❶ 廢水生物脫氮除磷什麼原理
廢水生物脫氮抄的基本原理就是在將有機氮轉化為氨態氮的基礎上,先利用好氧段經硝化作用,由硝化細菌和亞硝化細菌的協同作用,將氨氮通過硝化作用轉化為亞硝態氮、硝態氮,即,將 轉化為 和 。在缺氧條件下通過反硝化作用將硝氮轉化為氮氣,即,將 (經反亞硝化)和 (經反硝化)還原為氮氣,溢出水面釋放到大氣,參與自然界氮的循環。水中含氮物質大量減少,降低出水的潛在危險性,達到從廢水中脫氮的目的。
該過程可分為三步:
第一步是氨化作用,即水中的有機氮在氨化細菌的作用下轉化成氨氮。(在普通活性污泥法中,氨化作用進行得很快,無需採取特殊的措施)
第二步是硝化作用,即在供氧充足的條件下,水中的氨氮首先在亞硝酸菌的作用下被氧化成亞硝酸鹽,然後再在硝酸菌的作用下進一步氧化成硝酸鹽。
三步是反硝化作用,即在缺氧或厭氧的條件下,硝化產生的亞硝酸鹽和硝酸鹽在反硝化細菌的作用下被還原成氮氣。
❷ 污水處理中脫氮原理反硝化、硝化的順序,不明白,(我是個外行)
在污水處理中按脫氮原理,或者說要達到脫氮的目標,順序是先硝化細菌在好氧環境下進行硝化作用,把污水污泥中的氮轉化為硝酸鹽和亞硝酸鹽,然後在缺氧條件下反硝化細菌進行反硝化反應,把硝酸鹽和亞硝酸鹽氮轉化為氮氣,以達到脫氮的目的。
但是,污水處理中,不僅要脫氮,而且還要除磷,而磷在好氧條件下才聚磷,厭氧和缺氧要在好氧之前。但這對脫氮影響不大,因為污水處理中的經過好氧處理的大部分污泥還要迴流利用,所以厭氧——缺氧——好氧是個循環的過程,經過循環過程,氮在缺氧去除,磷在好氧去除。
(2)污水脫氮的基本原理是什麼擴展閱讀:
A2/O工藝(AAO工藝、AAO法:厭氧-缺氧-好氧),是一種很常用的二級污水處理工藝,具有脫氮除磷的作用,用於二級污水處理或者三級污水處理,後續增加深度處理後,可作為中水回用,具有良好的脫氮除磷效果。
首先,污水與迴流污泥進入厭氧池進行混合,經一定時間厭氧分解作用,去除部分BOD,並使部分含氮化合物轉化成氮氣(反硝化作用)而釋放,迴流污泥中的聚磷微生物(聚磷菌等)釋放出磷,滿足細菌對磷的需求。
然後,污水流入缺氧池,池中的反硝化細菌以污水中的含碳有機物為碳源,將好氧池內通過內循環迴流進來的硝酸根和亞硝酸根還原為氮氣而釋放。
接下來,污水流入好氧池,水中的氨氮進行硝化反應生成硝酸根或亞硝酸根,同時水中的有機物氧化分解供給吸磷微生物能量,微生物從水中吸收磷,則磷富集在微生物內,最後經沉澱分離後以富磷污泥的形式從系統中排出。
網路:A2O
❸ 污、廢水為什麼要脫氮除磷敘述污、廢水脫氮、除磷的原理。
氮、磷是營養元素,工業廢水和生活污水中的氮、磷大量進入水體後,水生生物特別是藻類將大量繁殖,大量死亡的水生生物被微生物分解,分解過程中消耗大量的溶解氧,水中的溶解氧濃度急劇下降,從而影響了魚類等水生生物的生存。城市污水廠的活性污泥法脫氮除磷的原理是:利用微生物分解有機氮,再轉化為硝酸鹽,之後反硝化成氮氣得以去除;除磷則是利用聚磷菌放磷後,更大量的吸收磷,使磷富集在污泥中,通過排放剩餘污泥去除磷。
❹ 廢水生物脫氮除磷什麼原理
生物脫氮一般採用好氧和厭氧聯合的方式,好氧將氨氮轉化為硝態氮,厭氧將硝態氮轉化為氮氣,實現脫氮,一般厭氧放在好氧之前,所以要求由部分的消化液迴流。除磷主要靠嗜磷菌的過量吸收和排泥來實現,脫氮除磷的機理相對較復雜不是一兩句話能說清楚的,如果您有興趣的話可以查閱一些相關的書籍。希望對你有幫助!
❺ 生物法脫氮除磷的基本原理,影響因素及基本流程有哪些
氮和磷是生物的重要營養源,隨著化肥、洗滌劑和農葯普遍使用,天然水體中氮、磷含量急劇增加,水體中藍藻、綠藻大量繁殖,水體缺氧並產生毒素,使水質惡化,對水生生物和人體健康產生很大的危害。然而,我國現有的城市污水處理廠主要集中於有機物的去除,污(廢)水一級處理只是除去水中的沙礫及懸浮固體;在好氧生物處理中,生活污水經生物降解,大部分的可溶性含碳有機物被去除。
同時產生NH3-N 、 和和,其中25%的氮和19%左右的磷被微生物吸收合成細胞,通過排泥得到去除;二級生物處理則是去除水中的可溶性有機物,能有效地降低污水中的 和 ,但對N、P等營養物只能去除10%~20%,其結果遠不能達到二級排放標准。因此研究開發經濟、高效的,適於現有污水處理廠改造的脫氮除磷工藝顯得尤為重要。
生物脫氮除磷機理
生物脫氮機理
污水生物脫氮的基本原理就是在將有機氮轉化為氨態氮的基礎上,先利用好氧段經硝化作用,由硝化細菌和亞硝化細菌的協同作用,將氨氮通過硝化作用轉化為亞硝態氮、硝態氮,即,將 轉化為 和 。在缺氧條件下通過反硝化作用將硝氮轉化為氮氣,即,將 (經反亞硝化)和 (經反硝化)還原為氮氣,溢出水面釋放到大氣,參與自然界氮的循環。水中含氮物質大量減少,降低出水的潛在危險性,達到從廢水中脫氮的目的。
廢水中氮的去除還包括靠微生物的同化作用將氮轉化為細胞原生質成分。主要過程如下:氨化作用是有機氮在氨化菌的作用下轉化為氨氮。硝化作用是在硝化菌的作用下進一步轉化為硝酸鹽氮。其中亞硝酸菌和硝酸菌為好氧自養菌,以無機碳化合物為碳源,從 或 的氧化反應中獲取能量。其中硝化的最佳溫度在純培養中為25-35℃,在土壤中為30-40℃,最佳pH值偏鹼性。反硝化作用是反硝化菌(大多數是異養型兼性厭氧菌,DO<0.5mg/L)在缺氧的條件下,以硝酸鹽氮為電子受體,以有機物為電子供體進行厭氧呼吸,將硝酸鹽氮還原為N2或NO2-同時降解有機物。
生物除磷原理
磷在自然界以2種狀態存在:可溶態或顆粒態。所謂的除磷就是把水中溶解性磷轉化為顆粒性磷,達到磷水分離。廢水在生物處理中,在厭氧條件下,聚磷菌的生長受到抑制,為了自身的生長便釋放出其細胞中的聚磷酸鹽,同時產生利用廢水中簡單的溶解性有機基質所需的能量,稱該過程為磷的釋放。進入好氧環境後,活力得到充分恢復,在充分利用基質的同時,從廢水中攝取大量溶解態的正磷酸鹽,從而完成聚磷的過程。將這些攝取大量磷的微生物從廢水中去除,即可達到除磷的目的。
厭氧釋放磷的過程
聚磷菌在厭氧條件下,分解體內的多聚磷酸鹽產生ATP,利用ATP以主動運輸方式吸收產酸菌提供的三類基質進入細胞內合成PHB。與此同時釋放出於環境中。
好氧吸磷過程
聚磷菌在好氧條件下,分解機體內的PHB和外源基質,產生質子驅動力將體外的輸送到體內合成ATP和核酸,將過剩的聚合成細胞貯存物:多聚磷酸鹽(異染顆粒)。
❻ 污水生物脫氮的原理是什麼
首先你要明確反硝化的原理:硝態氮——亞硝態氮——no——n20——n2,因為你無法得到回亞氮之答後的數據,所以你可以間接的以亞氮的數據去分析n2o的數值。
但從你得到的數據來看,想把你原來的課題講清楚看來是很難的,參照你現在得到的實驗數據你可以和你老是商量下,分析反硝化過程中亞氮積累對反硝化的影響還是可以說清楚的,比如講你的亞氮很低,這就說明反硝化過程沒有亞氮的積累,說明反硝化效果是好的,如果你的亞氮比較多,說明你反硝化的進程不好,存在抑制因素。
我只提下我的建議,希望有幫助。還有,本科答辯不比過多再議,能把事情說清楚就可以了,沒要必要非做出來什麼效果。
❼ 環保工程師專業知識:生物脫氮
1.生物脫氮的基本原理
廢水生物脫氮利用自然界氮素循環的原理,在水處理構築物中營造出適宜於不同微生物種群生長的環境,通過人工措施,提高生物硝化反硝化速率,達到廢水中氮素去除的目的,一般由三種作用組成:氨化作用、硝化作用和反硝化作用。
⑴氨化作用
未經處理的城市污水中的有機氮主要有蛋白質、氨基酸、尿素、胺類、氰化物和硝基化合物等。有機氮化合物在好氧菌和氨化菌的作用下被分解轉化為氨態氮。
⑵硝化反應
生物硝化反應是亞硝化菌、硝化菌將氨氮氧化成亞硝酸鹽氮和硝酸鹽氮,是由一群自養型好氧微生物通過兩個過程完成的:第一步先由亞硝酸菌將氨氮轉化為亞硝酸鹽,稱為亞硝化反應,第二步由硝酸菌將亞硝酸鹽氧化成硝酸鹽。
⑶反硝化反應
生物反硝化反應是在缺氧狀態下,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成氣態氮或氮氧化物的過程,它是一群異氧型微生物通過同化作用和異化作用來完成的。異化作用就是將亞硝酸鹽和硝酸鹽還原成氮氣和氮的氧化物等氣體物質,主要是氮氣。而同化作用是反硝化菌將亞硝酸鹽和硝酸鹽還原成氨氮供新細胞合成之用。
2.生物硝化過程的主要影響因素
影響生物硝化過程的環境因素主要有基質濃度、溫度、溶解氧濃度、pH值、以及抑制物質的含量等。
⑴碳氮比
對於硝化過程,碳氮比影響活性污泥中硝化細菌所佔的比例,過高的碳氮比將降低污泥中硝化細菌的比例。
⑵溫度
溫度不但影響硝化菌的比增長速率,而且影響硝化菌的活性,亞硝化菌最佳的生長溫度為35℃,硝化菌的.最佳生長溫度為 35~42℃。生物硝化反應的最佳溫度范圍為20~30℃,15℃以下硝化反應速率下降,5℃時反應基本停止。反硝化適宜的溫度范圍為20~40℃,15℃以下反硝化反應速率下降。
⑶溶解氧
硝化反應必須在好氧條件下進行,所以溶解氧的濃度也會影響硝化反應速率,一般建議硝化反應中溶解氧的質量濃度大於 2mg/L。
⑷pH值
在硝化反應中,每氧化1g氨氮需要7.14g鹼度(以碳酸鈣計),如果不補充鹼度,就會使pH值下降。硝化菌對pH值的變化十分明顯,硝化反應的最佳pH值范圍為7.5~8.5,當pH值低於7時,硝化速率明顯降低,低於6和高於10.6時,硝化反應將停止進行。
⑸抑制物質
許多物質會抑制活性污泥過程中的硝化作用,例如:過高濃度的氨氮、重金屬、有毒物質以及有機物。對硝化反應的抑製作用主要有兩個方面:一是干擾細胞的新陳代謝,二是破壞細菌最初的氧化能力。
⑹泥齡
硝化過程的泥齡一般為硝化菌最小世代時間的2倍以上,生物脫氮過程泥齡宜為12~25d。
3.生物脫氮的典型工藝
生物脫氮的典型工藝主要有Sp工藝、氧化溝工藝和厭氧/好氧工藝(即A/O工藝)等,下面介紹一下A/O工藝。
⑴工藝流程
污水先進入缺氧池,再進入好氧池,同時將好氧池的混合液與部分二沉池的沉泥一起迴流到缺氧池,確保缺氧池和好氧池中有足夠數量的微生物,同時由於進水中存在大量的含碳有機物,而迴流的好氧池混合液中含有硝酸鹽氮,這樣就保證了缺氧池中反硝化過程的順利進行,提高了氮的去除效果。
⑵工藝特點
①流程簡單、構築物少,基建費用低;②反硝化池不需外加碳源,降低了運行費用;③好氧池在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步的去除,提高出水的水質,而缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。
⑶影響因素
主要有水力停留時間、BOD5濃度、溫度、pH值、溶解氧、有機碳源及混合液迴流比等。
❽ 生物脫氮的基本原理是什麼
生物來脫氮原理
生物脫氮是利用自自然界氮的循環原理,採用人工方法予以控制,首先,污水中的含氮有機物轉化成氨氮,而後在好氧條件下,由硝化菌左右變成硝酸鹽氮,這階段稱為好氧硝化。隨後在缺氧條件下,由反硝化菌作用,並有外加碳源提供能量,使硝酸鹽氮變成氮氣逸出,這階段稱為缺氧反硝化。整個生物脫氮過程就是氮的分解還原反應,反應能量從有機物中獲取。在硝化和反硝化過程中,影響其脫氮效率的因素是溫度、溶解氧、PH值以及碳源,生物脫氮系統中,硝化菌增長速度較緩慢,所以,要有足夠的污泥泥齡。反硝化菌的生長主要是在缺氧條件下進行,並且要用充裕的碳源提供能量,才可促使反硝化作用順利進行。由此可見,生物脫氮系統中硝化與反硝化反應需要具備如下條件:
一、硝化階段:足夠的的溶解氧,DO值在2mg/L以上,合適的溫度,最好在20℃,不能低於10℃,,足夠長的污泥泥齡,合適的PH條件。
二、反硝化階段:硝酸鹽的存在,缺氧條件DO值在0.2mg/L左右,充足碳源(能源),合適的PH條件。
❾ 污、廢水為什麼要脫氮除磷敘述污、廢水脫氮、除磷的原理。
因為污廢水中的N、P等物質排放到地表水體中,會導致水體的富營養化,從而破壞水體的而生態平衡。
含磷廢水
在厭氧的條件下,聚磷菌釋放自身的磷,以造成飢惡效應;
在好氧條件下,處於飢餓狀態的聚磷菌會大量的吸收廢水中的磷,吸收的量要大於其在厭氧階段釋放量。
含氮廢水
在好氧條件下,硝化細菌和亞硝化細菌把含氮有機物轉化為NO3-和NO2-,最終都轉化為NO3-的過程;
在厭氧條件下,反硝化細菌把含氮物質轉化為N2,從而降低污染。