導航:首頁 > 廢水污水 > 污水治理為什麼要加鐵粉

污水治理為什麼要加鐵粉

發布時間:2023-01-11 22:29:28

Ⅰ 鐵粉是什麼有什麼用

尺寸小於1mm的鐵的顆粒集合體。顏色:黑色。是粉末冶金的主要原料。按粒度,習慣上分為粗粉、中等粉、細粉、微細粉和超細粉五個等級。粒度為150~500μm范圍內的顆粒組成的鐵粉為粗粉,粒度在44~150μm為中等粉,10~44μm的為細粉,0.5~10μm的為極細粉,小於0.5μm的為超細粉。一般將能通過325目標准篩即粒度小於44μm的粉末稱為亞篩粉。鐵粉主要包括還原鐵粉和霧化鐵粉,它們由於不同的生產方式而得名。鐵粉生產工藝技術、氧化鐵粉加工方法及鐵粉的用途
1、一種快速制備海綿銅的工藝
2、煉鋼原料用的鐵粉磚及其製造方法
3、低松裝密度還原鐵粉及其製造方法
4、汽車點火線圈內鐵粉壓製成型的軟磁鐵芯及其製作方法
5、一種利用化工生產中鐵粉還原法生產工藝產生的鐵泥渣製取氧化鐵黑的方法
6、納米氧化鐵粉體的製造方法
7、高活性還原鐵粉以及對甲基苯胺的制備方法
8、以鐵粉還原法生產有機產品同步生產氧化鐵黑的方法
9、海綿鐵的製造方法、還原鐵粉及其製造方法
10、卟啉鐵粉的製作方法
11、一種用煉鋼轉爐煙塵或污泥製取鐵粉的方法及其產品
12、含熱塑性樹脂的鐵粉組合物及其制備方法
13、一種製取鐵粉的方法
14、鐵粉芯、用於鐵粉芯的鐵粉及鐵粉芯的制備方法
15、一種電機樹脂鐵粉定子及製造方法
16、超細羰基鐵粉的製取工藝
17、不封鎖線路條件下修復傷損鋼軌的方法及其專用的噴焊炬和軌鐵粉
18、高效低塵鐵粉焊條
19、磁性鑄鐵粉處理含重金屬污水的方法
20、高容量活性鐵粉製造方法
21、從含鐵粉塵直接合成製取三氯化鐵的方法
22、以吹氧平爐煙塵灰製取鐵氧體用氧化鐵粉的工藝
23、高效鹼性低氫型鐵粉焊條
24、還原鈦鐵礦型高效鐵粉焊條
25、一種回收利用鑄造硅鐵粉末的方法
26、銅鐵粉末冶金襯套及其製作工藝
27、用還原磨選法製取微合金鐵粉的方法
28、白煤爐回收鑄鐵粉澆注氣缸套方法
29、利用靜電從硫酸工業廢渣中提取鐵粉技術
30、含鐵粉料中鐵分的同位素測量系統
31、加入鐵粉生產1·5,1·8-二氨基萘混合物的制備方法
32、磷酸高鐵粉末及其製法
33、粉末冶金用的水霧化鐵粉及其製造方法
34、高效鐵粉耐候鋼焊條
35、連續式鐵粉過濾除氧的方法及連續式鐵粉過濾除氧器
36、一種利用含鐵粉塵製造生鐵的方法
37、一種渣鐵粉的粘結方法
38、從粉煤灰中提取鐵粉並熔煉成生鐵的方法
39、制備高純鐵粉的方法
40、經過磷化處理的鐵粉及其製造方法
41、一種高鋅含鐵粉塵的處理方法
42、含硅鐵粉
43、磁鐵粉末和各向同性稀土類粘合磁鐵
44、高純度超細電子級三氧化二鐵粉體的制備方法
45、自蔓延高溫合成氮化硅鐵粉末的制備方法
46、從轉爐污泥制備粉末冶金用鐵粉的方法
47、磁鐵粉末與各向同性粘結磁鐵
48、一種納米金屬鐵粉的化學制備方法
49、磁鐵粉末和各向同性粘結磁鐵
50、磁鐵材料的製造方法、薄帶狀磁鐵材料、磁鐵粉末及粘結磁鐵
51、鋼渣中提取的精鐵粉生產球團礦的方法
52、納米級復合磁鐵粉末及磁鐵的製造方法
53、鐵氧體磁鐵粉末、用該磁鐵粉末的磁鐵及它們的製造方法
54、磁鐵粉末、其製造方法和使用該磁鐵粉末的粘結磁鐵
55、鐵基合金永磁鐵粉末及其製造方法
56、磁鐵粉末及各向同性粘結磁鐵
57、磁鐵粉末及各向同性粘結磁鐵
58、磁鐵粉末及各向同性粘結磁鐵
59、溫壓鐵粉的製造方法
60、磁鐵粉末及其製造方法
61、冷卻輥子、薄帶狀磁鐵材料、磁鐵粉末及粘合磁鐵
62、磁鐵粉末、磁鐵粉末的製造方法及粘結磁鐵
63、磁鐵粉末、磁鐵粉末的製造方法及粘結磁鐵
64、磁鐵粉末及各向同性粘結磁鐵
65、磁鐵粉末及各向同性粘結磁鐵
66、含鐵粉塵銹化冷固團
67、冷卻輥、磁鐵材料的製造方法、薄帶狀磁鐵材料、磁鐵粉末及粘結磁鐵
68、鐵氧體磁鐵粉末和使用該磁鐵粉末的磁鐵及其製造方法
69、冷卻輥、薄帶狀磁鐵材料、磁鐵粉末及粘結磁鐵
70、磁鐵粉末、磁鐵粉末的製造方法和粘合磁鐵
71、薄帶狀磁鐵材料、磁鐵粉末及稀土粘結磁鐵
72、磁鐵粉末的製造方法、磁鐵粉末及粘結磁鐵
73、一種還原軋鋼鐵鱗和鐵精礦制備合金鐵粉的方法
74、高耐氣候性磁鐵粉的製造方法及得到的產品
75、高耐氣候性磁鐵粉及使用該磁鐵粉的磁鐵
76、包含鐵粉、添加劑和流動劑的聚集體的粉末組合物及其制備方法
77、一種納米顆粒鐵粉的制備方法
78、一種煉鋼用鐵粉包芯線
79、用軸承的光球鋼末生產的中等強度鐵粉強化劑及其製造方法
80、鐵磁金屬基粉末、用其製成的鐵粉芯和鐵磁金屬基粉末的製造方法
81、以鐵粉還原工藝中產生的鐵泥為原料生產氧化鐵黑的方法
82、一種鐵粉玻璃鋼黑板
83、鐵粉礦磁化爐
84、電子式鐵粉芯
85、鋼筋鑄鐵粉碎錘
86、磨筒無鐵粉及減輕噪音的振動磨機
87、疏鬆介質鐵粉固定床
88、黃砂鐵粉分離機
89、鐵粉過濾-離子交換除氧器
90、自動連續鐵粉過濾離子交換組合除氧器
91、用鐵質廢料生產高純電解鐵粉的電解裝置
92、海棉鐵粉壓塊機
93、水霧化鋼鐵粉末烘乾機
94、無動力鋼鐵粉末合批機
95、鋼鐵粉末高溫還原電爐
96、鋼鐵粉餅破碎裝置
97、球磨機碎小鋼球和鐵屑鐵粉分離清除裝置
98、鋼鐵粉末混料機
99、用焦爐煤氣還原鐵礦石粉製取鐵粉的方法
100、在利用煤和細礦的煉鐵過程中回收含鐵粉塵和淤泥的裝置和方法
101、含醯胺類潤滑劑的鐵粉末組合物及其制備方法
102、含醯胺型潤滑劑的鐵粉末組合物及其制備方法
103、一步法氣霧化鐵粉
104、冷軋乳化液中納米鐵粉的回收方法
105、一種生產還原鈦鐵粉鐵粉的方法
106、廢氧化鐵粉狀脫硫劑的二次再生利用方法
107、磁鐵粉末和各向同性粘結磁鐵
108、磁鐵粉末與各向同性粘結磁鐵
109、硅鐵粉超微超細連續加工工藝
110、採用鋁鎂合金制備復合鐵粉降解水中含鹵有機物
111、一種高爐煉鐵粉塵回收利用的方法
112、一種鐵粉還原硝基苯制氧化鐵黑聯產硫酸苯胺鹽的方法
113、用鐵粉廠除塵灰提煉生鐵的方法
114、低合金高強度鋼用超低氫型高效鐵粉焊條
115、一種從轉爐爐塵中提取鐵粉的方法
116、微波輻射釩鈦鐵精礦製取天然微合金鐵粉的方法
117、一種氧化鐵粉的制備方法
118、一種制備氧化鐵粉的方法
119、一種鐵粉吸收劑及其制備方法和應用
120、一種鐵粉吸收劑及其制備方法和應用
121、海棉鐵和還原鐵粉的製造方法、海棉鐵和裝入裝置
122、各向異性磁鐵粉末的製造方法
123、一種超細/納米氧化鐵/鐵粉的制備方法
124、稀土類各向異性磁鐵粉末
125、測定鐵礦石、氧化鐵粉中總氯含量的方法
126、鋼渣微粉乾式提取精鐵粉的方法
127、一種煉鋼用鐵粉球及其制備方法
128、納米鐵粉快速降解多溴聯苯醚的方法
129、鋼-鐵渣中渣鐵球及渣鐵粉回收工藝
130、一種油過濾器油鐵粉分離裝置
131、通過熱壓直接還原鐵粉和煅燒添加劑製造鐵水的設備及其使用方法
132、一種納米鐵粉的制備方法
133、溫壓鐵粉及其制備方法
134、高爐含鐵粉塵分離工藝方法
135、一種油過濾器油鐵粉分離裝置
136、鐵粉還原DNS鈉鹽制備DSD酸的半連續化方法
137、鐵粉還原DNS鈉鹽制備DSD酸的方法
138、一種鐵礦粉制備鐵粉球的粘結劑及其制備的鐵粉球
139、一種連續除去礦渣中所含鐵塊和鐵粉的裝置
140、用於製造包含直接還原鐵粉的還原材料的壓制鐵的設備以及使用該設備製造鐵水的設備
141、一種制備納米鐵粉的方法
142、黃銅包覆鐵粉含油軸承
143、純銅包覆鐵粉含油軸承
144、鐵粉芯研磨裝置及其方法、以及其成品
145、用於製造包含直接還原鐵粉的還原材料的壓制鐵的設備以及使用該設備製造鐵水的設備
146、用於製造包含直接還原鐵粉的還原材料的壓制鐵的設備以及使用該設備製造鐵水的設備
147、用於製造包含直接還原鐵粉的還原材料的壓制鐵的設備以及使用該設備製造鐵水的設備
148、直接使用粉煤或塊煤及鐵粉礦製造鐵水的設備、方法、採用它們的聯合鋼廠及方法
149、以坡縷石為載體的羰基鎳粉、羰基鐵粉及其制備方法
150、一種將赤鐵礦或褐鐵礦直接還原製成鐵粉的方法
151、負載型超細鐵粉的補鐵劑及制備方法和用途
152、鐵粉、作為食品添加劑的用途、食品添加劑以及鐵粉的製造方法
153、氧化鐵粉固體提純方法
154、泡沫鐵粉剎車片
155、納米SiO2包覆羰基鐵粉的生產方法
156、碳酸鈣、鐵粉復合脫硫劑
157、煉鋼原料用的鐵粉磚的製造方法
158、制備納米級氧化鋁彌散鐵粉的方法
159、耐高溫鐵粉芯的製造方法
160、高磁導率鐵粉芯的製造方法
161、超細鐵粉的鈍化方法
162、一種納米鐵粉的生產方法
163、一種防止超細羰基鐵粉自燃的方法
164、超硬質合金刀頭專用鐵粉
165、鋸片用低頻冷壓納米鐵粉
166、金剛石鋸片專用鐵粉
167、金屬玻璃專用納米鐵粉
168、超級潤滑劑納米級鐵粉
169、納米級塗料鐵粉
170、鋼鐵工業酸洗廢棄鹽酸循環利用並回收納米鐵粉及一氧化碳的方法
171、軟磁材料專用納米鐵粉
172、碎焊絲與鐵粉混合的焊接方法
173、一種微米級、亞微米級鐵粉的制備方法
174、一種用轉底爐快速還原含碳含金黃鐵礦燒渣球團富集金及聯產鐵粉的方法
175、一種高性能磁粉芯用超細羰基鐵粉的制備方法
176、一種濕式永磁筒式高純度鐵粉提取機
177、超薄型鐵粉玻璃鋼黑板
178、信號連接線用鐵粉芯
179、一種牽引式鐵粉收集裝置
180、硅鐵粉超微超細連續加工裝置
181、鐵粉芯的改進結構
182、在粉煤灰中提取鐵粉的磁式分提設備
183、一種油過濾器油鐵粉分離裝置
184、交、直流電鐵粉芯式電流濾波線圈的改良
185、一種油過濾器油鐵粉分離裝置
186、推板助推式鐵粉運輸自卸車
187、逆流式鐵粉末磁選機
188、信號連接線用鐵粉芯
189、防止電磁波鐵粉心基座
190、鐵粉芯
191、回收鐵粉還原法制氨基苯酚工藝中副產物制備氧化鐵黑的方

Ⅱ 納米鐵粉去除污染水體是什麼原理

納米鐵粉去除污染水體,是利用的吸附原理。
納米鐵粉加入污染水體後,在水中被快速氧化,水合,形成氫氧化鐵凝膠,氫氧化鐵凝膠具有巨大的比表面積,具有非常強的吸附能力,快速吸附水中的顆粒物,最終形成沉澱除去。自來水廠就是利用這一原料來凈化自來水的。

Ⅲ 為什麼鐵碳填料可以處理污水

主要還是便宜,和廢物利用,以及後續可以減少fenton工藝的催化劑加葯量。鐵碳微電解的原回理是利用金屬腐蝕答原理法,形成原電池對廢水進行處理的良好工藝,又稱內電解法、鐵屑過濾法等。微電解技術是目前處理高濃度有機廢水的一種理想工藝,又稱內電解法。它是在不通電的情況下,利用填充在廢水中的微電解材料自身產生1.2V電位差對廢水進行電解處理,以達到降解有機污染物的目的。根據上海電氣中央研究院的大量工業廢水處理實驗測試結果,鐵碳作為預處理的方式,可以極大程度降低難降解廢水中的有害有毒物質的濃度,配合後續的fenton工藝,可以最大限度降低預處理成本,並使廢水具有生化性。

Ⅳ 某電池廠排放的污水pH=4,並含有重金屬離子Pb2+,下列合理的治理方案是向污水中加入

選B,
首先pH=4,是酸性河流,要用鹼液來中和,D是硫酸,故排除。
,由於四個選項中的碳酸鈣、生石灰、純鹼都能夠和酸性溶液反應,即都可以來治理酸性廢水,但能夠把Pb2+置換出來的只有B和D中的鐵粉和鋁粉,綜合考慮,生石灰和鐵粉的成本要少.

希望能幫到您 歡迎討論~

Ⅳ 電鍍廢水常用的處理方法

電鍍廢水常用的方法有哪些?

電解:高能耗、高能耗、高鐵耗,高專濃度含鉻廢水產生的污泥屬過多,不宜採用。同時,含氰廢水處理不理想,應採用化學法處理含氰廢水。

化學試劑+氣浮法:採用化學試劑氧化還原中和氣浮分離污泥與水。由於電鍍污泥比例大,廢水中含有多種有機添加劑,氣浮在實際應用中不徹底,運行管理不便。到90年代末,氣浮法的應用越來越少。

化學品+沉澱:該方法是第一種採用,經過30多年的實際使用比較,採用不同的處理工藝。目前,已恢復到很早、有效的工藝技術中來。這種方法在國外電鍍處理中應用較多。但是,經過長時間的固液分離,沉澱池中的污泥會發生翻身,出水很難保證標準的穩定性。

生物處理工藝:水量少、單一鍍種的操作效果高,許多大型項目的使用非常不穩定,因為水質和水量難以恆定,微生物難以適應水溫、物種、重金屬離子濃度的變化。而pH值,大量微生物瞬間死亡,發生環境污染事故,細菌培養不容易。

膜分離法:是利用高分子所具有的選擇性來進行物質分離的技術,包括電滲析、反滲透、膜萃取、超過濾等。用電滲析法處理電鍍產業廢水,處理後廢水組成不變,有利於回收使用。

Ⅵ 關於電鍍含鎳廢水處理

電鍍廢水的處理與回用對節約水資源以及保護環境起著至關重要的作用。本文綜述了各種電鍍廢水處理技術的優缺點,以及一些新材料在電鍍廢水處理上的應用。
01 化學沉澱法
化學沉澱法是通過向廢水中投入葯劑,使溶解態的重金屬轉化成不溶於水的化合物沉澱,再將其從水中分離出來,從而達到去除重金屬的目的。
化學沉澱法因為操作簡單,技術成熟,成本低,可以同時去除廢水中的多種重金屬等優點,在電鍍廢水處理中得到廣泛應用。
1.鹼性沉澱法
鹼性沉澱法是向廢水中投加NaOH、石灰、碳酸鈉等鹼性物質,使重金屬形成溶解度較小的氫氧化物或碳酸鹽沉澱而被去除。該法具有成本低、操作簡單等優點,目前被廣泛使用。
但是鹼性沉澱法的污泥產量大,會產生二次污染,而且出水pH偏高,需要回調pH。NaOH由於產生污泥量相對較少且易回收利用,在工程上得到廣泛應用。
2.硫化物沉澱法
硫化物沉澱法是通過投加硫化物(如Na2S、NariS等)使廢水中的重金屬形成溶度積比氫氧化物更小的沉澱,出水pH在7~9,無需回調pH即可排放。
但是硫化物沉澱顆粒細小,需要添加絮凝劑輔助沉澱,使處理費用增大。硫化物在酸性溶液中還會產生有毒的HS氣體,實際操作起來存在局限性。
3.鐵氧體法
鐵氧體法是根據生產鐵氧體的原理發展起來的,令廢水中的各種重金屬離子形成鐵氧體晶體一起沉澱析出,從而凈化廢水。該法主要是通過向廢水中投加硫酸亞鐵,經過還原、沉澱絮凝,最終生成鐵氧體,因其設備簡單、成本低、沉降快、處理效果好等特點而被廣泛應用。
pH和硫酸亞鐵投加量對鐵氧體法去除重金屬離子的影響,確定鎳、鋅、銅離子的最佳絮凝pH分別為8.00~9.80、8.00~10.50和10.00,投加的亞鐵離子與它們摩爾比均為2~8,而六價鉻的最佳還原pH為4.00~5.50,最佳絮凝pH則為8.00~10.50,最佳投料比為20。出水的鎳含量小於0.5mg/L,總鉻含量小於1.0mg/L,鋅含量小於1.0mg/L,銅含量小於0.5mg/L,達到《電鍍污染物排放標准》(GB21900—2008)中「表2」的要求。
化學沉澱法的局限性
隨著污水排放標準的提高,傳統單一的化學沉澱法很難經濟有效地處理電鍍廢水,常常與其他工藝組合使用。
採用鐵氧體-CARBONITE(一種具有物理吸附與離子交換功能的材料)聯合工藝處理Ni含量約為4000mg/L的高濃度含鎳電鍍廢水:先以鐵氧體法控制pH為11.0,在Fe/Fe。摩爾比O.55,FeSO4·7H2O/Ni質量比21,反應溫度35℃的條件下攪拌反應15min,出水Ni平均濃度從4212.5mg/L降至6.8mg/L,去除率達99.84%;然後採用CARBONITE處理,在CARBONITE投加量1.5g/L,pH=6.5,溫度35℃的條件下反應6h,Ni去除率可達96.48%,出水Ni濃度為0.24mg/L,達到GB21900-2008中的「表2」標准。
採用高級Fenton一化學沉澱法處理含螯合重金屬的廢水,使用零價鐵和過氧化氫降解螯合物,然後加鹼沉澱重金屬離子,不僅可以去除鎳離子(去除率最高達98.4%),而且可以降低COD化學需氧量。
02 氧化還原法
1.化學氧化法
化學氧化法在處理含氰電鍍廢水上的效果尤為明顯。該方法把廢水中的氰根離子(CN一)氧化成氰酸鹽(CNO-),再將氰酸鹽(CNO-)氧化成二氧化碳和氮氣,可以徹底解決氰化物污染問題。
常用的氧化劑包括氯系氧化劑、氧氣、臭氧、過氧化氫等,其中鹼性氯化法應用最廣。採用Fenton法處理初始總氰濃度為2.0mg/L的低濃度含氰電鍍廢水,在反應初始pH為3.5,H202/FeSO4摩爾比為3.5:1,H202投加量5.0g/L,反應時間60min的最佳條件下,氰化物的去除率可達93%,總氰濃度可降至0_3mg/L。
2.化學還原法
化學還原法在電鍍廢水處理中主要針對含六價鉻廢水。該方法是在廢水中加入還原劑(如FeSO、NaHSO3、Na2SO3、SO2、鐵粉等)把六價鉻還原為三價鉻,再加入石灰或氫氧化鈉進行沉澱分離。上述鐵氧體法也可歸為化學還原法。
該方法的主要優點是技術成熟,操作簡單,處理量大,投資少,在工程應用中有良好的效果,但是污泥量大,會產生二次污染。採用硫酸亞鐵作為還原劑,處理80t/d的含總鉻7O~80mg/L的電鍍廢水,出水總鉻小於1.5mg/L,處理費用為3.1元/t,具有很高的經濟效益。
以焦亞硫酸鈉為還原劑處理含80mg/L六價鉻、pH為6~7的電鍍廢水,出水六價鉻濃度小於0.2mg/L。
03 電化學法
電化學法是指在電流的作用下,廢水中的重金屬離子和有機污染物經過氧化還原、分解、沉澱、氣浮等一系列反應而得到去除。
該方法的主要優點是去除速率快,可以完全打斷配合態金屬鏈接,易於回收利用重金屬,佔地面積小,污泥量少,但是其極板消耗快,耗電量大,對低濃度電鍍廢水的去除效果不佳,只適合中小規模的電鍍廢水處理。
電化學法主要有電凝聚法、磁電解法、內電解法等。
電凝聚法是通過鐵板或者鋁板作為陽極,電解時產生Fe2+、Fe或Al,隨著電解的進行,溶液鹼性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通過絮凝沉澱去除污染物。
由於傳統的電凝聚法經過長時間的操作,會使電極板發生鈍化,近年來高壓脈沖電凝聚法逐漸替代傳統的電混凝法,它不僅克服了極板鈍化的問題,而且電流效率提高20%~30%,電解時間縮短30%~40%,節省電能30%~40%,污泥產生量少,對重金屬的去除率可達96%~99%。
採用高壓脈沖電絮凝技術處理某電鍍廠的電鍍廢水,Cu2十、Ni2、CN一和COD的去除率分別達到99.80%、99.70%、99.68%和67.45%。
電混凝法通常也與其他方法結合使用,利用電凝聚法和臭氧氧化法聯合處理電鍍廢水,以鐵和鋁做極板,出水六價鉻、鐵、鎳、銅、鋅、鉛、TOC(總有機碳)、COD的去除率分別為99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年來內電解法受到廣泛關注。內電解法利用了原電池原理,一般向廢水中投加鐵粉和炭粒,以廢水作為電解質媒介,通過氧化還原、置換、絮凝、吸附、共沉澱等多種反應的綜合作用,可以一次性去除多種重金屬離子。
該方法不需要電能,處理成本低,污泥量少。通過靜態試驗研究了鐵碳微電解法對模擬電鍍廢水的COD及銅離子的去除效果,去除率分別達到了59.01%和95.49%。然而,採用微電解反應柱研究連續流的運行結果顯示,14d後微電解出水的COD去除率僅為10%~15%,銅的去除率降低至45%~50%之間,可見需要定期更換填料或對填料進行再生。
04 膜分離技術
膜分離技術主要包括微濾(MF)、超濾(UF)、納濾(NF)、反滲透(RO)、電滲析(ED)、液膜(Lv)等,利用膜的選擇透過性來對污染物進行分離去除。
該方法去除效果好,可實現重金屬回收利用和出水回用,佔地面積小,無二次污染,是一種很有發展前景的技術,但是膜的造價高,易受污染。
對膜技術在電鍍廢水處理中的應用和效果進行了分析,結果表明:結合常規廢水處理工藝與膜生物反應器(MBR)組合工藝,電鍍廢水被處理後的水質達到排放標准;電鍍綜合廢水經UF凈化、RO和NF兩段脫鹽膜的集成工藝處理後,水質達到回用水標准,RO和NF產水的電導率分別低於100gS/cm和1000gS/cm,COD分別約為5mg/L和10mg/L;鍍鎳漂洗廢水通過RO膜後,鎳的濃縮高達25倍以上,實現了鎳的回收,RO產水水質達到回用標准。
投資與運行費用分析表明:工程運行1年多即可收回RO濃縮鎳的設備費用。
液膜法並不是採用傳統的固相膜,而是懸浮於液體中很薄的一層乳液顆粒,是一種類似溶劑萃取的新型分離技術,包括制膜、分離、凈化及破乳過程。
美籍華人黎念之(NormanN.Li)博士發明了乳狀液膜分離技術,該技術同時具有萃取和滲透的優點,把萃取和反萃取兩個步驟結合在一起。乳化液膜法還具有傳質效率高、選擇性好、二次污染小、節約能源和基建投資少的特點,對電鍍廢水中重金屬的處理及回收利用有著良好的效果。
05 離子交換法
離子交換法是利用離子交換劑對廢水中的有害物質進行交換分離,常用的離子交換劑有腐殖酸物質、沸石、離子交換樹脂、離子交換纖維等。離子交換的運行操作包括交換、反洗、再生、清洗四個步驟。
此方法具有操作簡單、可回收利用重金屬、二次污染小等特點,但離子交換劑成本高,再生劑耗量大。
研究強酸性離子交換樹脂對含鎳廢水的處理工藝條件及鎳回收方法。結果表明:pH為6~7有利於強酸性陽離子交換樹脂對鎳離子的去除。離子交換除鎳的適宜溫度為30℃,適宜流速為15BV/h(即每小時l5倍樹脂床體積)。適宜的脫附劑為10%鹽酸,脫附液流速為2BV/h。前4.6BV脫附液可回用於配製電鍍槽液,平均鎳離子質量濃度達18.8g/L。
Mei.1ingKong等研究了CHS—l樹脂對cr(VI)的吸附能力,發現Cr(VI)在低濃度時,樹脂的交換吸附率是由液膜擴散和化學反應控制的。CHS一1樹脂對Cr(VI)的最佳吸附pH為2~3,在298K下其飽和吸附能力為347.22mg/g。CHS一1樹脂可以用5%的氫氧化鈉溶液和5%氯化鈉溶液來洗脫,再生後吸附能力沒有明顯的下降。
使用鈦酸酯偶聯劑將1一Fe203與丙烯酸甲酯共聚,在鹼性條件下進行水解,制備出磁性弱酸陽離子交換樹脂NDMC一1。
通過對重金屬Cu的吸附研究發現,NDMC—l樹脂粒徑較小、外表面積大,因而具有較快的動力學性能。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。
06 蒸發濃縮法
蒸發濃縮法是通過加熱對電鍍廢水進行蒸發,使液體濃縮達到回用的效果。一般適用於處理含鉻、銅、銀、鎳等重金屬濃度高的廢水,用其處理濃度低的重金屬廢水時耗能大,不經濟。
在處理電鍍廢水中,蒸發濃縮法常常與其他方法一起使用,可實現閉路循環,效果不錯,比如常壓蒸發器與逆流漂洗系統聯合使用。蒸發濃縮法操作簡單,技術成熟,可實現循環利用,但是濃縮後的干固體處置費用大,制約了它的應用,目前一般只作為輔助處理手段。
07 生物處理技術
生物處理法是利用微生物或者植物對污染物進行凈化,該方法運行成本低,污泥量少,無二次污染,對於水量大的低濃度電鍍廢水來說是不二之選。生物法主要包括生物絮凝法、生物吸附法、生物化學法和植物修復法。
1.生物絮凝法
生物絮凝法是一種利用微生物或微生物產生的代謝物進行絮凝沉澱來凈化水質的方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外、具有絮凝活性的代謝物,能使水中膠體懸浮物相互凝聚、沉澱。
生物絮凝劑與無機絮凝劑和合成有機絮凝劑相比,具有處理廢水安全無毒、絮凝效果好、不產生二次污染等優點,但其存在活體生物絮凝劑不易保存,生產成本高等問題,限制了它的實際應用。目前大部分生物絮凝劑還處在探索研究階段。
生物絮凝劑可以分為以下三類:
(1) 直接利用微生物細胞作為絮凝劑,如一些細菌、放線菌、真菌、酵母等。
(2) 利用微生物細胞壁提取物作為絮凝劑。微生物產生的絮凝物質為糖蛋白、黏多糖、蛋白質等高分子物質,如酵母細胞壁的葡聚糖、Ⅳ-乙醯葡萄糖胺、絲狀真菌細胞壁多糖等都可作為良好的生物絮凝劑。
(3) 利用微生物細胞代謝產物的絮凝劑。代謝產物主要有多糖、蛋白質、脂類及其復合物等。
近年來報道的生物絮凝劑主要為多糖類和蛋白質類,前者有ZS一7、ZL—P、H12、DP。152等,後者有MBF—W6、NOC—l等。陶穎等]利用假單胞菌Gx4—1胞外高聚物製得的絮凝劑對cr(Ⅳ)進行了絮凝吸附研究。
其研究結果表明,在適宜條件下Or(Ⅳ)的去除率可達51%。研究枯草芽孢桿菌NX一2制備的生物絮凝劑v一聚谷氨酸(T-PGA)對電鍍廢水的處理效果,實驗證明,T-PGA能有效地去除Cr3+、Ni等重金屬離子。
2.生物吸附法
生物吸附法是利用生物體自身的化學結構或成分特性來吸附水中的重金屬,然後通過固液分離,從水中分離出重金屬。
可以從溶液中分離出重金屬的生物體及其衍生物都叫做生物吸附劑。生物吸附劑主要有生物質、細菌、酵母、黴菌、藻類等。該方法成本低,吸附和解析速率快,易於回收重金屬,具有選擇性,前景廣闊。
研究各種因素對枯草芽胞桿菌吸附電鍍廢水中Cd效果的影響,結果表明:pH為8、吸附劑用量為10g/L(濕重)、攪拌轉數為800r/min、吸附時間為10min的條件下,廢水中鎘的去除率達93%以上。
吸附鎘後的枯草芽胞桿菌細胞膨大,色澤變亮,細胞之間相互粘連。Cd2+與細胞表面的鈉進行了離子交換吸附。
殼聚糖是一種鹼性天然高分子多糖,由海洋生物中甲殼動物提取的甲殼素經過脫乙醯基處理而得到,可以有效地去除電鍍廢水中的重金屬離子。
通過乳化交聯法制備了磁性二氧化硅納米顆粒組成的殼聚糖微球,然後用乙二胺和縮水甘油基三甲基氯化反應的季銨基團改性,所得生物吸附劑具有很高的耐酸性和磁響應。
用它來去除酸性廢水中的cr(VI),在pH為2.5、溫度為25℃的條件下,最大吸附能力為233.1mg/g,平衡時間為40~120min[取決於初始Cr(VI)的濃度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液進行吸附劑再生,解吸率達到95.6%,因此該生物吸附劑具有很高的重復使用性。
3.生物化學法
生物化學法是指微生物直接與廢水中的重金屬進行化學反應,使重金屬離子轉化為不溶性的物質而被去除。
從電鍍廢水中篩選分離出3株可以高效降解自由氰根的菌種,在最佳條件下可以將80mg/L的CN一去除到0.22mg/L。研究發現,有許多可以將cr(VI)還原成低毒cr(III)的微生物,如無色桿菌、土壤細菌、芽孢桿菌、脫硫弧菌、腸桿菌、微球菌、硫桿菌、假單胞菌等,其中除了大腸桿菌、芽孢桿菌、硫桿菌、假單胞菌等可以在好氧條件下還原Cr(VI),其餘大部分菌種只能在厭氧條件下還原cr(VI)。
R.S.Laxman等發現灰色鏈黴菌能在24~48h內把cr(VI)還原成cr(III),並能夠將cr(III)顯著地吸收去除。中科院成都生物研究所的李福、吳乾菁等從電鍍污泥、廢水及下水道鐵管內分離篩選出35株菌種,並獲得了SR系列復合功能菌,該功能菌具有高效去除Cr(VI)和其他重金屬的功效,並在此基礎上進行了工程應用,取得較好的效果。
4.植物修復法
植物修復法是利用植物的吸收、沉澱、富集等作用來處理電鍍廢水中的重金屬和有機物,達到治理污水、修復生態的目的。
該方法對環境的擾動較少,有利於環境的改善,而且處理成本低。人工濕地在這方面起著重要的作用,是一種發展前景廣闊的處理方法。
李氏禾是一種可富集金屬的水生植物,在去除水中重金屬方面具有很大的潛力。在人工濕地種植了李氏禾,用以處理含鉻、銅、鎳的電鍍廢水,使它們的含量分別降低了84.4%、97.1%和94_3%。當水力負荷小於0.3m/(m2·d1時,出水中的重金屬濃度符合電鍍污染物排放標準的要求;當進水鉻、銅和鎳的濃度為5、10和8mg/L時,仍能達標排放。
可見用李氏禾處理中低濃度的電鍍廢水是可行的。質量平衡表明,鉻、銅和鎳大部分保留在人工濕地系統的沉積物中。
08 吸附法
吸附法是利用比表面積大的多孔性材料來吸附電鍍廢水中的重金屬和有機污染物,從而達到污水處理的效果。
活性炭是使用最早、最廣的吸附劑,可以吸附多種重金屬,吸附容量大,但是活性炭價格昂貴,使用壽命短,需要再生且再生費用不低。一些天然廉價材料,如沸石、橄欖石、高嶺土、硅藻土等,也具有較好的吸附能力,但由於各種原因,幾乎沒有得到工程應用。
以沸石作為吸附劑處理電鍍廢水,發現在靜態條件下,沸石對鎳、銅和鋅的吸附容量分別達到5.9、4.8和2.7mg/g.先以磁性生物炭去除電鍍廢水中的Cr(vI),
然後通過外部磁場分離,使得cr(VI)的去除率達到97.11%。而在10rain的磁選後,濁度由4075NTU降至21.8NTU。其研究還證實了吸附過程後,磁性生物炭仍保留原來的磁分離性能。近年來又研製開發了一些新型吸附材料,如文中提到的生物吸附劑以及納米材料吸附劑。
納米技術是指在1~100nm尺度上研究和應用原子、分子現象,由此發展起來的多學科交叉、基礎研究與應用緊密聯系的科學技術。納米顆粒由於具有常規顆粒所不具備的納米效應,因而具有更高的催化活性。
納米材料的表面效應使其具有高的表面活性、高表面能和高的比表面積,所以納米材料在制備高性能吸附劑方面表現出巨大的潛力。雷立等l採用溫和水熱法一步快速合成了鈦酸鹽納米管(TNTs),並應用於對水中重金屬離子Pb(II)、cd(II)和Cr(III)的吸附。
結果表明:pH=5時,初始濃度分別為200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分別為513.04、212.46和66.35mg/L,吸附性能優於傳統吸附材料。納米技術作為一種高效、節能環保的新型處理技術,得到人們的廣泛認同,具有很大的發展潛力。
09 光催化技術
光催化處理技術具有選擇性小、處理效率高、降解產物徹底、無二次污染等特點。
光催化的核心是光催化劑,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化學穩定性好、無毒、兼具氧化和還原作用等諸多特點。TiO:在受到一定能量的光照時會發生電子躍遷,產生電子一空穴對。
光生電子可以直接還原電鍍廢水中的金屬離子,而空穴能將水分子氧化成具有強氧化性的OH自由基,從而把很多難降解的有機物氧化成為COz、H:0等無機物,被認為是最有前途、最有效的水處理方法之一。
以懸浮態的TiO2為催化劑,在紫外光的作用下對絡合銅廢水進行光催化反應。結果表明:當TiO2投加量為2g/L,廢水pH=4時,在300W高壓汞燈照射下,載入60mL/min的空氣反應40rain,對120mg/LEDTA絡合銅廢水中Cu(II)與COD的去除率分別達到96.56%和57.67%。實施了「物化一光催化一膜」處理電鍍廢水的工程實例,出水COD去除率達到70%以上,同時TiO2光催化劑可重復使用。
膜法的引入可大大提高水質,使處理後水質達到中水回用標准,提高了電鍍廢水的資源化利用率,回用率達到85%以上,大大節約了成本。然而光催化技術在實際應用中受到了很多的限制,如重金屬離子在光催化劑表面的吸附率低,催化劑的載體不成熟,遇到色度大的廢水時處理效果大幅下降,等等。不過光催化技術作為高效、節能、清潔的處理技術,將會有很大的應用前景。
10 重金屬捕集劑
重金屬捕集劑又叫重金屬螯合劑,它能與廢水中的絕大部分重金屬離子產生強烈的螯合作用,生成的高分子螯合鹽不溶於水,通過分離就可以去除廢水中的重金屬離子。
重金屬捕集劑處理後的重金屬廢水中剩餘的重金屬離子濃度大部分都能達到國家排放標准。以二硫代氨基甲酸鹽重金屬離子捕集劑XMT探討了不同因素對Cu的捕集效果,對Cu去除率在99%以上,出水Cu濃度小於0.05mg/L,出水遠低於GB21900-2008的「表3」標准。
選取3種市售重金屬捕集劑對實際電鍍廢水中的Cu2+、Zn2+、Ni進行同步深度處理,發現三聚硫氰酸三鈉(簡稱TMT)對Cu的去除效果最為顯著,投加量少且效果穩定,但對Ni的去除效果較差。甲基取代的二硫代氨基甲酸鈉(以Me2DTC表示)的適用性最強,對3種重金屬離子均具有良好的去除效果,可達到GB21900-2008中的「表3」排放標准,且在DH=9.70時處理效果最佳。至於乙基取代的二硫代氨基甲酸鈉(Et2DTC),對Ni的去除效果不佳。
重金屬捕集劑因高效、低能、處理費用相對較低等特點而有很大的實用性。
結語
電鍍廢水成分復雜,應盡量分工段處理。在選擇處理方法時,應充分考慮各種方法的優缺點,加強各種水處理技術的綜合應用,形成組合工藝,揚長避短。
重金屬具有很大的回收價值且毒性大,在電鍍廢水處理過程中應多使用重金屬回收利用的工藝,盡可能地減少排放。
基於化學沉澱法污泥產量大,電化學法能耗高,膜分離技術的膜組件造價高且易受污染等諸多問題,就現有電鍍廢水處理技術而言,應向著節能、高效、無二次污染的方向改進。
同時可與計算機技術相結合,實現智能化控制。還可結合材料學、生物學等學科,開發出更適合處理電鍍廢水的新型材料。

Ⅶ 電鍍廢水處理方法

我國處理電鍍廢水常用的方法有化學法、生物法、物化法和電化學法等。
化學法
化學法是依靠氧化還原反應或中和沉澱反應將有毒有害的物質分解為無毒無害的物質,或者直接將重金屬經沉澱或氣浮從廢水中除去。
1、沉澱法
(1) 中和沉澱法。在含重金屬的廢水中加入鹼進行中和反應,使重金屬生成不溶於水的氫氧化物沉澱形式加以分離。中和沉澱法操作簡單,是常用的處理廢水方法。
(2) 硫化物沉澱法。加入硫化物使廢水中重金屬離子生成硫化物沉澱而除去的方法。與中和沉澱法相比,硫化物沉澱法的優點是:重金屬硫化物溶解度比其氫氧化物的溶解度更低,反應pH值在7~9之間,處理後的廢水一般不用中和,處理效果更好。但硫化物沉澱法的缺點是:硫化物沉澱顆粒小,易形成膠體,硫化物沉澱在水中殘留,遇酸生成氣體,可能造成二次污染。
(3) 螯合沉澱法。通過高分子重金屬捕集沉澱劑(DTCR)在常溫下與廢水中Hg2+、Cd2+、Cu2+、Pb2+、Mn2+、Ni2+、Zn2+及Cr3+等重金屬離子迅速反應,生成不溶水的螯合鹽,再加入少量有機或(和)無機絮凝劑,形成絮狀沉澱,從而達到捕集去除重金屬的目的。DTCR系列葯劑處理電鍍廢水的特點是可同時去除多種重金屬離子,對重金屬離子以絡合鹽形式存在的情況,也能發揮良好的去除效果,去除膠質重金屬不受共存鹽類的影響,具有較好的發展前景。
2、氧化法
通過投加氧化劑,將電鍍廢水中有毒物質氧化為無毒或低毒物,主要用於處理廢水中的CN-、Fe2+、Mn2+低價態離子及造成色度、昧、嗅的各種有機物以及致病微生物。如處理含氰廢水時,常用次氯酸鹽在鹼性條件下氧化其中的氰離子,使之分解成低毒的氰酸鹽,然後再進一步降解為無毒的二氧化碳和氮。
3、化學還原法
化學還原法在電鍍廢水治理中最典型的是對含鉻廢水的治理。其方法是在廢水中加入還原劑FeS04、NaHS03、Na2S03、S02或鐵粉等,使Cr(Ⅵ)還原成Cr(III),然後再加入NaOH或石灰乳沉澱分離。該法優點是設備簡單、投資少、處理量大,但要防止沉渣污泥造成二次污染。
4、中和法
通過酸鹼中和反應,調節電鍍廢水的酸鹼度,使其呈中性或接近中性或適宜下步處理的酸鹼度范圍,主要用來處理電鍍廠的酸洗廢水。
5、氣浮法
氣浮法作為處理電鍍廢水的技術是近幾年發展起來的一項新工藝。其基本原理是用高壓水泵將水加壓到幾個大氣壓注入溶罐中,使氣、水混合成溶氣水,溶氣水通過溶氣釋放器進入水池中,由於突然減壓,溶解在水中的空氣形成大量微氣泡,與電鍍廢水初步處理產生的凝聚狀物黏附在一起,使其相對密度小於水而浮到水面上成為浮渣排除,從而使廢水得到凈化。
生物法
生物處理是一種處理電鍍廢水的新技術。一些微生物代謝產物能使廢水中的重金屬離子改變價態,同時微生物菌群本身還有較強的生物絮凝、靜電吸附作用,能夠吸附金屬離子,使重金屬經固液分離後進入菌泥餅,從而使得廢水達標排放或回用。
1、生物吸附法
凡具有從溶液中分離金屬能力的物體或生物體制備的衍生物稱為生物吸附劑。生物吸附劑主要是菌體、藻類及一些提取物。微生物對重金屬的吸附機理取決於許多物理、化學因素,如光、溫度、pH值、重金屬含量及化學形態、其他離子、螫合劑的存在和吸附劑的預處理等。生物吸附技術治理重金屬污染具有一定的優勢,在低含量條件下,生物吸附劑可以選擇性地吸附其中的重金屬,受水溶液中鈣、鎂離子的干擾影響較小。該方法處理效率高,無二次污染,可有效地回收一些貴重金屬。但是生物成長環境不容易控制,往往會因水質的變化而大量中毒死亡。
2、生物絮凝法
生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。微生物絮凝劑是由微生物自身產生的、具有高效絮凝作用的天然高分子物質,它的主要成分是糖蛋白、黏多糖、纖維素、蛋白質和核酸等。它具有較高電荷或較強的親水性和疏水性,能與顆粒通過離子鍵、氫鍵和范德華力同時吸附多個膠體顆粒,在顆粒間產生架橋現象,形成一種網狀三維結構而沉澱下來。對重金屬有絮凝作用的生物絮凝劑約有十幾個品種,生物絮凝劑中的氨基和羥基可與Cu 2+、Hg2+、Ag+、Au2+等重金屬離子形成穩定的螯合物而沉澱下來。該方法處理廢水具有安全方便無毒,不產生二次污染,絮凝范圍廣,絮凝活性高、生長快,絮凝作用條件粗放,大多不受離子強度、pH值及溫度的影響,易於實現工業化等特點。
3、生物化學法
生物化學法是通過微生物與金屬離子之間發生直接的化學反應,將可溶性離子轉化為不溶性化合物而去除。其優點是:選擇性強、吸附容量大、不使用化學葯劑。污泥中金屬含量高,二次污染明顯減少,而且污泥中重金屬易回收,回收率高。但其缺點是功能菌和廢水中金屬離子的反應效率並不高,且培養菌種的培養基消耗量較大,處理成本較高。
物化法
物化法是利用離子交換或膜分離或吸附劑等方法去除電鍍廢水所含的雜質,其在工業上應用廣泛,通常與其他方法配合使用。
1、離子交換法
離子交換法是利用離子交換劑分離廢水中有害物質的方法。最常用的交換劑是離子交換樹脂,樹脂飽和後可用酸鹼再生後反復使用。離子交換是靠交換劑自身所帶的能自由移動的離子與被處理的溶液中的離子通過離子交換來實現的。多數情況下,離子是先被吸附,再被交換,具有吸附、交換雙重作用。對於含鉻等重金屬離子的廢水,可用陰離子交換樹脂去除Cr(VI),用陽離子交換樹脂去除Cr(Ⅲ)、鐵、銅等離子。一般用於處理低有害物質含量廢水,具有回收利用、化害為利、循環用水等優點,但它的技術要求較高、一次性投資大。
2、膜分離法
膜分離是指用半透膜作為障礙層,藉助於膜的選擇滲透作用,在能量、含量或化學位差的作用下對混合物中的不同組分進行分離。利用膜分離技術,可從電鍍廢水中回收重金屬和水資源,減輕或杜絕它對環境的污染,實現電鍍的清潔生產,對附加值較高的金、銀、鎳、銅等電鍍廢水用膜分離技術可實現閉路循環,並產生良好的經濟效益。對於綜合電鍍廢水,經過簡單的物理化學法處理後,採用膜分離技術可回用大部分水,回收率可達60%~80%,減少污水總排放量,削減排放到水體中的污染物。
3、蒸發濃縮法
該方法是對電鍍廢水進行蒸發,使重金屬廢水得以濃縮,並加以回收利用的一種處理方法,一般適用於處理含鉻、銅、銀、鎳等含重金屬的電鍍廢水。一般將之作為其他方法的輔助處理手段。它具有能耗大、成本高、佔地面積大、運轉費用高等缺點。
4、活性炭吸附法
活性炭吸附法是處理電鍍廢水的一種經濟有效的方法,主要用於含鉻、含氰廢水。它的特點是處理調節溫和,操作安全,深度凈化的處理水可以回用。但該方法存在活性炭再生復雜和再生液不能直接回鍍槽利用的問題,吸附容量小,不適於有害物含量高的廢水。
電化學法
1、電解法
電解法是利用電解作用處理或回收重金屬,一般應用於貴金屬含量較高或單一的電鍍廢水。電解法處理Cr(VI),是用鐵作電極,鐵陽極不斷溶解產生的亞鐵離子能在酸性條件下將Cr(VI)還原成Cr(Ⅲ),在陰極上Cr(Ⅵ)直接還原為Cr(Ⅲ),由於在電解過程中要消耗氫離子,水中余留的氫氧根離子使溶液從酸性變為鹼性,並生成鉻和鐵的氫氧化物沉澱去除鉻。電解法能夠同時除去多種金屬離子,具有凈化效果好、泥渣量少、佔地面積小等優點,但是消耗電能和鋼材較多,已較少採用。
2、原電池法
以顆粒炭、煤渣或其他導電惰性物質為陰極,鐵屑為陽極,廢水中導電電解質起導電作用構成原電池,通過原電池反應來達到處理廢水的目的。近年來,鐵碳微電解技術在電鍍廢水的處理中受到越來越多的重視。
3、電滲析法
電滲析技術是膜分離技術的一種。它是將陰、陽離子交換膜交替地排列於正負電極之間,並用特製的隔板將其隔開,在電場作用下,以電位差為推動力,利用離子交換膜的選擇透過性,把電解質從溶液中分離出來,從而實現電鍍廢水的濃縮、淡化、精製和提純。
4、電凝聚氣浮法 採用可溶性陽極(Fe、AI等)材料,生成Fe2+、Fe3+、Al3+等大量陽離子,通過絮凝生成Fe(OH)2、Fe(OH)3、AI(OH)3等沉澱物,以去除水中的污染物。同時,陰極上產生大量的H2微氣泡,陽極上產生大量的O2微氣泡,以這些氣泡作為氣浮載體,與絮凝污物一起上浮。大量絮體在豐富的微氣泡攜帶下迅速上浮,達到凈化水質的目的。
我國電鍍廢水的常規處理技術已經比較成熟,現代生物法處理電鍍廢水是非常有發展前途的一項廢水處理技術,且不產生二次污染,關鍵是要運用新技術對其進行深度處理,進一步提高出水水質。膜處理技術因其分離效率高,且能回收重金屬,今後必將在電鍍廢水處理中占據重要的地位。同時通過推廣清潔生產工藝,從電鍍生產的各個環節上減少排污量,變「被動治理」為「積極治理」,也是解決電鍍廢水污染的根本方法。

Ⅷ 污水站內在哪個工藝段加鐵刨花的作用

厭氧消化。污水站內在厭氧消化工藝段加鐵刨花的作用。刨花鐵,鐵粉,氧化鐵皮、鐵精粉等鋼廠廢料,含鐵量高達45%,壓製成型,烘乾或自然晾乾後直接投入轉爐、高爐、轉底爐等冶金爐煉鐵、煉鋼。

Ⅸ 加鐵粉有什莫作用

實驗室里又把鐵粉成為還原性鐵粉,是因為鐵有一定的還原性,工業中用鐵粉做抗氧化劑,是因為鐵粉有一定的還原性可以在被保護的物質被氧化之前先和氧氣反應,同時鐵粉的還原性又不是特別的強不會想金屬鈉鎂等很快就被氧化持續時間短

Ⅹ 污水處理廠需要哪些助劑(各種污水),越詳細越好

這個太多了,每種作用的葯劑,又有很多很多。所以我建議你看看這本書
《城市污水處理廠運行控制與維護管理》王洪臣主編,楊向平、塗兆林主審

閱讀全文

與污水治理為什麼要加鐵粉相關的資料

熱點內容
液相用溶劑過濾器 瀏覽:674
納濾水導電率 瀏覽:128
反滲透每小時2噸 瀏覽:162
做一個純凈水工廠需要多少錢 瀏覽:381
最終幻想4回憶技能有什麼用 瀏覽:487
污水提升器采通 瀏覽:397
反滲透和不發滲透凈水器有什麼區別 瀏覽:757
提升泵的揚程 瀏覽:294
澤德提升泵合肥經銷商 瀏覽:929
飲水機後蓋漏水了怎麼辦 瀏覽:953
小型電動提升器 瀏覽:246
半透膜和細胞膜區別 瀏覽:187
廢水拖把池 瀏覽:859
十四五期間城鎮污水處理如何提質增效 瀏覽:915
怎麼測試空氣凈化器的好壞 瀏覽:519
提升泵是幹嘛的 瀏覽:744
布油做蒸餾起沫咋辦 瀏覽:252
廣州工業油煙凈化器一般多少錢 瀏覽:204
喜哆哆空氣凈化器效果怎麼樣 瀏覽:424
油煙凈化器油盒在什麼位置 瀏覽:582