l 樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。
3、氯型強鹼性樹脂,主要以NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~200g NaCl ,及3~4g NaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。
4、一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH值下降至6左右,再用水正洗,反洗各一次。
5、陽樹脂再生:
通鹽酸:在環境溫度下,將4%的樹脂床體積4倍的HCL通過樹脂床,通過時間約2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=5-6.樹脂床備用。
6、陰樹脂再生:
通氫氧化鈉:在環境溫度下,將濃度為4%的樹脂體積4倍量的NaOH通過樹脂床,通過時間約為2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=8,樹脂床備用
具體操作可根據樹脂使用情況酌情增加酸鹼的濃度和再生時間。
(2)用稀鹼液溶解包涵體後進行陽離子交換擴展閱讀:
應用領域:
1)水處理
水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。目前,離子交換樹脂的最大消耗量是用在火力發電廠的純水處理上,其次是原子能、半導體、電子工業等。
2)食品工業
離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如:高果糖漿的製造是由玉米中萃出澱粉後,再經水解反應,產生葡萄糖與果糖,而後經離子交換處理,可以生成高果糖漿。離子交換樹脂在食品工業中的消耗量僅次於水處理。
3)制葯行業
制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。近年還在中葯提成等方面有所研究。
4)合成化學和石油化學工業
在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。用離子交換樹脂代替無機酸、鹼,同樣可進行上述反應,且優點更多。如樹脂可反復使用,產品容易分離,反應器不會被腐蝕,不污染環境,反應容易控制等。
甲基叔丁基醚(MTBE)的制備,就是用大孔型離子交換樹脂作催化劑,由異丁烯與甲醇反應而成,代替了原有的可對環境造成嚴重污染的四乙基鉛。
5)環境保護
離子交換樹脂已應用在許多非常受關注的環境保護問題上。目前,許多水溶液或非水溶液中含有有毒離子或非離子物質,這些可用樹脂進行回收使用。如去除電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6)濕法冶金及其他
離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。
❸ 732陽離子交換樹脂的活化方法
陽離子交換樹脂,可在體內活化活化,
液用量為樹脂體積的2倍,活化液用回濃度為3.0MOL/L的鹽答酸配製,
以1.2-4.0M/H的流速通過樹脂層,
再採用體積為樹脂體積的1-2倍、濃度為2.0-2.5MOL/L的硫酸浸泡3H以上
❹ 蛋白透析復性後,調pH變渾濁,蛋白會有影響嗎
問錯地方了。這么專業的生物知識,最好去搜索文獻。關於包涵體的文獻太多了。基本上做蛋白的都有涉及。 不要在這問,自己多一些文獻,比這里的回答強的多。
簡單找了點。
對於尿素和鹽酸胍該怎麼選擇?
尿素和鹽酸胍屬中強度變性劑,易經透析和超濾除去。它們對包涵體氫鍵有較強的可逆性變性作用,所需濃度尿素8-10M,鹽酸胍6-8M。尿素溶解包涵體較鹽酸胍慢而弱,溶解度為70-90%,尿素在作用時間較長或溫度較高時會裂解形成氰酸鹽,對重組蛋白質的氨基進行共價修飾,但用尿素溶解具有不電離,呈中性,成本低,蛋白質復性後除去不會造成大量蛋白質沉澱以及溶解的包涵體可選用多種色譜法純化等優點,故目前已被廣泛採用。
鹽酸胍溶解能力達95%以上,且溶解作用快而不造成重組蛋白質的共價修飾。但它也有成本高、在酸性條件下易產生沉澱、復性後除去可能造成大量蛋白質沉澱和對蛋白質離子交換色譜有干擾等缺點。
2. 怎樣洗滌包涵體?
通常的洗滌方法一般是洗不幹凈的,可以先把包涵體用6M鹽酸胍溶解充分,過濾除去未溶解的物質,注意留樣跑電泳,然後用水稀釋到4M,離心把沉澱和上清分別跑電泳,如此類推可以一直稀釋到合適的濃度,可以找到一個合適去除雜質的辦法,其實這就是梯度沉澱的方法,比通常的直接洗脫效果好。
3. 8M尿素溶解的包涵體溶液應如何保存?
在4度放置半個月,都沒什麼問題 。在室溫放置超過48小時,可能會對目的蛋白有影響,因為尿素在鹼性條件下可使一些氨基酸醯基化,所以早些處理BI溶液比較好。
4. 包涵體復性有什麼原則?
低濃度,平緩梯度,低溫。
5. 復性時的蛋白濃度是?
一般使用濃度為0.1-1mg/ml,太高的濃度容易形成聚體沉澱,太低的濃度不經濟,而且很多蛋白在低濃度時不穩定,很容易變性。
6. 復性中蛋白析出是怎麼回事?該怎麼處理?
出現蛋白析出,肯定是條件變化太劇烈了。復性應該採取復性液濃度和PH值逐漸變化的方法,例如根據包涵體的溶液成分,每隔1個PH或濃度值配置一種溶液,逐步透析到正常。此外透析時必須濃度極低,條件溫和,使蛋白質能夠正確折疊。但是復性的比率應該很低。
若加變性劑尿素可加到2M,鹽酸胍可加到1-1.5M;
另外可將甘油濃度增加,范圍可在≤30%,且在復性樣品中也可加適量甘油。
❺ 下列一些做法正確的是() A.用稀鹼液洗滌機器零件上的油污 B.在鐵桶內配製氯化銅溶液 C
A、稀鹼來液可以通過乳化作用除源去機器零件上的油污,故A正確; B、鐵可以與銅鹽溶液發生置換反應,能把氯化銅中的銅置換出來,故B錯誤; C、溶解度與溶質的質量分數沒有必然的聯系,故C錯誤; D、加入鐵粉,與硫酸反應生成了硫酸亞鐵,引入了新的雜質,故D錯誤, 故選A. |
❻ 酸中和法制備硅溶膠,用硫酸加硅酸鈉中和,用乙醇洗去鈉離子,中和過程的最適溫度是多少啊, 在線等,急求
離子交換一般用強酸型陽離子交換樹脂與稀釋後的水玻璃進行離子交換,以除去水玻璃中的鈉離子和其他陽離子雜質製得聚硅酸溶液。再用陰離子交換樹脂進行離子交換,除去溶液中的陰離子雜質,製得高純的聚硅酸溶液。此時得到的聚硅酸溶液穩定性較差,溶液偏弱酸性,可用少量的NaOH或其他試劑作為穩定劑,將溶液的pH值調節在8.5-10.5的鹼性范圍內,該范圍是製得溶膠溶液的穩定區域,必要時在低溫(4-10℃)下保存。
1.酸性硅溶膠的制備工藝
1.1.離子交換法
該法是目前研究最多、技術最成熟的制備工藝。該種方法採用水玻璃為原料,通常可分為三個步驟:制備活性硅酸,制備鹼性硅溶膠和陽離子交換。常用制備工藝如下:將市售水玻璃通過稀釋並與陽離子交換樹脂進行交換,得到活性硅酸;將硅酸用鹼液處理至鹼性;再將該鹼性的硅酸溶液進行加熱縮合反應並濃縮,製得鹼性硅溶膠;最後將鹼性硅溶膠經過陽離子樹脂進行陽離子交換,同時加入適量的酸進行調節,得到相應酸值下的酸性硅溶膠。
早在1941年,美國人Bird在其專利發明中提到利用離子交換法制備酸性硅溶膠,即將水玻璃溶液經過氫型的陽離子交換柱,使水玻璃中的鹼金屬同氫發生交換,其產品是高純度酸性硅溶膠,pH 為2.0~4.0。此後Albrecht和William L改進了Bird 制備酸性硅溶膠的工藝,提出採用混合樹脂床來生產更適合使用的酸性硅溶膠。
上世紀80年代,多數硅溶膠生產廠家均沿襲離子交換法制備酸性硅溶膠。如國內的湖北美華日用化工廠從1985年7月就開始著手研製酸性硅溶膠,他們採用離子交換法用自產鹼性硅溶膠制備出酸性硅溶膠,其具體工藝是:將所需鹼性硅溶膠稀釋、過濾後,向其中投入氫型陽離子交換樹脂,邊投入邊攪拌,當pH到達2~3時,停止投入樹脂,靜置讓其徹底交換。用上述方法製得的酸性硅溶膠中二氧化硅的含量為大於10 %,粒徑為10~20 nm,pH達2~3,穩定期為3~6個月。
許念強等將製得的活性硅酸陳化24~48h後再製成鹼性硅溶膠,然後與強酸型陽離子樹脂得到酸性硅溶膠。他們分析了pH、二氧化硅粒徑、電解質鹽濃度對酸性硅溶膠穩定性的影響,強調要制備高濃度、高穩定性、低黏度的酸性硅溶膠,首先要提高二氧化硅顆粒的粒徑。
離子交換法的優點是根據不同的工藝組合可合成不同性能的硅溶膠,缺點是起始原料水玻璃的濃度不能很高,致使後面濃縮過程時間長,能耗大,而且再生離子交換樹脂時產生的大量廢水需加以處理。
1.2 電解電滲析法
該法制備硅溶膠是一種電化學方法。其原理是硅酸鈉在水溶液中發生水解反應:
Na2H2SiO4 + H2O→2Na+ + H3SiO4– + OH–
隨著反應的進行,在電場的作用下槽內的離子會定向遷移,由離子交換膜濾出雜質離子;當陽極室內生成的硅酸濃度大於其溶解度時就會發生縮聚反應,生成硅溶膠。通過調節槽內pH即可得到相應的硅溶膠。該方法制備硅溶膠時,要注意控制電滲析反應的電流密度、溫度等反應條件。
日本的OKETA YUTAKA在其專利中提到利用離子交換膜電滲析法來制備脫鹽酸性硅溶膠。在制備過程中,電滲析器內會交替形成一個脫鹽室和一個濃縮室;用陰、陽離子交換膜將陽極和陰極分開,然後進行電滲析。脫鹽室中水溶液的溫度保持在5~20 ℃。
電解電滲析法是用酸中和硅酸鈉水溶液,經陳化後,再通過半透膜滲析鈉離子。該方法缺點是滲析所需時間太長,不適於工業化生產。
1.3.分散法
該法是利用機械將SiO2微粒分散在水中制備硅溶膠的物理方法。具體步驟如下:量取定量的去離子水加入到塑料杯中,將其固定於高速分散機上。開動高速分散機,將定量的氣相SiO2粉末連續加到杯中。SiO2 粉末加完後,補加定量的去離子水,調節高速分散速度,經過一定時間製得SiO2水分散液。將SiO2水分散液陳化過夜後,高速分散並加入添加劑,繼續高速分散數小時,用300目濾網過濾得到性能良好的硅溶膠。
傅朝春利用該方法制備的酸性硅溶膠能夠有效替代微生物用於人、禽畜糞便、垃圾處理,可祛除惡臭、制備高效有機肥料。其具體工藝是:將一定濃度的硫酸和 200 目以下的分散劑SiO2置於一個塑料容器內進行攪拌;用NaOH調節pH為2~4;採用金屬板做電極,聯結一整流電源,置於上述塑料容器中通電;施以100 V電壓,通電 450 mA的電流2~5 min;切斷整流電源後,攪拌一段時間,等反應物呈膠狀就停止攪拌。利用該方法製得的酸性硅溶膠中SiO2 的含量為25 %~35 %,粒徑為1~12 nm。
由於該方法所制的酸性硅溶膠是用作特殊用途的,因而沒有考慮某些雜質離子如Na+、SO42–等對其純度的影響,故該方法對於酸性硅溶膠的制備不具有普遍適應性。
1.4.單質硅熱氧化法
有研究表明,硅的熱氧化物的生長通常是在900~1200℃之間的石英管中進行,或是在乾燥氧氣條件下,或是在含有水蒸氣的濕氧條件下,或是讓乾燥的氧氣和氮氣通過接近沸騰的水所形成的蒸汽中。資料介紹,單質硅在濕氧或是水蒸汽氛圍中的氧化比乾燥氧氣中進行得快。熱氧化的總反應是:
Si + O2(gas) → SiO2 Si + 2H2O(gas) → SiO2 + 2H2(gas)
在乾燥的氧化過程中第一個反應佔主要地位,而在濕的氧化過程中第二個反應佔主要地位。
2.酸性硅溶膠的膠團結構及其穩定性研究
我國早在1958年就開始了硅溶膠的研製和生產,如南京大學配位化學研究所、蘭州化學工業公司化工研究院、青島海洋化工廠等都從事了相關的研究和開發,但品種和產量都與國外有很大差距,尤其是酸、鹼性硅溶膠的比例不合理,這樣的局面到20世紀80年代才有所改善。酸性硅溶膠處於亞穩狀態,在放置過程中會逐漸發生膠凝作用,穩定期一般為3~6個月,較鹼性硅溶膠的穩定期短。因此,如何提高酸性硅溶膠的穩定性就成為眾多研究者關心的問題。
2.1.酸性硅溶膠的膠團結構
酸性硅溶膠又稱硅酸水溶膠,是高分子SiO2微粒分散於水中的膠體溶液,無臭、無毒,分子式可表示為mSiO2·nH2O(式中:m,n很大,且m<<n),外觀為乳白色半透明液體。硅溶膠粒子的內部結構為硅氧烷鍵(-Si-O-Si),表面層由許多硅氧醇基(-SiOH)和羥基(-OH)所覆蓋。由於硅溶膠中SiO2顆粒表面含大量羥基,具有較大的反應活性,因此被廣泛用於紡織、橡膠、陶瓷、塗料、精密鑄造、耐火材料、造紙、石油化工、電子等行業。
膠團結構如圖1所示:當A+為Na+等金屬離子時,表示鹼性硅溶膠;當A+為H+時,表示酸性硅溶膠。在運動過程中,由膠核和吸附層組成的膠粒作為一個整體運動,這樣擴散層與周圍的電解質可以形成一種動態平衡來維持硅溶膠的穩定。
2.2 酸性硅溶膠穩定性的影響因素
2.2.1.pH對酸性硅溶膠穩定性的影響
硅溶膠的穩定性與pH之間的密切關系如圖2所示。從圖2可以看出,在低pH(<2.0)區域內,溶膠穩定性隨pH的升高略有上升;在中部pH(2<pH<4)區域內,酸性硅溶膠具有一個較為寬闊的亞穩定區域,為制備酸性硅溶膠的可能性提供現實依據;在pH接近5~6的區域范圍內時,硅溶膠的穩定性迅速下降。
王少明等認為pH與硅溶膠的穩定性有直接關系。經測定硅溶膠 pH 在2~10之間時,粒子的ξ電位為負值;pH 在2以下時,粒子的ξ電位為正值;pH=2 時為「0」電位;pH 在8.5~10范圍內,為穩定區;pH>10時,硅溶膠粒子溶解為硅酸鹽;pH 在4以下時為介穩區;pH=2 時,為最高介穩態。根據制備的高純硅溶膠的特點,調節硅溶膠的pH在2.5左右,可以保持溶膠處於高介穩態,在室溫下可存放2年而不凝膠。硅溶膠不穩定的主要表現之一就是發生凝膠化。
賈光耀等提到溶膠凝膠動力學可以人為控制。他們通過研究發現,硅溶膠的黏度、ξ電位以及凝膠化過程與pH有密切的關系,凝膠化過程發生在pH 為4~7之間。
2.2.2 電解質對酸性硅溶膠穩定性的影響
電解質對硅溶膠的穩定性也有一定的影響,且與pH有密切關系。因為鹽類放出離子,與硅溶膠的表面電荷結合,進入緊密層的反離子增加,使分散層變薄;當電解質濃度增加到一定程度時,分散層厚度為零,引起粒子的集合而凝膠化。凝膠化的程度與使用的電解質種類、濃度、溫度等因素有關。有資料報導,在pH<3.5時,電解質對硅溶膠的穩定性影響相對較小。
J. L. Trompette等提出當存在兩種不同的補償離子時,經濃縮的硅溶膠在pH為9.8時極易發生凝膠,並對凝膠動力學進行了研究。研究結果表明,離子特徵對聚合動力學和溶膠—凝膠轉化過程中凝膠顯微結構有顯著的影響。這歸因於不同電解質的影響下臨界凝結濃度不同。
而許念強等則認為,只有當SiO2粒子的粒徑相對較小時,硅溶膠的穩定性才受到電解質鹽濃度較大的影響,隨著SiO2粒徑增大,電解質鹽濃度對硅溶膠的穩定性影響減弱。當硅溶膠中的含鹽量降低到一定值時,電解質鹽濃度在一定程度上不會構成制備酸性硅溶膠的主要影響因素。
楊靖等在研究了催化劑的種類、反應溫度、反應時間、添加劑等因素對硅溶膠性能的影響時分析了電解質種類的影響效果:在[H+]相同的條件下,酸催化劑對溶膠粘度的影響為:
HF>HCl>HNO3>H2SO4>HAc ,對凝膠時間的影響為:HAc>H2SO4>HCl>HNO3>HF,幾種溶膠固含量的大小為:H2SO4>HNO3>HCl>HAc,制備 SiO2 膜用硅溶膠較適合採用鹽酸或硝酸作為催化劑。
2.2.3.粒徑對酸性硅溶膠的影響
粒徑是影響硅溶膠穩定的另一重要因素。硅溶膠粒子直徑在一定范圍內,粒徑越均勻、分布范圍越窄,穩定性越好。
許念強等在研究粒徑對酸性硅溶膠的影響時提到,一定濃度下的酸性硅溶膠穩定性與SiO2粒徑大小的關系呈現出一個斜「S」形,即在小粒徑下,硅溶膠的穩定性相對很低,而隨著粒徑的增加,硅溶膠的穩定性迅速增強,並且粒徑在10~20 nm內,硅溶膠穩定性近似與粒徑大小成正比。
有學者經試驗研究發現,將硅溶膠粒徑控制在10~15nm范圍內,既可簡化工藝過程,又可保持高純硅溶膠的穩定。
另外,SiO2粒子半徑的增加,將使其粒子表面羥基基團的反應活性降低,膠粒比表面積減小,膠粒吸附能降低,從而大顆粒對小顆粒的吸附作用力降低,也是大粒徑酸性硅溶膠相對於小粒徑硅溶膠具有較高穩定性的原因。
此外,Janne Puputti 等在制備硅溶膠時,用乙醇取代一部分水,使其穩定性增加 3 倍。Anna Schantz Zackrisson 等通過干擾法及時間分辨小角X射線散射對硅溶膠分散體系中的聚合和凝膠化過程進行了研究,分析了離子強度對凝膠臨界點的影響。
❼ 電導法測弱電解質的解離平衡常數和難溶鹽的溶解度
2-7不溶性強電解質的溶度積溶度積測定實驗
?
首先,實驗的目的
了解很稀的溶液濃度測量方法;
了解難溶性鹽溶度積的決心;
3,鞏固活動,活動的濃度和相關系數的概念。
二,實驗原理
??一些在一定溫度下的離子平衡,電解質的不溶性鹽的飽和溶液,在溶液中形成,並且一般表示式如下:
嚴格地說溶度積的平衡常數溶度積稱為的溶度積,或簡稱為相應的離子的活性產物的溶液牽制的離子作用的溶度積,但認為幾乎不含有電解質的飽和溶液的離子強度是非常小,可以的警告,而不是使用濃度活動。
在對氯化銀
從上面的等式中,如果測得的飽和溶液中的不溶性的電解質離子濃度,可以計算出的溶度積的溶度積,。因此,測量最終測量的離子濃度。設計一種方法測定的濃度,發現測量方法的溶度積。
具體測量的濃度的方法,包括的滴定法測定(如AgCl溶解度產品),離子交換法(如硫酸銅的溶解性產物的測定),電導率(如AgCl的溶度積的測定),離子電極方法(如氯鉛的測定的溶度積)時,電極電位的電極電位的方法(溶度積的關系),即分光光度法(例如氫碘酸銅的溶度積的測定),等,下面分別予以介紹。
?
Ⅰ,硫酸鈣的溶度積的測定(離子交換法)
?
首先,實驗的目的
1,練習使用離子交換樹脂;
要了解離子交換所測得的硫酸鈣的溶解度和溶度積的原則和方法。
進一步實踐酸鹼滴定法,大氣中的濾波操作。
二,實驗原理
離子交換樹脂是一類合成,與其他物質的固體球形聚合物,含酸性基團可以與其他物質交換的離子交換包含特殊的反應性基團在分子中,陽離子是一種陽離子交換樹脂含有鹼性基團,其中可以與其它物質交換,陰離子的陰離子交換樹脂。聚苯乙烯磺酸型樹脂,最常用的是強酸性陽離子交換樹脂,其結構式可表示為:
此實驗是強酸性陽離子交換樹脂(R-SO 3 H)(型號732)交換硫酸鈣飽和溶液中的Ca2 +交換反應:
2R-SO3H +鈣+→(R SO3)2的Ca + 2H +
?
硫酸鈣是微溶鹽,其溶解度以外的部分增加了Ca2 +和SO42-離子的硫酸鈣飽和溶液中存在的離子對和簡單離子之間的平衡:
硫酸鈣(AQ)=內Ca2 + + SO42-
由於Ca2 +離子交換平衡向右側移動時,該溶液流經交換樹脂,硫酸鈣(ag)的離解的結果都被交換為H +從流出物中[H +]計算值硫酸鈣摩爾溶解度?:
?
[H +]的測量可用的pH計,並且還可以是一個標準的NaOH溶液滴定繪制這里介紹滴定。
讓飽和的硫酸鈣溶液的[Ca2 +] = C [SO42-] = C,然後按[硫酸鈣(AQ)] = Y - C
和
KD,25℃,離子解離常數Kd = 5.2×10-3
和
由等式,C,並通過以下方式獲得溶度積= [內Ca2 +] [SO 4 2 - ] = C2,所定義的溶度積Ksp。
第三,的實驗步驟
1。填充柱離子交換柱(基本滴定管替代)洗少量的玻璃纖維或關閉棉脂肪填充的底部,說要帶一定數目的732強酸性陽離子交換樹脂放入小燒杯中,加蒸餾水浸泡和攪拌後與水一起除去的懸浮顆粒和雜質被轉移到離子交換柱,交換柱旋鈕剪輯的下端打開,使水慢慢流出,直到液位高於樹脂約1cm,夾緊螺釘夾緊,如果氣泡,使玻璃棒插入樹脂以除去氣泡,之後的操作過程中,應先浸泡在溶液中,使樹脂。去掉氣泡,添加少量的上述的樹脂中的玻璃纖維(或棉花)。
2。過渡到確保的Ca2 +完全交換成H +和Na +型樹脂,必須完全轉換後的模製的H +,採取40毫升2mol / L的鹽酸溶液分批加入交換柱中,控制每分鍾80-85滴流量讓通過交叉樹脂HCl溶液流後,保持10分鍾後。 [注意:如果使用的是一個很好的酸處理樹脂,裝柱後直接按治療],用50-70ml的蒸餾水,漂洗樹脂,直到流出物的pH值是6-7(pH試紙測試)。
3下游飽和硫酸鈣1克分析純硫酸鈣固體的溶液放置約70毫升,煮沸後,冷卻至室溫的蒸餾水,攪拌10分鍾後,靜置5分鍾,並用定量濾紙(過濾器過濾紙,一個漏斗和抽濾瓶應乾燥),將濾液飽和硫酸鈣溶液。
4。外匯吸取20.00毫升飽和硫酸鈣溶液,注射遠離交叉柱,控制交換柱流出物的20-25滴/分鍾的速度,用洗滌的錐形燒瓶中進行污水。在樹脂床層幾乎完全的飽和溶液流入,在蒸餾水中洗滌樹脂中加入(約50毫升水分批洗脫)流出的液體的pH為6-7。請注意不要將整個交換和浸出工藝廢水損失。
5的氫離子濃度的測定在酸 - 鹼滴定,污水加2滴溴百里酚酞指示劑,將溶液從黃色到明亮的藍色用標准NaOH溶液滴定,滴定終點。准確地記錄使用的NaOH溶液,在溶液中的氫離子濃度的下述式的體積。
數據記錄和結果
硫酸鈣的飽和液體溫度
?
?
通過交換柱的飽和溶液的體積(mL)
?
?
NNaOH(MOL / L)
?
?
VNaOH(mL)的
?
?
[H +] mol / L的
?
?
硫酸鈣溶解度?
?
?
硫酸鈣溶度積Ksp
?
?
計算Kd值近似25°C的數據,計算過程寫實驗報告。
錯誤分析操作錯誤,根據文獻值嗎?硫酸鈣的溶解度,並討論錯誤的原因。
五問題
為什麼操作來控制液體的流速是不是太快了?為什麼不允許氣泡的存在下的樹脂層?如何避免?
2,計算得出的實驗結果硫酸鈣的溶解度產品?
制備的飽和溶液,硫酸鈣,為什麼您要使用的CO2的蒸餾水已被刪除?
影響最終測定結果的因素?影響因素分析,你認為在整個操作中的關鍵步驟?
5,下面的實驗結果有什麼影響?
1)過渡,樹脂不能完全轉化為H +形式。
2)是不允許的硫酸鈣的飽和溶液冷卻至室溫,在過濾器上。
3)過濾漏斗硫酸鈣飽和液體和接收燒瓶中未乾燥。
4)改造,洗脫液流出,低於中性停止浸出和交流。
?
附加硫酸鈣溶度積的文學價值
?
T℃
?0
?10
?20
?30
?40
?
溶解性×102mol / L
?1.29
?1.43
?1.50
?1.54
?/
?
單位為克每百克(g/100g)
?0.1759
?0.1928
?/
?0.2090
?0.2097
?
?
閱讀材料
離子交換技術
通過離子交換樹脂的離子交換柱中的化合物,該方法由於交換的離子鍵,得到相應的產物被稱為作為離子交換方法。該方法被廣泛用於元素的分離,提取,純化,有機脫色精製,水凈化,並用作反應催化劑,等,離子交換法所需要的項目,包括相應的??離子交換樹脂的離子交換柱。
離子交換樹脂,包括天然的和合成的兩類,其中較重要的是一種合成的有機樹脂,它主要是作為樹脂基體結構的聚合物的交聯成的苯乙烯和二乙烯基苯的使用,然後連接相應上部反應性基團的和合成的。合成的離子交換樹脂是一種不溶性聚合物,含有反應性基團的,具有網狀結構的聚合物,有許多的網狀結構的骨架可以被離子化和周圍溶液中的一些離子交換活性基團,網狀結構的離子交換樹脂溶解在水或酸,鹼溶液是極其困難的,對於大多數有機溶劑,氧化劑,還原劑,和熱不發揮作用。
A.離子交換樹脂的分類
發生糾紛組和不同的離子交換樹脂的作用,可以劃分為不同的類別,如陽離子交換反應用的陽離子交換樹脂,陰離子交換樹脂的離子交換樹脂具有特殊的功能。
1。的陽離子交換樹脂,陽離子交換樹脂是用酸性的交換基團的樹脂,這些酸性基團包括磺酸基(-SO 3 H),羧基(-COOH),酚性羥基基團(-OH)。在這些樹脂中,它們的陽離子可以是在溶液中的陽離子交換,根據上的活性基團的強度,pH值,所述陽離子交換樹脂被進一步細分為強酸性陽離子交換樹脂(活性基團是-SO 3 H ),國內732樹脂(新牌號001-100),中度酸性陽離子交換樹脂(活性基團-PO3H2)和(#401-500)取得了新的成績和弱酸性陽離子交換樹脂(活性基團-CO 2 - C6H4OH等)(例如,724型,#101-200新牌號)等,這是最廣泛使用的強酸性樹脂。
2。的陰離子交換樹脂含有一個基本的反應性基團的樹脂,這種樹脂的陰離子可以是溶液的陰離子交換。根據鹼性強度差異中的活性基團的強鹼性陰離子交換樹脂(活性基團是季胺鹼,如,711#,714#,等),和弱鹼性陰離子交換樹脂被分成(活性基團是伯胺,仲胺基和叔胺基團,如701#樹脂,等等。)
3。具有特殊的功能性樹脂,如螯合樹脂,兩性樹脂,氧化還原樹脂等(見表2-8)。
在使用中應根據該實驗中,不同類型的離子交換樹脂的具體要求。
II。離子交換的基本原則
?離子交換過程是在溶液中的離子通過擴散到顆粒內的樹脂,在用樹脂上的H +離子交換(或Na +等離子的活性基團),交換的H +離子擴散的解決方案,並已出院。因此,在離子交換過程是可逆的,陽離子交換樹脂,更大的離子價交換電位越大,即與樹脂結
表2-8中,離子交換樹脂類型的
類型
?活動組
?類別
?案例
?
陽離子交換樹脂
?強酸性
?磺酸基
H-型(R-SO 3 H)的Na型(R-竹紅菌素衍生物)
?732,IR-120型
?
磷酸基團
H-型(R-PO3H2):Na型(R-PO3Na2)。
?
?
弱酸
?羧酸基
H-型(R-CO 2 H):Na型(R-CO2Na)。
724型,IRC-50型
?
酚基
H-型(R-C6H4OH)Na型(R-C6H4ONa)
?
?
陰離子交換樹脂
?強鹼性
?第四紀胺組
OH-型(R-NR`3OH)
氯型(R-NR「3CL)
?717,IRA-400型
?
弱鹼性
伯胺組
OH-型(R-NH3OH)
氯型(R-NH3Cl)
701,IR-45型
?
仲氨基的基團
OH-型(R-NR「H2OH)
氯型(R-NR「H2Cl)
?
?
叔胺基團
OH-型(R-NHR`2OH)
氯型(R-NHR「2CL)
?
?
特殊功能樹脂
螯合樹脂,兩性的樹脂,氧化還原樹脂
?
較強的合作能力:
K + <H +的Na + <K +銀+ <FE2 + CO2 +鎳+銅+鎂+鈣+ <Ba2 +的<SC3 +
?同樣,對於目的的結果,離子交換樹脂,與增加的離子價的增加,如在強鹼性陰離子樹脂的交換勢:
AC-F-OH-HCOO-H2PO4-HCO3-BrO3-CL-<NO3-<BR-NO2-I-CrO42-C2O42-SO42-
??一般製造的所謂的交換容量的1克干樹脂的離子交換容量交換容量是毫當量相應的離子交換的數目。不同類型的樹脂的交換容量為強酸性離子交換樹脂,一般≥4.5毫克當量/克干樹脂的交換容量,從而可以計算出從最小量的樹脂,需要一個特定的實驗。
III。交換樹脂的影響因素
有許多因素影響樹脂的交換,主要包括以下幾個方面:
1。的性質的樹脂本身的不同製造商,不同型號的不同樹脂的交換容量。
2。預處理的樹脂或再生的質量。
3。填充樹脂,在離子交換柱中的樹脂填充的是是否有氣泡。
4。柱直徑和由於離子交換過程的流出速度的比率是一個緩慢的交換過程中,這種交換是一個可逆過程。的流出速度交換的結果造成很大的影響,流出速度過大,為時已晚,離子交換,從十字架上的效果是不佳的。流出速度的柱塔直徑比[離子交換柱的高度與直徑之比的溶液中的離子濃度與流動相和離子交換(圖2-35)]和其他因素,如離子濃度小時,可能是適當增加流出的速度。在實驗室中柱直徑比為10:1或以上的一般要求,可適當增加柱直徑比較大的流出速度。為了得到更好的效果,流出速度一般控制在20-30滴/分為適當的。
IV。新樹脂預處理老化樹脂再生的
1。陽離子交換樹脂預處理的目的⑴清洗以去除一些外源性雜質會購買一個新的樹脂,用清水浸泡,不煩躁時。丟棄的酸洗液,並不斷換水,直到酸洗液無色。的⑵苛性由於穩定性要求,購買新的樹脂基本上是鈉型,苛性處理的使用,可能是一些非鈉的類型轉換為鈉形式,以方便下一處理。增加的容量的8%的NaOH溶液中浸泡30分鍾後,分離的鹼液,用水洗至中性。 (3)轉化率7%的HCl溶液三次,每次是容量和浸泡30分鍾後,分離出酸,並洗滌至中性備用(註:應使用最後用蒸餾水或去離子水)的多次。
2。陰離子交換樹脂預處理⑴新購陰離子交換樹脂加入等量的50%乙醇,攪拌,靜置過夜,除去乙醇,用清水洗凈,直到酸洗液無色無味。 ⑵用7%的HCl溶液3次,每次,容量和浸泡30分鍾,分離的酸,並用水洗至中性。 ⑶與8%NaOH溶液3次,每次在容量和允許浸泡30分鍾,用水洗滌至pH為8-9。
3。隨著時間的推移,變色,和損失的交換容量,可以是該樹脂的老化處理,以再生的離子交換樹脂的離子交換樹脂的再生使用。再生樹脂的方法,是對類似的不同而不同,但基本步驟和預處理,第一漂洗,然後用離子交換過程的可逆性原理,與H +,Na +的(或OH - ,Cl-)的交換樹脂離子IE瀏覽器可以。再生過程中,你可以使用靜態方法和動態方法和其他方法。 2mol / L的鹽酸的陽離子交換樹脂的再生,例如:(1)靜態方法,漂洗後的樹脂中加入適量(2-3倍(體積)或更多)的24小時或更長時間(的放置過程中應始終是攪拌),棄掉的酸,並用水洗至中性。 (2)動態方法是2-3倍容量的2 mol / L的(約7%)的HCl溶液(或其它酸),從下部的橫柱的開關旋鈕打開第一次釋放,殘留水從跨列,讓液體慢慢的pH值測試的污水流出,並在任何時候,當污水呈強酸性,關閉旋鈕,靜置一段時間,換來的是完全的(靜態再勝)後釋放的酸,以及所添加的酸的其餘部分(動態的再生),最後用水洗至中性漂洗可以。
注(1)為了避免在洗滌過程中,樹脂的交換動作的自來水中的離子發生,最好先用自來水洗出,大部分的樹脂酸(或鹼)[的流出物的pH為約2-3(11 - 12)](去離子水),用蒸餾水洗滌至pH為6-7(或8-9)。 (2)陰離子交換樹脂可以很容易地分解超過40個時,應特別注意。 ⑶樹脂支付的過程中逐漸開裂破碎,但一般為3-4年,甚至更長的時間,而且不容易倒掉。 (4)交易(或再生)樹脂應立即使用,不能阻止足夠長的時間,因
?
?
Ⅰ陽離子交換柱
Ⅱ陰離子交換柱
Ⅲ混合離子交換柱
?
?
?????????????????
?
?
?
圖2-35圖2-36離子交換裝置圖的橫欄柱直徑比
?
它的穩定性差。交叉Na +型陽離子樹脂通常比H +從十字架上的陰離子樹脂的Cl-比OH-的形式形成穩定的穩定。 ⑸樹脂再生,應選擇於樹脂上的酸(鹼),如對Pb2 +的組合相結合的離子的基礎上,不能使用鹽酸硝酸鉛(NO3)2應是可溶的。
五,離子交換方法的具體操作
1。應該是預處理或再生樹脂樹脂的變換,變換後的樹脂放置在蒸餾水中。
2。裝柱(1)的選擇是根據實驗的目的和情況不同性質的離子交換樹脂中選擇的樹脂,
如果吸附的無機陽離子或有機鹼,應該使用的陽離子交換樹脂,而隨後的吸附是一種無機陰離子或有機認為應該使用的陰離子交換樹脂,如果分離的氨基酸,例如兩性物質,使用陽離子陰離子交換樹脂可以是。未定羊後,陰離子交換樹脂,以確定需要的類型的交換基團的,弱的酸(鹼)等樹脂為強吸附的離子從交叉的電阻,可以使用,和用於吸附較弱的酸(鹼)電阻,應選擇從AC樹脂。幾種離子的共存應該使用弱吸附縣,強交換樹脂的吸附後的重新選擇。的樹脂作為催化劑時,應使用強酸性離子交換樹脂(基峰)。 (2)樹脂填充柱好書裝入離子交換柱的激活過程被載入柱。柱填料,關鍵在於的間隙中或氣泡不能為樹脂的具體做法是:第1離子交換柱部的去離子水,然後放入列中的樹脂與水,並打開所述活塞的下部,水開始流程。當樹脂滴加結束後,用去離子水沖洗樹脂,直到流出物的pH為中性。柱填料的過程中特別注意不能沒有水,樹脂層,以避免氣泡和使樹脂故障。如果無意中產生的氣泡,用玻璃棒攪拌分支,並與氣泡。
3。開關旋鈕遠離交叉打開的離子交換柱的下端,將已處理的離子交換柱,在去離子水排出(註:進一步測試一次的流出物的pH值是中性的,如果不是則繼續去離子水沖洗至中性) 。直到剛好隱瞞樹脂的去離子水,被添加到待處理的樣品液體的離子交換柱(注意:當他們不使樹脂翻轉),開關旋鈕打開該樹脂柱的下端,控制流速20-30滴每分鍾,樣品液體時,當幾乎所有進入到樹脂中,加入去離子水(註:不能讓樹脂層的交叉過程中沒有水,以避免產生氣泡,影響從交叉影響)繼續在十字架上,直到出水pH約6-7年。 ⑷
樹脂再生方法的運算。
❽ 如何正確有效解決離子交換樹脂污染問題
離子交換樹脂在長期工作過程中,經常會被原水中含有的各種雜質所污染,例如有機物,鐵,硅,懸浮物等,受不同污染物質污染後的樹脂,需要採用相應的解決辦法,有效的排除污染難題,恢復其性能。
羅門哈斯4000CL樹脂硅污染的處理方法
硅化合物污染發生在強鹼陰離子交換器中,尤其是在強、弱型陰樹脂聯合應用的設備和系統中,其結果往往導致陰交換器的除硅效率下降。
發生這種污染的原因是再生不充分,或樹脂失效後沒有及時再生。處理方法,可用稀的溫鹼液浸泡溶解。鹼液濃度為2%,溫度約40度。污染嚴重時,可使用加溫的4%氫氧化鈉溶液循環清洗。
羅門哈斯4000CL樹脂受有機物污染的處理方法
苯乙烯系強鹼性陰樹脂易受有機物污染,其征狀為:(1)樹脂顏色變深;(2)工作交換容量下降;(3)出水電導率增大;(4)出水pH值降低;(5)出水二氧化硅含量增大;(6)清洗水量增加。
防止有機物污染的基本措施是在預處理中將水中有機物盡量除去,並採用抗污染樹脂,如大孔弱鹼陰樹脂,丙烯酸系陰樹脂對抗有機物污染很有效。
常用復甦方法為鹼性鹽法。即用10%NaCl+4-6%NaOH混合液,用量為3個床體積,以緩慢的流速通過樹脂層,當第2個床體積通過入後,浸泡樹脂8小時或放置過夜,再通入第3床體積混合液。混合液需加溫至40-50度。若在混合液中加1%左右磷酸鈉或硝酸鈉,或結合壓縮空氣攪拌樹脂層,則效果更佳。
當用鹼性鹽法效果不佳時,可以考慮用次氯酸鈉溶液清洗。此時,在陰單床或混床系統,先用至少一個床體積的10%NaCl溶液通過樹脂層,使樹脂徹底失效。次氯酸鈉溶液濃度為有效氯含量1%,用量為3個樹脂床體積。第2個床體積溶液在樹脂床內浸泡4小時,溶液不用加熱。最後,微量的次氯酸鈉必須淋洗(沖洗)干凈,包括下水道中的廢液。
羅門哈斯分離樹脂鐵污染的處理方法
陽樹脂中的鐵主要來源於原水中的鐵離子,特別是鐵鹽作為混凝劑時。陰樹脂中的鐵主要來源於再生液。被鐵污染的樹脂顏色變深,交換容量降低,並會加速陰樹脂有降解。
清除鐵化合物的方法,通常是用加抑制劑的高濃度鹽酸(10-15%)浸泡樹脂5-12小時,甚至更長。也可用檸檬酸、氨基三乙酸、EDTA等絡合物進行處理。
❾ 為什麼用稀鹼液洗滌
他們的機理是不同的,
用有機溶劑的目的是要讓油污溶解在溶劑里從而去污,
用鹼性回清潔劑的目的是要徹底答去除油污,
兩種機理不同,用途范圍自然不同。
舉個例子,你用過餐後手上也許會蘸蹭油污,這時候你是會用有機溶劑清洗還是用肥皂清洗呢,相信沒有人會選擇前者。
鹼液去除油污的效果非常好,它可以比較快的分解油污,而且比較環保,肥皂的就是用氫氧化鈉製作的。