導航:首頁 > 廢水知識 > 已知某城鎮污水處理

已知某城鎮污水處理

發布時間:2025-10-16 23:08:05

❶ 已知某城市污水處理廠的最大設計污水量Qmax=0.2m3/s,總變化系數Kz=1.50,求格柵部分尺寸。

並聯設兩台:寬1m、間隙5mm,高度隨進水深以及構築物形式定(採用回轉齒耙式或反撈式根據具體設施情況定)。功率要根據具體廠家產品選型。格柵渠埠設閘門用於檢修。

假設:每1000m3污水的柵渣產生量為0.06m3則:柵渣產生量為:30000/1000=30*0.06=1.8*1.4=2.52m3

總變化系數Kz:最大日最大時污水量與平均日平均時污水量的比值稱為總變化系數。

一般是根據流量按經驗查出來,有一個經驗公式,該式是在多年觀測資料的基礎上進行綜合分析總結出的計算公式。反映了總變化系數與平均流量之間的關系:

Q平均<5時 kz=2.3

Q平均5<Q平均<1000時 kz=2.7/(Q平均的0.11次方)

Q平均>1000時 kz=1.3

(1)已知某城鎮污水處理擴展閱讀:

按形狀,格柵可分為平面與曲面格柵兩種。平面格柵由柵條與框架組成。曲面格柵又可分為固定曲面格柵與旋轉鼓筒式格柵兩種。按格柵柵條的凈間距,可分為粗格柵(50~100mm)、中格柵(10~40mm)、細格柵(1.5~10mm)三種。

平面格柵與曲面格柵,都可做成粗、中、細三種。由於格柵是物理處理的重要設施,故新設計的污水處理廠一般採用粗、中兩道格柵,甚至採用粗、中、細三道格柵。按清渣方式,格柵可分為人工清渣和機械清渣格柵兩種。人工清渣格柵適用於小型污水處理廠。當柵渣量大於0.2m3/d時,為改善工人勞動與衛生條件,都應採用機械清渣格柵。

❷ 污水處理工考試

1.柵渣量

格柵在單位時間截留廢水中的固體懸浮物的量,柵渣量的大小與地區特點、柵條間隙大小、廢水流量以及下水道系統的類型有關。

2.排水系統的體制

各種不同的排除方式所形成的排水系統分為:分流制、合流制、混合制。

3.生物膜法

污水生物處理的一種方法。該法採用各種不同的載體,通過污水與載體的不斷接觸,在載體上繁殖生物膜,利用膜的生物吸附和氧化作用,以降解去除污水中的有機污染物,脫落下來的生物膜與水進行分離。

4.廢水厭氧生物處理

又稱厭氧消化法。利用厭氧生物在缺氧的條件下,降解廢水中有機污染物的一種處理方法。

5.一級強化處理

在常規一級處理基礎上,增加化學混凝處理、機械過濾或不完全生物處理等,以提高一級處理效果的處理工藝。

6.BOD污泥負荷

是指單位重量的活性污泥,在單位時間內要保證一定的處理效果所能承受的有機污染物量。

7.吸附平衡

廢水與吸附劑接觸後,一方面吸附質被吸附劑吸附,另一方面,一部分已被吸附的吸附質因熱運動的結果而脫離吸附劑表面,又回到液相中去,前者稱為吸附過程,後者稱為解吸過程。當吸附速度與解吸速度相等時,即達到吸附平衡。

8.氣固比 氣固比A/S是設計氣浮系統時經常使用的一個基本參數,是空氣量與固體物數量的比值,無量綱。

9.污泥齡

是指曝氣池內活性污泥的總量與每日排放污泥總量之比。

10.生物接觸法

生物接觸氧化處理技術是在池內充填填料,已經充氧的污水浸沒全部填料,並以一定的流速流經填料。在填料上布滿生物膜,污水與生物膜接觸,在生物膜上微生物的新陳代謝功能的作用下,污水中有機物得以去除,污水得到凈化。

11.污泥容積指數SVI

是指混合液經30min靜沉後,每g干污泥所形成的沉澱污泥體積,單位ml/g。

12.污泥消化

污泥消化是利用微生物的代謝作用,使污泥中的有機物穩定化,減少污泥體積,降低污泥中的病原體數量。當污泥中的揮發固體VSS含量降低到40%以下時,即可認為已達到穩定化。污泥的消化穩定即可採用好氧消化,也可採用厭氧消化。

13.膜分離法

是利用特殊的膜材料對液體中的成分進行選擇分離的技術。用於廢水處理的膜分離技術包括擴散滲透、電滲析、反滲析、超濾、微濾等幾種。

14.升流式厭氧污泥床法

這種方法是目前應用最為廣泛的一種厭氧生物處理工藝,利用反應器底部的高濃度污泥床,對上升廢水進行厭氧處理的廢水生物處理過程。構造上的特點是,集生物反應和氣固液三相分離於一體,是一種結構緊湊的厭氧反應器。廢水自下而上地通過厭氧污泥床反應器。

15.出水堰負荷

指單位堰板長度的單位時間內所能溢流的水量

16.生化需氧量

簡稱BOD,在規定條件下水中有機物和無機物在生物氧化作用下所消耗的溶解氧。

17.厭氧流化床工藝

它是借鑒液態化技術的一種生物反應裝置。它以小粒徑載體為流化粒料,廢水作為流化介質,當廢水以升流方式通過床體時,與床中附著於載體上的厭氧生物膜不斷接觸反應,以達厭氧生物降解目的。

18.板框壓濾機

由板和框相間排列而成。在濾板兩面覆有濾布,用壓緊裝置把板和框壓緊,即在板與板之間構成壓濾室,在板與框的上端想通部位開有小孔,壓緊後孔連成一條通道,用0.4~0.8Mpa的壓力,把經過化學調理的污泥由該通道壓入,並由每一塊慮框上的支路孔道進入各個壓濾室,濾板的表面有溝槽,下端鑽有供濾液排除的孔道。濾液在壓力的作用下,通過濾布並由孔道從慮機排出,而固體截留下來,在濾布表面形成濾餅,當濾餅完全填滿壓濾室時,脫水過程結束,打開壓濾機,一次抽出各個濾板,剝離濾餅並清洗。

19.氣浮

氣浮是在水中產生大量細微氣泡,細微氣泡與廢水中的細小懸浮物粒子相黏附,形成整體密度小雨水的氣泡-顆粒復合體,懸浮粒子隨氣泡一起浮升到水面,形成泡沫或浮渣,從而使水中懸浮物得以分離。

20.污泥沉降比和污泥容積指數

污泥沉降比是指混合液經30min靜沉後形成的沉澱污泥容積占原混合液容積的百分率。

污泥容積指數是指混合液經30min靜沉後,每g干污泥所形成的沉澱污泥容積(ml/g)。

21.三相分離器

它是UASB反應器中最重要的設備,它安裝在反應器的頂部,將反應器分為下部的反應區和上部的沉澱區,其作用是完成氣、液、固三相的分離,將附著於顆粒污泥上的氣體分離,並收集反應區產生的沼氣,通過集氣室反應器,使分離去中的懸浮物沉澱下來,回落於反應區,有效地防止具有生物活性的厭氧污泥的流失,保證反應器中足夠的生物量,降低出水中懸浮物的含量。

22.污泥的好氧速率

是指單位重量的活性污泥在單位時間內的好氧量。

23.城市污水排水系統的基本組成

市內排水系統及設備,室外污水管網,污水輸送泵站及設備,污水處理廠及設備,排出口及事故排出口。

24.過濾

指通過具有空隙的顆粒狀層或過濾材料截留廢水中細小的固體顆粒的處理工藝。

25.沉澱池水力表面負荷

是指單位沉澱池面積在單位時間內所能處理的污水量。q=Q/A

26.生物硝化

活性污泥中以氮、硫、鐵或其他化合物為能源的自養菌,能在絕對好氧的條件下,將氨氮化為亞硝酸鹽,並進一步可氧化為硝酸鹽,這種反應稱為生物消化反應。參與生物消化反應的細菌稱為硝化菌。

27.污泥

在工業廢水和生活污水的處理過程中,會產生大量的固體懸浮物質,這些物質統稱為污泥。可以是廢水中早已存在,也可以在處理過程中形成。前者各種自然沉澱中截留的懸浮物質,後者如生物處理和化學處理過程中,由原來的溶解性物質和膠體物質轉化而成。

28.污水三級處理

在一、二級處理後,進一步處理難降解的有機物、磷和氮等能夠致水體撫養養花的可溶性無機物等。

29.調節池

為了改善廢水處理設備的工作條件,一般需要對水量進行調節,對水質進行均和。實際應用中將具有以上功能的構築物稱為調節池。

30.離子交換

離子交換是不溶性離子化合物上的可交換離子與溶液中的其他同性離子的交換反應,是一種特殊的吸附過程,通常是可逆的化學吸附過程。

31.BOD5容積負荷

指單位曝氣池容積單位時間內,能夠接受並將其降到預定程度的有機物的量。

32.電解氣浮法

電解氣浮法是在直流電的作用下,對廢水進行電解時,在正負兩極會有氣體呈微小氣泡析出,將廢水中呈顆粒狀的污染物帶至水面以進行固液分離的一種技術。

33.額定功率

在正常運行工作狀況下,動力設備的輸出功率或消耗能量的設備的輸入功率也指及其在正常工作時能達到的功率。

四、計算題

1.某城市污水處廠最大設計污水量為30000m3/d,污水流量總變化系數為1.4,採用柵距為30mm的格柵,請計算每天的柵渣產生早。(假設:每1000m3污水的柵渣產生量為0。06m3)

解:根據柵渣公式 W=86400QmaxW1 / 1000K2

解得W=1.29m3/d

2.某城市污水處廠進水BOD濃度S0=200mg/L,SS濃度X0=250mg/L,該廠採用普通二級活性污泥法處理工藝。初次沉澱池的BOD和SS的去除效率分別為25%和50%,經過二級處理後出水的BOD和SS濃度分別是20mg/L, 25mg/L。求初次沉澱池出水的的BOD和SS的濃度及BOD和SS的去除率。

3.設有一水泵管路系統,已知流量Q=101m3/h,管徑d=150mm,管路的總水頭損失是25.4H2O。水泵效率為75.7%,上下兩水面高差h=102m,試求水泵的揚程和功率。

解:水泵揚程H=25.4+102=127.4m

泵的有效功率P有=pgQH=1.0*1000*9.8*101/3600*127.4=35028W

水泵總功率P=P有 / 效率=35028/75.7%=46272W=46.27KW

4.某處理廠測得瀑氣池混合液懸浮固體濃度X為2000mg/L,迴流活性污泥懸浮固體濃度Xg為2000mg/L。運行人員剛把迴流比R調到50%。試分析迴流比調節器節是否正確,應如何調節器節。

解:R=X/(Xg-X)=2000/(5000-2000)=66.7%

答:50%不正確,應調節器節至66.7%,否則如不增大排泥,污泥將隨出水流失

5、 某污水處理廠瀑氣池有效容積5000m3,瀑氣池內混合液懸浮固體濃度為3000mg/L,試計算當瀑氣處理污水量為22500m3/d,進水BOD濃度為200mg/L時,該廠的BOD-SS負荷。

解:Ls=QSo/XV

6.某處理廠污泥濃縮池,當控制負荷為50Kg/(m3/d)時,得到如下濃縮效果:入流污泥量Q1=500m3/d;入流污泥的含水率為98%;排泥量Q=200m3/d;排泥的含水率為95.5%;試評價濃縮效果,並計算分離率。

解:f=Cu/Ci=(100-Pu)/(100-Pi)=(100-95.5)/ (100-98)=2.25

固體回收率=Qu*Cu/Qi*Ci=(200*4.5)/(500*2)*100%=90%

分離率F=Qe/Qi=(500-200)/500=60%

7.某食品廠

8、

9、瀑氣池混合液濃度為4000mg/L,BOD負荷0.3KgBOD5(KgMLSS*d),流量為100000m3/d,進水BOD5=300mg/L,設計曝氣池的體積。

Ls=QSo/XV

V=QSo/LsX

10、某處理廠一般將污沁的泥齡控制在4d左右,該廠曝氣池容積V為5000m3。試計算當迴流污泥濃度為4000mg/L,混合液濃度為2500mg/L,出水懸浮固體濃度為30mg/L,入流污水量Q為20000m3/d時,該廠每天應排放的剩餘污泥的量。

解:剩餘污泥排放量的計算公式如下

Qc=VX/[QwXw+(Q-Qw)Xe]

即Qw=(V/Qc)*[X/(Xw-Xe)]-[Xe/(Xw-Xe)]*Q

Qw=(5000/4)*[2500/(4000-30)]-[30/(4000-30)*20000]=636m3

11、某污水處理廠曝氣池體積為5000m3,混合溶液濃度為2500mg/L,每天從系統排除的液活性污泥量為2500Kg。試求污水處理廠的污泥泥齡。 解:SRT=(2500mg/L*5000m3)/2500Kg=5d

12、某UASB反應器有效體積為200,進水CODo為5000mg/L,有機負荷Nv為8Kg/m3*d。求(1)此反應器的進水流量Q?(2)允許的最大水力停留時間t?

(1) V=QSo/Nv Q=VNv/So=(200m3*8Kg/m3*d)/5000mg/L=320m3/d

(2) t=V/Q=200m3/320m3/d=0.625d=15h

13、某污水得理廠日處理污水量100000m3/d,入流污水的SS為250mg/L。該廠高有四條初沉池,每池配有一台流量為60m3/h的排泥泵,每2h排泥一次。試計算當SS去除率為60%時、要求排泥濃度為3%時,每次的排泥時間。(污泥密度近似按1000Kg/m3計算)

解:每個排泥周期產生的干污泥量為:

Ms=(100000/24)*2*250*60%=1250000g/h

Cs=30000g/m3

所以每個排污周期產生的濕污泥量為:Q=1250000/30000=41.6m3

41.6/4=10.4m3

排泥時間約10.4/60=10min

五、問答題

1.簡述調節池在污水處理中的作用,常見類型及特點:

答:調節池在污水處理中的作用是對水量進行調節,對水質進行均和,常見的類型有:水量調節池,水質調節池和事故調節池三種。水量調節池的特點是,調節水量,保持容積,並使出水均勻;水質調節池的結構功能是,採用穿孔導游槽,或增加攪拌設備;事故調節池是,在特殊的情況下設立的,對保護系統不受沖擊,減少調節池容積有十分重要的作用。

2.什麼是城市污水的一級處理,二級處理及深度處理:

答:一級處理主要是除去污水中的漂浮物和懸浮物的重要過程,主要為深沉;二級處理為污水經一級處理後用生物方法繼續去除沒有沉澱的微小粒徑的懸浮物,膠體和溶解性的有機物質,以及氮和磷的凈化過程;深度處理為進一步去除二級處理未能去除的污染物的凈化過程。

3.與活性污泥法相比,生物膜法的優點與缺點有哪些,並作簡易說明。

優缺點有:1.適應沖擊負荷變化能力強。2。反應器內微生物濃度高3。剩餘污泥產量低 4。同時存在硝化與反硝化過程 5。操作管理簡單,運行費用較低 6。調節運行的靈活性差 7。有機物去除率較低。

4.簡述污泥的來源與分類,並作簡要的說明

污泥來源於工業廢水和生活污水的處理過程中產生的大量的固體懸浮物質,根據污泥的來源和性質,可分為以下幾種污泥,1。初次沉澱污泥,來自初次沉澱池,其性質隨污水的成份而異。2。剩餘活性污泥與腐殖污泥來自活性污泥法和生物膜後的二沉池。3。硝化污泥初次沉澱污泥,剩餘活性污呢和腐殖污泥等經過硝化穩定處理後的污泥4。化學污泥 5。有機污泥,主要含有有機物6。無機污泥,以無機物為主要成份

5.混凝過程的運行控制條件是什麼:

答:混凝過程中的運行條件包括:PH,水溫,混凝劑的選擇和投加量,水力條件。

1。PH:在最適宜的PH條件下,混凝反應速度最快,絮體溶解度最小,混凝作用最強。

2。水溫:水溫一般在20-30度為宜

3。混凝劑的選擇和投加量:混凝劑的選擇主要取決於膠體的細微懸物的性質,濃度,但還應考慮來源成本和是否引入有害物質等因素。

4。水力條件:混凝劑投入廢水中後,必須創造最適宜的水力條件,使混凝作用順利進行。

6.表面曝氣葉輪充氧是通過哪幾部分實現的?

答:通過以下三部分實現的: 1。葉輪的提水和輸水作用,使曝氣池內液體循環流動,從而使不斷更新氣液接觸面和不斷吸氣。

2。葉輪旋轉時在其周圍形成水躍,使液體劇烈攪動而捲入空氣

3。葉輪葉片後側在旋轉時形成負壓區,吸入空氣

7.何為活性污泥絲狀菌膨脹,該如何控制?

在活性污泥處理系統中,由於絲狀菌的存在引起活性污泥體積膨脹和不易沉降的現象,為活性污泥絲狀菌膨脹,其控制的措施為:

1。減少進水量,降低BOD負荷

2。增加DO濃度

8.離子交換過程分哪幾個階段,各有什麼作用:

離子交換過程包括:交換,反沖洗,再生和清洗

1。交換:交換階段是利用離子交換樹脂的交換作用從廢水中去除目標離子的操作過程

2。反沖洗的目的是松動樹脂層,使再生液能均勻滲入層中,與交換劑顆粒充分接觸,同時把過濾過程中產生的破碎粒子和截留的污物沖走

3。再生:在樹脂失效後必須再生才能使用,通過樹脂再生一方面可以恢復樹脂的交換能力,另一方面可回收有用的物質。離子交換樹脂的再生是離子交換的逆過程。

4。清洗:清洗的目的是洗滌殘留的再生液和再生時出現的反應物質。

9.初次沉澱池的運行管理應注意哪些方面:

答:

1。操作人員根據池組設置,進水量的變化,應調節各池進水量,使各池均勻配水。

2。初次沉澱池應及時排泥,並宜間歇進行。

3。操作人員應經常檢查初次沉澱池浮渣斗和排渣管道的排渣情況,並及時清除浮渣,清撈出的浮渣應妥善處理。

4。刮泥機待修或長期停機時,應將池內污泥排空。

5。採用泵房排泥工藝時,可按有關規定執行。

6。當剩餘活性污泥排入初次沉澱池時,在正常的運轉情況下,應控制其迴流比少於2%

10.氣浮法的原理是什麼:

答:氣浮法是在水中產生大量細微氣泡,細微氣泡與廢水中細小懸浮物粒子相粘附,形成整體密度小於水的氣泡-顆粒復合體;懸浮粒子隨氣泡一起浮升到水面,形成泡沫或浮渣,從而使水中的懸浮物得以分離 其氣浮分離必須具備以下兩個基本條件:1。必須水中產生足夠數量的細微氣泡2。必須使氣泡能夠與污染物相粘附,並形成不溶性的固體懸浮體

11.二沉池污泥上浮的原因是什麼,如何解決

答:二沉池污泥上浮指的是污泥在二沉池內發生酸化或反硝化,導致污泥漂浮到二沉池表面的現象。漂浮的原因主要是,這些污泥在二沉池內停留時間過長,由於溶解氧被逐漸消耗,而產生酸化,產生H2S,使污泥絮體密度減少上浮。當SRT 過長時,發生硝化後進入的混合中含有大量的硝酸鹽,污泥在二沉池中由於缺乏足夠的DO,而進行反硝化,產生N2,附著在污泥上,使密度減少,上浮。

措施:1。及時排泥,加大污泥迴流量石流沉積2。加強曝氣池未端充氧量,提高進入二沉池的DO含量。3。對於反硝化造成的污泥上浮,還可以增大剩餘污泥的排放量,降低SRT。

4。檢查刮給泥機的運行情況,減少死角積泥,造成死泥上浮。

12.真空過濾機膠水效果的影響因素有哪些:

1。污泥的性質:污泥的種類,濃度,儲存時間,調理情況等對過濾性能產生影響。

2。真空度的影響:真空度是真空過濾的推動,直接關繫到過濾率及運行費用,影響比較復雜,一般,真空度越高,濾餅厚度越大,含水率越低。

3。轉鼓浸深的影響

4。轉鼓轉速快慢的影響

5。濾布性能的影響:網眼的大小決定於污泥顆粒的大小和性質

13.混凝工藝包括哪幾個步驟:

答:工藝包括:混凝劑的配製與投加,混合,反應和礬花分離等幾個步驟

1。配製與投加:實際應用中,混凝劑通常採用濕法投加

2。混合:將混凝葯迅速分散到廢水中,與水中膠體和細微懸浮物相接觸

3。反應:指混凝劑與膠體和細微的懸浮物產生反應,使膠體和懸浮物脫穩,互相絮凝,最終聚集成為粒徑較大的礬花顆粒。

4。礬花分離:指過重力沉降或其他固液分離手段將形成的大顆粒礬花從水中去除

14.生物膜系統運行中為何維持較高的DO?

因為適當地提高生物膜系統內的DO可減少生物膜中厭氧層的厚度,增大好氧層生物膜中的比例,提高生物膜內氧化分解有機物的好氧微生物的活性;此外,加大曝氣量後,氣流上升所產生的剪切力,有助於老化生物膜的脫落。使生物膜厚度不致於過厚,並防止因此產生堵塞弊端。

15.簡述活性碳再生的方法:

有四種方法:

1。加熱再生:1)脫水2)乾燥 3)碳化 4)活化 5)冷卻

2。蒸汽法:吸附物質是低沸點物質,可考慮通入水蒸汽進行吹脫

3。化學再生方法:通過化學反應,使吸附物質轉化為易於溶於水的物質而解吸下來

4。生物再生法:利用微生物的作用,將初活性碳吸附的有機物氧化分解,從而使活性碳得到再生

❸ 污水處理中的CAAS工藝,具體工藝流程是什麼其中好像還有個MBR池,它在系統中主要起什麼作用

1.1 CASS工藝運行原理
CASS工藝運行原理
CASS工藝是將序批式活性污泥法(SBR)的反應池沿長度方向分為兩部分,前部為生物選擇區也稱預反應區,後部為主反應區。在主反應區後部安裝了可升降的潷水裝置,實現了連續進水間歇排水的周期循環運行,集曝氣沉澱、排水於一體。CASS工藝是一個好氧/缺氧/厭氧交替運行的過程,具有一定脫氮除磷效果,廢水以推流方式運行,而各反應區則以完全混合的形式運行以實現同步硝化一反硝化和生物除磷。
CASS工藝流程
對於一般城市污水,CASS工藝並不需要很高程度的預處理,只需設置粗格柵、細格柵和沉砂池,無需初沉池和二沉池,也不需要龐大的污泥迴流系統(只在CASS反應器內部有約20%的污泥迴流)國內常見的CASS工藝流程如圖1所示。
編輯本段CASS工藝運行過程
總述
CASS工藝運行過程包括充水-曝氣、沉澱、潷水、閑置四個階段組成,具體運行過程為:
(1)充水-曝氣階段
邊進水邊曝氣,同時將主反應區的污泥迴流至生物選擇區,一般迴流比為20%。在此階段,曝氣系統向反應池內供氧,一方面滿足好氧微生物對氧的需要,另一方面有利於活性污泥與有機物的充分混合與接觸,從而有利於有機污染物被微生物氧化分解。同時,污水中的氨氮通過微生物的硝化作用轉變為硝態氮。
(2)沉澱階段
停止曝氣,微生物繼續利用水中剩餘的溶解氧進行氧化分解。隨著反應池內溶解氧的進一步降低,微生物由好氧狀態向缺氧狀態轉變,並發生一定的反硝化作用。與此同時,活性污泥在幾乎靜止的條件下進行沉澱分離,活性污泥沉至池底,下一個周期繼續發揮作用,處理後的水位於污泥層上部,靜置沉澱使泥水分離。
(3)潷水階段
沉澱階段完成後,置於反應池末端的潷水器開始工作,自上而下逐層排出上清液,排水結束後潷水器自動復位。潷水期間,污泥迴流系統照常工作,其目的是提高缺氧區的污泥濃度,隨污泥迴流至該區內的污泥中的硝態氮進一步進行反硝化,並進行磷的釋放。
(4)閑置階段
閑置階段的時間一般比較短,主要保證潷水器在此階段內上升至原始位置,防止污泥流失。實際潷水時間往往比設計時間短,其剩餘時間用於反應器內污泥的閑置以及恢復污泥的吸附能力。
編輯本段1.3.1 CASS工藝的優點
(1)工藝流程簡單,佔地面積小,投資較低
CASS的核心構築物為反應池,沒有二沉池及污泥迴流設備,一般情況下不設調節池及初沉池。因此。污水處理設施布置緊湊、佔地省、投資低。
(2)生化反應推動力大
在完全混合式連續流曝氣池中的底物濃度等於二沉池出水底物濃度,底物流入曝氣池的速率即為底物降解速率。根據生化動力反應學原理,由於曝氣池中的底物濃度很低,其生化反應推動力也很小,反應速率和有機物去除效率都比較低;在理想的推流式曝氣池中,污水與迴流污泥形成的混合流從池首端進入,成推流狀態沿曝氣池流動,至池末端流出。作為生化反應推動力的底物濃度,從進水的最高濃度逐漸降解至出水時的最低濃度,整個反應過程底物濃度沒被稀釋,盡可能地保持了較大推動力。此間在曝氣池的各斷面上只有橫向混合,不存在縱向的返混。 CASS工藝從污染物的降解過程來看,當污水以相對較低的水量連續進入CASS池時即被混合液稀釋,因此,從空間上看CASS工藝屬變體積的完全混合式活性污泥法范疇;而從CASS工藝開始曝氣到排水結束整個周期來看,基質濃度由高到低,濃度梯度從高到低,基質利用速率由大到小,因此,CASS工藝屬理想的時間順序上的推流式反應器,生化反應推動力較大。
(3)沉澱效果好
CASS工藝在沉澱階段幾乎整個反應池均起沉澱作用,沉澱階段的表面負荷比普通二次沉澱池小得多,雖有進水的干擾,但其影響很小,沉澱效果較好。實踐證明,當冬季溫度較低,污泥沉降性能差時,或在處理一些特種工業廢水污泥凝聚性能差時,均不會影響CASS工藝的正常運行。實驗和工程中曾遇到SV高達96%的情況,只要將沉澱階段的時間稍作延長,系統運行不受影響。
(4)運行靈活,抗沖擊能力強
CASS工藝在設計時已考慮流量變化的因素,能確保污水在系統內停留預定的處理時間後經沉澱排放,特別是CASS工藝可以通過調節運行周期來適應進水量和水質的變化。當進水濃度較高時,也可通過延長曝氣時間實現達標排放,達到抗沖擊負荷的目的。在暴雨時。可經受平常平均流量6倍的高峰流量沖擊,而不需要獨立的調節池。多年運行資料表明。在流量沖擊和有機負荷沖擊超過設計值2~3倍時,處理效果仍然令人滿意。而傳統處理工藝雖然已設有輔助的流量平衡調節設施,但還很可能因水力負荷變化導致活性污泥流失,嚴重影響排水質量。當強化脫氮除磷功能時,CASS工藝可通過調整工作周期及控制反應池的溶解氧水平,提高脫氮除磷的效果。所以,通過運行方式的調整,可以達到不同的處理水質。
(5)不易發生污泥膨脹
污泥膨脹是活性污泥法運行過程中常遇到的問題,由於污泥沉降性能差,污泥與水無法在二沉池進行有效分離,造成污泥流失,使出水水質變差,嚴重時使污水處理廠無法運行,而控制並消除污泥膨脹需要一定時間,具有滯後性。因此,選擇不易發生污泥膨脹的污水處理工藝是污水處理廠設計中必須考慮的問題。由於絲狀茵的比表面積比茵膠團大,因此,有利於攝取低濃度底物,但一般絲狀茵的比增殖速率比非絲狀茵小,在高底物濃度下茵膠團和絲狀茵都以較大速率降解物與增殖,但由於膠團細菌比增殖速率較大,其增殖量也較大,從而較絲狀茵占優勢。而CASS反應池中存在著較大的濃度遞度,而且處於缺氧、好氧交替變化之中,這樣的環境條件可選擇性地培養出茵膠團細菌,使其成為曝氣池中的優勢茵屬,有效地抑制絲狀茵的生長和繁殖,克服污泥膨脹,從而提高系統的運行穩定性。
(6)適用范圍廣,適合分期建設
CASS工藝可應用於大型、中型及小型污水處理工程,比SBR工藝適用范圍更廣泛;連續進水的設計和運行方式,一方面便於與前處理構築物相匹配,另一方面控制系統比SBR工藝更簡單。對大型污水處理廠而言,CASS反應池設計成多池模塊組合式,單池可獨立運行。當處理水量小於設計值時,可以在反應池的低水位運行或投入部分反應池運行等多種靈活操作方式;由於CASS系統的主要核心構築物是CASS反應池,如果處理水量增加,超過設計水量不能滿足處理要求時,可同樣復制CASS反應池,因此CASS法污水處理廠的建設可隨企業的發展而發展,它的階段建造和擴建較傳統活性污泥法簡單得多。
(7)剩餘污泥量小,性質穩定
傳統活性污泥法的泥齡僅2~7天,而CASS法泥齡為25~30天,所以污泥穩定性好,脫水性能佳,產生的剩餘污泥少。去除1.0kgBOD產生0.2~0.3kg剩餘污泥,僅為傳統法的60%左右。由於污泥在CASS反應池中已得到一定程度的消化,所以剩餘污泥的耗氧速率只有l0mgO2/gMISS·h以下,一般不需要再經穩定化處理,可直接脫水。而傳統法剩餘污泥不穩定,沉降性差,耗氧速率大於20mgO2/gMLSS·h,必須經穩定化後才能處置。
編輯本段1.3.2 CASS工藝的缺點
總述
從上面的敘述可以看出,CASS工藝具有許多優點,然而任何一個工藝都不是十全十美的,CASS工藝也必然存在一些問題。CASS工藝為單一污泥懸浮生長系統,利用同一反應器中的混合微生物種群完成有機物氧化、硝化、反硝化和除磷。多種處理功能的相互影響在實際應用中限制了其處理效能,也給控制提出了非常嚴格的要求,工程中難以實現工藝的穩定、高效的運行。總結起來,CASS工藝主要存在以下幾個方面的問題。運行中存在問題
(1)微生物種群之間的復雜關系有待研究
CASS系統的微生物種群結構與常規活性污泥法不同,菌群主要由硝化菌、反硝化菌、聚磷菌和異氧型好氧菌組成。目前對非穩態CASS系統中微生物種群之間的復雜的生存競爭和生態平衡關系尚不甚了解,CASS工藝理論只是從工藝過程進行一些分析探討,而理清微生物種群之間的關系對CASS工藝的優化運行是大有好處的,因此仍需加強對這方面的理論研究工作。
(2)生物脫氮效率難以提高
一方面硝化反應難以進行完全。硝化細菌是一種化能自養菌,有機物降解由異養細菌完成。當兩種細菌混合培養時,由於存在對底物和DO的競爭,硝化菌的生長將受到限制,難以成為優勢種群,硝化反應被抑制。此外,固定的曝氣時間也可能會使得硝化不徹底。另一方面就是反硝化反應不徹底。CASS工藝有約20%的硝態氮通過迴流污泥進行反硝化,其餘的硝態氮則通過同步硝化反硝化和沉澱、閑置期污泥的反硝化實現,其效果不理想也是眾所周知的。在沉澱、閑置期中,由於污泥與廢水不能良好的進行混合,廢水中部分硝態氮不能與反硝化細菌接觸,故不能被還原。此外,在這一時期,由於有機物己充分降解,反硝化所需的碳源不足,也限制了反硝化效率的進一步提高。這兩方面的原因使得CASS工藝脫氮效率難以提高。
(3)除磷效率難以提高
污泥在生物選擇器中的釋磷過程受到迴流混合液中硝態氮濃度的影響比較大,在CASS工藝系統中難以繼續提高除磷效率。
(4)控制方式較為單一
目前在實際應用中的CASS工藝基本上都是以時序控制為主的,其缺點是顯而易見的,因為污水的水質不是一成不變的,因此採用固定不變的反應時間必然不是最佳選擇。
編輯本段1.3.3 CASS工藝的主要技術特徵
(1)連續進水,間斷排水
傳統SBR工藝為間斷進水,間斷排水,而實際污水排放大都是連續或半連續的,CASS工藝可連續進水,克服了SBR工藝的不足,比較適合實際排水的特點,拓寬了SBR工藝的應用領域。雖然CABS工藝設計時均考慮為連續進水,但在實際運行中即使有間斷進水,也不影響處理系統的運行。
(2)運行上的時序性
CASS反應池通常按曝氣、沉澱、排水和閑置四個階段根據時間依次進行。
(3)運行過程的非穩態性
每個工作周期內排水開始時CANS池內液位最高,排水結束時,液位最低,液位的變化幅度取決於排水比,而排水比與處理廢水的濃度、排放標准及生物降解的難易度等有關。反應池內混合液體積和基質濃度均是變化的,基質降解是非穩態的。
(4)溶解氧周期性變化,濃度梯度高
CASS在反應階段是曝氣的,微生物處於好氧狀態,在沉澱和排水階段不曝氣,微生物處於缺氧甚至厭氧狀態。因此。反應池中溶解氧是周期性變化的,氧濃度梯度大、較多效率高,這對於提高脫氮除磷效率、防止污泥膨脹及節約能耗都是有利的。實踐證實對同樣的曝氣設備而言。CASS工藝與傳統活性污泥法相比有較高的氧利用率。
編輯本段1.4 CASS工藝與其他工藝比較
1.4.1 CASS與SBR的比較
CASS反應池由預反應區和主反應區組成,預反應區控制在缺氧狀態,因此,對難降解有機物的去除效果提高;CASS進水過程連續,因此進水管道上無電磁閥控制元件,單個池子可獨立運行,而SBR或CAST進水過程是間歇的,應用中一般要2個或2個以上池子交替使用,控制系統復雜程度增加。CASS每個周期的排水量一般不超過池內總水量的1/3,而SBR則為1/2-3/4,CASS抗沖擊能力較好。CASS比CAST系統簡單,但脫氮除磷效果不如後者。 CASS池分預反應區和主反應區。在預反應區內,微生物能通過酶的快速轉移機理迅速吸附污水中大部分可溶性有機物,經歷一個高負荷的基質快速積累過程,這對進水水質、水量、PH和有毒有害物質起到較好的緩沖作用,同時對絲狀菌的生長起到抑製作用,可有效防止污泥膨脹;隨後在主反應區經歷一個較低負荷的基質降解過程。CASS工藝集反應、沉澱、排水、功能於一體,污染物的降解在時間上是一個推流過程,而微生物則處於好氧、缺氧、厭氧周期性變化之中,從而達到對污染物去除作用,同時還具有較好的脫氮、除磷功能。CASS生物處理法是周期循環活性污泥法的簡稱,最早產生於美國,90年代初引入中國,目前,由於該工藝的高效和經濟性,應用勢頭迅猛,受到環保部門及擁護的廣泛關注和一致好評。經過模擬試驗研究,已成功應用於生活污水、食品廢水、制葯廢水的治理,取得了良好的處理效果,為CASS法在我國的推廣應用奠定了良好的基礎。在反應器的前部設置了生物選擇區,後部設置了可升降的自動潷水裝置。其工作過程可分為曝氣、沉澱和排水三個階段,周期循環進行。污水連續進入預反應區,經過隔牆底部進入主反應區,在保證供氧的條件下,使有機物被池中的微生物降解。根據進水水質可對運行參數進行調整。 CASS法的特點 與SBR相比,CASS法的優點是: 其反應池由預反應區和主反應區組成,因此,對難降解有機物的去除效果更好。 進水過程是連續的,因此,進水管道上無需電磁閥等控制元件,單個池子可獨立運行;而SBR進水過程是間歇的,應用中一般要2個或2個以上池子交替使用。 排水是由可升降的堰式潷水器完成的,隨水面逐漸下降,均勻將處理後的清水排出,最大限度降低了排水時水流對底部沉澱污泥的擾動。 CASS法每個周期的排水量一般不超過池內總水量的1/3,而SBR則為3/4,所以,CASS法比SBR法的抗沖擊能力更好。
1.4.2 與傳統活性污泥法相比
(1)建設費用低:省去了初次沉澱池、二次沉澱池及污泥迴流設備,建設費用可節省10%~25%。以10萬噸的城市污水處理廠為例,傳統活性污泥法的總投資約1.5億,CASS法總投資約1.1億。 (2)工藝流程短,佔地面積少:污水廠主要構築物為集水池、沉砂池、CASS曝氣池、污泥池,而沒有初次沉澱池、二次沉澱池,布局緊湊,佔地面積可減少20%~35%。 (3)運轉費用省:由於曝氣是周期性的,池內溶解氧的濃度也是變化的,沉澱階段和排水階段溶解氧降低,重新開始曝氣時,氧的濃度梯度大,傳遞效率高,節能效果顯著,運轉費用可節省10%~25%。 (4)有機物去除率高,出水水質好:根據研究結果和工程應用情況,通過合理的設計和良好的管理,對城市污水,進水COD為400mg/L時,出水小於30mg/L以下。對可生物降解的工業廢水,即使進水COD高達3000mg/L,出水仍能達到50m g/L左右。對一般的生物處理工藝,很難達到這樣好的水質。所以,對CASS工藝,二級處理的投資,可達到三級處理的水質。 (5)管理簡單,運行可靠:污水處理廠設備種類和數量較少,控制系統比較簡單,工藝本身決定了不發生污泥膨脹。 (6)污泥產量低,污泥性質穩定。 (7)具有脫氮除磷功能。 在本工程實踐中,CASS反應池取得了比較滿意的效果。CASS池進水為290左右,出水則降到了30~45,達到了《北京市水污染物排放標准》中二級排放標准(CODcr≤60mg/1)。而本項目從開始施工到調試完畢試運行只用了7個月,比常規的活性污泥法大大縮短了工期,節省了投資。
編輯本段1.5 CASS工藝的設計
1.5.1 CASS工藝的主要設計參數
CASS反應器的主要設計參數有:最大設計水深可達5m~6m,MLSS為3500mg/L~4000mg/L,充水比為30%左右,最大上清液潷除速率為30mm/min,固液分離時間60min,設計SVI為140mL/g,單循環時間(即1個運行周期)通常為4h(標准處理模塊)。處理城市污水時,CASS中生物選擇器、缺氧區和主反應區的容積比一般為1∶5∶30,具體可根據水質和「模塊」試驗加以確定。表1列出了CASS工藝處理不同規模城市污水時的參考設計參數。 CASS工藝處理不同規模城市污水時的主要設計參數 主要設計參數 人口當量
37500 300000 600000
CASS池數 2 4 8
單池面積/m 772 2552 2352
最小充水比 VR 0.33 0.19 0.33
最小停留時間/h 9.1 16.8 11.9
最大設計流量/m/d 18546 85000 192000
BOD5/kg/d 2255 15000 37140
TKN/kg/d 382 3500 3518
TSS/kg/d 3377 15000 30400
P/kg/d 77 900 550
循環次數/次/(d·池) 6 6 6
充水-曝氣時間/h 2 2 2
充水-沉澱時間/h 1 1 1
潷水時間 1 1 1

1.5.2 CASS設計中應注意的問題
(1)水量平衡 工業廢水和生活污水的排放通常是不均勻的,如何充分發揮CASS反應池的作用,與選擇的設計流量關系很大,如果設計流量不合適,進水高峰時水位會超過上限,進水量小時反應池不能充分利用。當水量波動較大時,應考慮設置調節池。 (2)控制方式的選擇 CASS工藝的日益廣泛應用,得益於自動化技術發展及在污水處理工程中的應用。CASS工藝的特點是程序工作制,可根據進水及出水水質變化來調整工作程序,保證出水效果。整套控制系統可採用現場可編程式控制制(PLC)與微機集中控制相結合,同時為了保證CASS工藝的正常運行,所有設備採用手動/自動兩種操作方式,後者便於手動調試和自控系統故障時使用,前者供日常工作使用。 (3)曝氣方式的選擇 CASS工藝可選擇多種曝氣方式,但在選擇曝氣頭時要盡量採用不堵塞的曝氣形式,如穿孔管、水下曝氣機、傘式曝氣器、螺旋曝氣器等。採用微孔曝氣時應採用強度高的橡膠曝氣盤或管,當停止曝氣時,微孔閉合,曝氣時開啟,不易造成微孔堵塞。此外,由於CASS工藝自身的特點,選用水下曝氣機還可根據其運行周期和DO等情況適當開啟不同的台數,達到在滿足廢水要求的前提下節約能耗的目的。 (4)排水方式的選擇 CASS工藝的排水要求與SBR相同,目前,常用的設備為旋轉式撇水機,其優點是排水均勻、排水量可調節、對底部污泥干擾小,又能防止水面漂浮物隨水排出。CASS工藝沉澱結束需及時將上清液排出,排水時應盡可能均勻排出,不能擾動沉澱在池底的污泥層,同時,還應防止水面的漂浮物隨水流排出,影響出水水質。目前,常見的排水方式有固定式排水裝置如沿水池沒深度裝置出水管,從上到下依次開啟,優點是排水設備簡單、投資少,缺點是開啟閥門多、排水管中會積存部分污泥,造成初期出水水質差。浮動式排水裝置和旋轉式排水裝置雖然價格高,但排水均勻、排水量可調、對底部污泥干擾小,又能防止水面漂浮物隨出水排出,因此,這兩中排水裝置耳前應用較多,尤其旋轉式排水裝置,又稱潷水器,以操作靈活、運行穩定性高等優點受到設計人員和用戶的青睞。 (5)需要注意的其它問題 1)冬季或低溫對CASS工藝的影響及控制; 2)排水比的確定; 3)雨季對池內水位的影響及控制; 4)排泥時機及泥齡控制; 5)預反應區的大小及反應池的長寬比: 6)間斷排水與後續處理構築物的高程及水量匹配問題。

❹ 如何進行污水處理廠的高程計算及平面、高程布置

污水處理廠
平面布置及高程布置
一、污水處理廠的平面布置
污水處理廠的平面布置應包括:
處理構築物的布置污水處理廠的主體是各種處理構築物。作平面布置時,要根據各構築物(及其附屬輔助建築物,如泵房、鼓風機房等)的功能要求和流程的水力要求,結合廠址地形、地質條件,確定它們在平面圖上的位置。在這一工作中,應使:聯系各構築物的管、渠簡單而便捷,避免遷回曲折,運行時工人的巡迴路線簡短和方便;在作高程布置時土方量能基本平衡;並使構築物避開劣質土壤。布置應盡量緊湊,縮短管線,以節約用地,但也必須有一定間距,這一間距主要考慮管、渠敷設的要求,施工時地基的相互影響,以及遠期發展的可能性。構築物之間如需布置管道時,其間距一般可取5-8m,某些有特殊要求的構築物(如消化池、消化氣罐等)的間距則按有關規定確定。
廠內管線的布置污水處理廠中有各種管線,最主要的是聯系各處理構築物的污水、污泥管、渠。管、渠的布置應使各處理構築物或各處理單元能獨立運行,當某一處理構築物或某處理單元因故停止運行時,也不致影響其他構築物的正常運行,若構築物分期施工,則管、渠在布置上也應滿足分期施工的要求;必須敷設接連人廠污水管和出流尾渠的超越管,在不得已情況下可通過此超越管將污水直接排人水體,但有毒廢水不得任意排放。廠內尚有給水管、輸電線、空氣管、消化氣管和蒸氣管等。所有管線的安排,既要有一定的施工位置,又要緊湊,並應盡可能平行布置和不穿越空地,以節約用地。這些管線都要易於檢查和維修。
污水處理廠內應有完善的雨水管道系統,以免積水而影響處理廠的運行。
輔助建築物的布置輔助建築物包括泵房、鼓風機房、辦公室、集中控制室、化驗室、變電所、機修、倉庫、食堂等。它們是污水處理廠設計不可缺少的組成部分。其建築面積大小應按具體情況與條件而定。有可能時,可設立試驗車間,以不斷研究與改進污水處理方法。輔助建築物的位置應根據方便、安全等原則確定。如鼓風機房應設於曝氣池附近以節省管道與動力;變電所宜設於耗電量大的構築物附近等。化驗室應遠離機器間和污泥干化場,以保證良好的工作條件。辦公室、化驗室等均應與處理構築物保持適當距離,並應位於處理構築物的夏季主風向的上風向處。操作工人的值班室應盡量布置在使工人能夠便於觀察各處理構築物運行情況的位置。
此外,處理廠內的道路應合理布置以方便運輸;並應大力植樹綠化以改善衛生條件。
應當指出:在工藝設計計算時,就應考慮它和平面布置的關系,而在進行平面布置時,也可根據情況調整構築物的數目,修改工藝設計。
總平面布置圖可根據污水廠的規模採用1∶200~1∶1000比例尺的地形圖繪制,常用的比例尺為l:500。
圖1為某甲市污水處理廠總平面布置圖、主要處理構築物有:機械除污物格柵井、曝氣沉砂池、初次沉澱池與二次沉澱池(均設斜板)、鼓風式深水中層曝氣池、消化池等及若干輔助建築物。
該廠平面布置特點為:流線清楚,布置緊湊。鼓風機房和迴流污泥泵房位於暖氣池和二次沉澱池一側,節約了管道與動力費用,便於操作管理。污泥消化系統構築物靠近四氯化碳製造廠(即在處理廠西側),使消化氣、蒸氣輸送管較短。節約了基建投資。辦公室。生活住房與處理構築物、鼓風機房、泵房、消化池等保持一定距離,衛生條件與工作條件均較好。在管線布置上,盡量一管多用,如超越管、處理水出廠管都借道雨水管泄入附近水體,而剩餘污泥、污泥水、各構築物放空管等,又都與廠內污水管合並流人泵房集水井。但因受用地限制(廠東西兩惻均為河浜),遠期發展餘地尚感不足。
圖2為乙市污水廠的平面布置圖,泵站設於廠外。主要構築物有:格柵、曝氣沉砂池、初次沉澱池、曝氣池、二次沉澱池及迴流污泥泵房等一些輔助建築物。濕污泥池設於廠外便於農民運輸之處。
該廠平面布置的特點是:布置整齊、緊湊。兩期工程各自成系統,對設計與運行相互干擾較少。辦公室等建築物均位於常年主風向的上風向,且與處理構築物有一定距離,衛生、工作條件較好。在污水流人初次沉澱池、曝氣池與二次沉澱池時,先後經三次計量,為分析構築物的運行情況創造了條件。利用構築物本身的管渠設立超越管線,既節省了管道,運行又較靈活。
第二期工程預留地設在一期工程與廠前區之間,若二期工程改用別的工藝流程或另選池型時,在平面布置上將受一定限制。泵站與濕污泥池均設於廠外,管理不甚方便。此外,三次計量增加了水頭損失。
二、污水處理廠的高程布置
污水處理廠高程布置的任務是:確定各處理構築物和泵房等的標高,選定各連接管渠的尺寸並決定其標高。計算決定各部分的水面標高,以使污水能按處理流程在處理構築物之間通暢地流動,保證污水處理廠的正常運行。
污水處理廠的水流常依靠重力流動,以減少運行費用。為此,必須精確計算其水頭損失(初步設計或擴初設計時,精度要求可較低)。水頭損失包括:
(1)水流流過各處理構築物的水頭損失,包括從進池到出池的所有水頭損失在內;在作初步設計時可按表1估算。
表1 處理構築物的水頭水損失
構築物名稱 水頭損失(cm) 構築物名稱 水頭損失(cm)
格柵 10~25 生物濾池(工作高度為2m時):
沉砂池 10~25
沉澱池: 平流
豎流
輻流 20~40 1)裝有旋轉式布水器 270~280
40~50 2)裝有固定噴灑布水器 450~475
50~60 混合池或接觸池 10~30
雙層沉澱池 10~20 污泥干化場 200~350
曝氣池:污水潛流入池 25~50
污水跌水入池 50~150

(2)水流流過連接前後兩構築物的管道(包括配水設備)的水頭損失,包括沿程與局部水頭損失。
(3)水流流過量水設備的水頭損失。
水力計算時,應選擇一條距離最長、水頭損失最大的流程進行計算,並應適當留有餘地;以使實際運行時能有一定的靈活性。
計算水頭損失時,一般應以近期最大流量(或泵的最大出水量)作為構築物和管渠的設計流量,計算涉及遠期流量的管渠和設備時,應以遠期最大流量為設計流量,並酌加擴建時的備用水頭。
設置終點泵站的污水處理廠,水力計算常以接受處理後污水水體的最高水位作為起點,逆污水處理流程向上倒推計算,以使處理後污水在洪水季節也能自流排出,而水泵需要的揚程則較小,運行費用也較低。但同時應考慮到構築物的挖土深度不宜過大,以免土建投資過大和增加施工上的困難。還應考慮到因維修等原因需將池水放空而在高程上提出的要求。
在作高程布置時還應注意污水流程與污泥流程的配合,盡量減少需抽升的污泥量。污泥干化場、污泥濃縮池(濕污泥池),消化池等構築物高程的決定,應注意它們的污泥水能自動排人污水人流干管或其他構築物的可能性。
在繪制總平面圖的同時,應繪制污水與污泥的縱斷面圖或工藝流程圖。繪制縱斷面圖時採用的比例尺:橫向與總平面圖同,縱向為1∶50-1∶100。
現以圖2所示的乙市污水處理廠為例說明高程計算過程。該廠初次沉澱池和二次沉澱池均為方形,周邊均勻出水,曝氣池為四座方形池,表面機械曝氣器充氧,完全混合型,也可按推流式吸附再生法運行。污水在入初沉池、曝氣池和二沉池之前;分別設立了薄壁計量堰(、為矩形堰,堰寬0.7m,為梯形堰,底寬0.5m)。該廠設計流量如下:
近期 =174L/s 遠期 =348L/s
=300L/s =600L/s
迴流污泥量以污水量的100%計算。
各構築物間連接管渠的水力計算見表2。
處理後的污水排人農田灌溉渠道以供農田灌溉,農田不需水時排人某江。由於某江水位遠低於渠道水位,故構築物高程受灌溉渠水位控制,計算時,以灌溉渠水位作為起點,逆流程向上推算各水面標高。考慮到二次沉澱池挖土太深時不利於施工,故排水總管的管底標高與灌溉渠中的設計水位平接(跌水0.8m)。
污水處理廠的設計地面高程為50.00m。
高程計算中,溝管的沿程水頭損失按表2所定的坡度計算,局部水頭損失按流速水頭的倍數計算。堰上水頭按有關堰流公式計算,沉澱池、曝氣池集水槽系底,且為均勻集水,自由跌水出流,故按下列公式計算:
B= (1)
=1.25B (2)
式中Q--集水槽設計流量,為確保安全,常對設計流量再乘以1.2~1.5的安全系數();
B--集水槽寬(m);
h0--集水槽起端水深(m)。
高程計算:
高程(m)
灌溉渠道(點8)水位 49.25
排水總管(點7)水位
跌水0.8m 50.05
窨井6後水位
沿程損失=0.001×390 50.44
窨井6前水位
管頂平接,兩端水位差0.05m 50.49
二次沉澱池出水井水位
沿程損失=0.0035×100=0.35m 50.84
二次沉澱池出水總渠起端水位
沿程損失=0.35-0.25=0.10m 50.94
二次沉澱池中水位
集水槽起端水深 =0.38m
自由跌落=0.10m
堰上水頭(計算或查表)=0.02m
合計 0.50m 51.44
堰F3後水位
沿程損失=0.002810=0.03m
局部損失==0.28m
合計 0.31m 51.75
堰F3前水位
堰上水頭=0.26m
自由跌落=0.15m
合計 0.41m 52.16
曝氣池出水總渠起端水位
沿程損失=0.64-0.42=0.22m 52.38
曝氣池中水位
集水槽中水位=0.26m 52.64
堰F2前水位
堰上水頭=0.38m
自由跌落=0.20m
合計 0.58m 53.22
點3水位
沿程損失=0.62-0.54=0.08m
局部損失=5.85×=0.14m
合計 0.22m 53.44
初次沉澱池出水井(點2)水位
沿程損失=0.0024×27=0.07m
局部損失=2.46×=0.15m
合計 0.22m 53.66
初次沉澱池中水位
出水總渠沿程損失=0.35-0.25=0.10m
集水槽起端水深 =0.44m
自由跌落 =0.10m
堰上水頭=0.03m
合計 0.67m 54.33
堰F1後水位
沿程損失=0.0028×11=0.04m
局部損失==0.28m
合計 0.32m 54.65
堰F1前水位
堰上水頭=0.30m
自由跌落=0.15m
合計 0.45m 55.10
沉砂池起端水位
沿程損失=0.48-0.46=0.02m
沉砂池出口局部損失=0.05m
沉砂池中水頭損失=0.20m
合計 0.27m 55.37
格柵前(A點)水位
過柵水頭損失0.15m 55.52m
總水頭損失 6.27m
上述計算中,沉澱池集水槽中的水頭損失由堰上水頭、自由跌落和槽起端水深三部分組成,見圖3。計算結果表明:終點泵站應將污水提升至標高55.52m處才能滿足流程的水力要求。根據計算結果繪制了流程圖,見圖4。

圖3 集水槽水頭損失計算示意
-堰上水頭;-自由跌落;-集水槽起端水深;-總渠起端水深

圖4 污水處理流程
污泥流程的高程計算以圖1所示的甲市污水處理廠為例。該廠污泥處理流程為:
二次沉澱池--污水泵站--初次沉澱池--污泥投配(預熱)池--污泥泵站--消化池--貯泥池--運泥船外運
高程計算順序與污水流程同,即從控制性標高點開始計算。
甲市處理廠設計地面標高為4.2m,初次沉澱池水面標高為6.7m。二次沉澱池剩餘活性污泥系利用廠內下水道排至污水泵站,計算從略。從初次沉澱池排出污泥的含水率為97%,污泥消化後經靜澄、撤去上清液,其含水率為96%。初次沉澱池至污泥投配池的管道用鑄鐵管,長150m,管徑300mm。設管內流速為15m/s,按式(3)

式中—輸泥管道沿程壓力損失(m)
L—輸泥管道長度(m)
D—輸泥管管徑(m)
v—污泥流速(m/s)
—海森-威廉(Haren-Williams)系數,其值決定於污泥濃度,見下表:
污泥濃度(%) 值
0.0 100
2.0 81
4.0 61
6.0 45
8.5 32
10.1 25
可求得其水頭損失為:
m
自由水頭1.5m,則管道中心標高為:
6.7-(1.20+1.50)=4.0m
流入污泥投配池的管底標高為:
4.0-0.15=3.85m

圖5 投配池及標高
污泥投配池的標高可據此確定,投配池及標高見圖5。
消化池至貯泥池的各點標高受河水位的影響(即受河中運泥船高程的影響),故以此向上推算。設要求貯泥池排泥管管中心標高至少應為3.0m才能向運泥船排盡池中污泥,貯泥池有效深2.0m。已知消化池至貯泥池的鑄鐵管管徑為200mm,管長70m,並設管內流速為1.5m/s,則根據式(1)可求得水頭損失為1.20m,自由水頭設為1.5m。又,消化池採用間歇式排泥運行方式,根據排泥量計算,一次排泥後池內泥面下降0.5m。則排泥結束時消化池內泥面標高至少應為:
3.0+2.0+0.1+1.2+1.5=7.8m
開始排泥時的泥面標高:
7.8+0.5=8.3m
式中0.1為管道半徑,即貯泥池中泥面與入流管管底平。
應當注意的是:當採用在消化池內撇去上清液的運行方式時,此標高是撇去上清液後的泥面標高,而不是消化池正常運行時的池內泥面標高。
當需排除消化池中下面的污泥時,需用排泥泵排除。
據此繪制的污泥高程圖見圖8-5。

❺ 請教污泥負荷與容積負荷

SBR反應池池容計算系指傳統的序批式活性污泥反應池,而不包括其他SBR改進型的諸多反應池(如ICEAS、CASS、MSBR等)池容的計算。
現針對存在的問題提出一套以總污泥量為主要參數的綜合設計方法,供設計者參考。

1 現行設計方法

1.1 負荷法
該法與連續式曝氣池容的設計相仿。已知SBR反應池的容積負荷或污泥負荷、進水量及進水中BOD5濃度,即可由下式迅速求得SBR池容:
容積負荷法 V=nQ0C0/Nv (1)
Vmin=〔SVI·MLSS/106]·V
污泥負荷法 Vmin=nQ0C0·SVI/Ns (2)
V=Vmin+Q0
1.2 曝氣時間內負荷法
鑒於SBR法屬間歇曝氣,一個周期內有效曝氣時間為ta,則一日內總曝氣時間為nta,以此建立如下計算式:
容積負荷法 V=nQ0C0tc/Nv·ta (3)
污泥負荷法 V=24QC0/nta·MLSS·NS (4)
1.3 動力學設計法
由於SBR的運行操作方式不同,其有效容積的計算也不盡相同。根據動力學原理演算(過程略),SBR反應池容計算公式可分為下列三種情況:
限制曝氣 V=NQ(C0-Ce)tf/[MLSS·Ns·ta] (5)
非限制曝氣 V=nQ(C0-Ce)tf/[MLSS·Ns(ta+tf)] (6)
半限制曝氣 V=nQ(C0-Ce)tf/[LSS·Ns(ta+tf-t0)] (7)
但在實際應用中發現上述方法存有以下問題:
① 對負荷參數的選用依據不足,提供選用參數的范圍過大〔例如文獻推薦Nv=0.1~1.3kgBOD5/(m3·d)等〕,而未考慮水溫、進水水質、污泥齡、活性污泥量以及SBR池幾何尺寸等要素對負荷及池容的影響;
② 負荷法將連續式曝氣池容計算方法移用於具有二沉池功能的SBR池容計算,存有理論上的差異,使所得結果偏小;
③ 在計算公式中均出現了SVI、MLSS、Nv、Ns等敏感的變化參數,難於全部同時根據經驗假定,忽略了底物的明顯影響,並將導致各參數間不一致甚至矛盾的現象;
④ 曝氣時間內負荷法與動力學設計法中試圖引入有效曝氣時間ta對SBR池容所產生的影響,但因其由動力學原理演算而得,假定的邊界條件不完全適應於實際各個階段的反應過程,將有機碳的去除僅限制在好氧階段的曝氣作用,而忽略了其他非曝氣階段對有機碳去除的影響,使得在同一負荷條件下所得SBR池容驚人地偏大。
上述問題的存在不僅不利於SBR法對污水的有效處理,而且進行多方案比較時也不可能全面反映SBR法的工程量,會得出投資偏高或偏低的結果。
針對以上問題,提出了一套以總污泥量為主要參數的SBR池容綜合設計方法。

2 總污泥量綜合設計法

該法是以提供SBR反應池一定的活性污泥量為前提,並滿足適合的SVI條件,保證在沉降階段歷時和排水階段歷時內的沉降距離和沉澱面積,據此推算出最低水深下的最小污泥沉降所需的體積,然後根據最大周期進水量求算貯水容積,兩者之和即為所求SBR池容。並由此驗算曝氣時間內的活性污泥濃度及最低水深下的污泥濃度,以判別計算結果的合理性。其計算公式為:
� TS=naQ0(C0-Cr)tT·S (8)
� Vmin=AHmin≥TS·SVI·10-3 (9)
� Hmin=�Hmax-ΔH� (10)
� V=Vmin+ΔV� (11)
式中�TS——單個SBR池內干污泥總量,kg
tT·S——總污泥齡,d
A——SBR池幾何平面積,m2
� Hmax、Hmin——分別為曝氣時最高水位和沉澱終了時最低水位,m
ΔH——最高水位與最低水位差,m
� Cr——出水BOD5濃度與出水懸浮物濃度中溶解性BOD5濃度之差。其值為:
� Cr=Ce-Z·Cse·1.42(1-ek1t) (12)
式中�Cse——出水中懸浮物濃度,kg/m3
� k1——耗氧速率,d-1
� t——BOD實驗時間,d
� Z——活性污泥中異養菌所佔比例,其值為:
� Z=B-(B2-8.33Ns·1.072(15-T))0.5� (13)
� B=0.555+4.167(1+TS0/BOD5)Ns·1.072(15-T)� (14)
Ns=1/a·tT·S� (15)
式中�a——產泥系數,即單位BOD5所產生的剩餘污泥量,kgMLSS/kgBOD5,其值為:
� a=0.6(TS0/BOD5+1)-0.6×0.072×1.072(T-15)1/〔tT·S+0.08×1.072(T-15)� (16)
式中TS、BOD5——分別為進水中懸浮固體濃度及BOD 5濃度,kg/m3
�T——污水水溫,℃
由式(9)計算之Vmin系為同時滿足活性污泥沉降幾何面積以及既定沉澱歷時條件下的沉降距離,此值將大於現行方法中所推算的Vmin。
必須指出的是,實際的污泥沉降距離應考慮排水歷時內的沉降作用,該作用距離稱之為保護高度Hb。同時,SBR池內混合液從完全動態混合變為靜止沉澱的初始5~10min內污泥 仍處於紊動狀態,之後才逐漸變為壓縮沉降直至排水歷時結束。它們之間的關系可由下式表示:
� vs(ts+td-10/60)=ΔH+Hb (17)
� vs=650/MLSSmax·SVI� (18)
由式(18)代入式(17)並作相應變換改寫為:
〔650·A·Hmax/TS·SVI〕(ts+td-10/60)=ΔV/A+Hb (19)
式中 �vs——污泥沉降速度,m/h
� MLSSmax——當水深為Hmax時的MLSS,kg/m3�
ts、td——分別為污泥沉澱歷時和排水歷時,h
式(19)中SVI、Hb、ts、td均可據經驗假定,Ts、ΔV均為已知,Hmax可依據鼓風機風壓或曝氣機有效水深設置,A為可求,同時求得ΔH,使其在許可的排水變幅范圍內保證允許的保護高度。因而,由式(10)、(11)可分別求得Hmin、Vmin和反應池容。

3 工程算例 �

3.1 設計基本條件
某城鎮平均污水處理量為10000m3/d,進、出水質見表1。

表1 設計進、出水質 項目 CODCr(mg/L) BOD5(mg/L) SS(mg/L) NH3-N(mg/L) NO3-N(mg/L) TP(mg/L) 水溫(℃) pH 進水 380 200 200 40 0 4 15 出水 60 20 20 5 5 0.5 6~9
3.2 SBR池容計算
按前述設計方法及推薦採用的參數,以及提出的總污泥量綜合計演算法和相應的參數推求公式,依表1的要求進行SBR池容計算。為便於結果比較,該工程設SBR池2座,交替分批進水,周期長6h,Hmax=4.2m,變化系數k2=1.2,計算結果見表2。

表2 單個SBR池參數及結果比較 設計參數一法二法三法四法新法 Nv〔kgBOD5/(m3·d)〕 0.50 0.24 Nv〔kgBOD5/(kgMLSS·d〕 0.255 (0.074) (0.074) 0.074 SVI(mL/g) 90 150 (120) (120) 120 MLSSmax(mg/L) 3000 (3235) (3235) 3235 a〔kgMLSS/(kgBOD5·d)〕 0.906 tT·S(d) 15 TS(kg) (12571) (12571) 12571 Z(%) 0.302 ta(h) (3.0) (3.0) ts+td(h) 1.0+1.0 A(m2) 476 438 1984 1798 925 ΔH(m) 3.07 2.85 2.57 2.57 1.62 Vmin(m3) 540 588 3234 2931 2386 V(m3) 2000 1838 8333 7550 3886 ΔV(m3) 1460 1250 5099 4619 1500 HRT(h) 9.6 8.8 40.0 36.2 18.7 註:①一法至四法依次指:容積負荷法、總污泥負荷法、曝氣時間內負荷法、動力學設計法,新法系指總污泥量綜合設計法;
②前四種方法中參數 A、ΔH值系由V及Hmax反推而得,列出目的是為便於比較;
③一法和二法中Ns、Nv、SVI值系直接引用相應參考文獻中採用的數據,其他方法中凡帶( )者為文中假定或移用新法推算值。

4 設計方法評價

根據表2結果進行合理性分析,對SBR池容設計的各種方法作綜合評價如下:
① 曝氣時間內負荷法和動力學設計法所得池容明顯偏大,停留時間過長,ΔH已超出允許范圍,實際的MLSSmax僅為1508 mg/L和1655mg/L,要達到假定的活性污泥濃度必須使總污泥齡達30d左右,這樣則污泥負荷過小,不利於除磷脫氮。故該兩法若用於目前的設計,尚有待改進和完善,但其設想及動力學的理論原理和對SBR池容設計的進步將具有一定的研究價值。
② 容積負荷法和總污泥負荷法實質上系屬同一種方法,當採用相應參考文獻中的設計參數時所得池容偏小、停留時間過短、ΔH也已超出允許范圍;當負荷參數採用總污泥量綜合設計法的公式推算值時,則所得SBR池容趨於合理、偏差縮小,但仍然存有ΔH、Hmax等參數與沉降速度、沉澱面積及保護高度之間的關系相脫節的缺陷,最終將影響處理效果。
因此該兩法宜謹慎採用,特別是對公式中的負荷參數應以通過計算代替假設,但對式(15)應進行修正,以與該兩法的計算公式相適應。
③ 總污泥量綜合設計法中所考慮的因素及出發點均與SBR反應池的功能特性密切結合,避免了前幾種方法中所存在的問題及缺陷。通過包括硝化、反硝化和厭氧三個反應階段所需反應歷時及階段污泥齡的校核計算(方法略)得三個階段的反應歷時分別為2.1、1.4、0.5h;所需污泥齡分別為5、8及10d。而本算例假定總污泥齡為15d,其SBR池容完全能滿足進行除磷脫氮的需要,且維持了合理的負荷及活性污泥濃度。
④ 從有關參數得知:總污泥量綜合設計法SBR池容合理;ΔH在允許范圍內;MLSSmax=3235mg/L,在3000~4000mg/L之間;Ns=0.074kgBOD5/(kgMLSS·d),在0.06~0.10kgBOD5/(kgMLSS·d)范圍內;Nn=0.013kgNH3-N/(kgMLSS·d),符合除磷脫氮負荷要求;MLSSmin=5269mg/L近似於6000mg/L;ΔV/V=38.6%≤40%,符合最佳充水比。
該法在所有設計參數中除SVI、ts、td按經驗假定外,均依據進水水質由公式推算而得,不會產生與其他現行方法的矛盾。同時在推求池容過程中確定了SBR池的幾何尺寸,這是其他方法所不及的。

電 話:(0571)88821434 88072824×6910
收稿日期:2002-03-22

閱讀全文

與已知某城鎮污水處理相關的資料

熱點內容
山西反滲透設備生產廠家怎麼樣 瀏覽:437
過濾芯的石棉是什麼做的 瀏覽:623
反滲透殺菌劑投加量 瀏覽:931
我回重慶了用英語怎麼說 瀏覽:638
空氣凈化器怎麼添加精油 瀏覽:932
反滲透膜的脫鹽率不穩定 瀏覽:749
碳纖維環氧樹脂基復合 瀏覽:192
超濾膜過濾魚缸 瀏覽:331
姜辣素提取廢水怎麼辦 瀏覽:655
陽台魚池過濾器有哪些 瀏覽:1
汽車圓筒空氣濾芯有什麼好處 瀏覽:977
長沙污水凈化臭氧機多少錢一台 瀏覽:574
fs36257是什麼濾芯 瀏覽:313
污水管道要做哪些試驗 瀏覽:581
目前國際上使用的EDI標准主要有 瀏覽:756
凈水器超濾膜什麼樣的好 瀏覽:306
已知某城鎮污水處理 瀏覽:162
醫療污水消毒箱如何消毒 瀏覽:778
商用油煙凈化器箱體銹蝕怎麼修復 瀏覽:783
酒店大廳飲水機怎麼使用 瀏覽:551