導航:首頁 > 廢水知識 > ASBR污水處理

ASBR污水處理

發布時間:2025-10-16 01:50:09

A. 苯胺的備制

簡單的說就是將硝基苯和氫氣加熱到200度左右,通入流化床反應器,在金屬負載型催化劑(很多種,你這里是活性銅)的作用下,在200-320度時生成苯胺。
反應化學式為C6H5NO2+3H2—-—- C6H5NH2+2H20

硝基苯催化加氫法是目前工業上生產苯胺的主要方法,包括固定床氣相催化加氫、流化床氣相催化加氫以及硝基苯液相催化加氫三種工藝。

催化劑
C6H5NO2+3H2—-—- C6H5NH2+2H20+Q
生產工藝:1,硝基苯加氫還原:硝基苯經預熱和氫氣以1:9(摩爾比)進入氣化器,氣化並加熱至185~200℃,通人流化床。以銅作催化劑,氣態硝基苯在流化床內發生加氫還原反應。控制流化床內中心溫度220~270℃。H:≥90%。加氫反應產生的熱量由廢熱鍋爐產生1.3~1.7MPa的飽和蒸汽,供氣化器和後續精餾工序使用。流化床頂部出來的氣態反應生成物經冷凝、冷卻。液相為反應生成的苯胺和水,分層得到粗品苯胺。不凝氣(H:≥90%)少量排放,其餘壓縮後。和新鮮氫混合循環使用。床內銅催化劑定期進行再生處理。2,苯胺精製:粗品苯胺從脫水塔頂泵人。控制脫水塔釜溫度140-160℃,塔頂溫度120~140℃。塔內真空度一0.06至-0.07MPa。當脫水塔釜液水分≤0.1%後,進入精餾塔精餾脫除重組份(硝基苯、聯苯胺類等)。控制塔釜溫度l10~120℃。塔頂溫度100~llO~C。塔內真空度一0.09MPa以上。氣態苯胺從塔頂蒸出冷凝得到成品;塔釜內的重組份定期排放,蒸餾回收苯胺後作為焦油。

固定床氣相催化加氫工藝是在l~3 MPa和200—300 攝氏度等條件下,硝基苯和氫發生反應,苯胺的選擇性>99%。具有運轉費用低、投資少、技術成熟和產品質量好等優點,不足之處是易發生局部過熱而引起副反應和催化劑失活。國外大多數苯胺生產廠採用此工藝進行生產。
流化床氣相催化加氫法是汽化後的硝基苯與過量H:混合,進人流化床反應器,在260—280℃進行加氫還原反應生成苯胺和水蒸汽。該法較好地改善了傳熱狀況,避免局部過熱,減少副反應的生成,延長了催化劑的使用壽命;不足之處是操作較復雜,催化劑磨損大,裝置建設、操作和維修費用較高。我國絕大多數苯胺生產廠家均採用流化床氣相催化加氫工藝進行生產。
硝基苯液相催化加氫工藝是在無水條件下硝基苯進行加氫反應生成苯胺,苯胺的收率為99%。優點是反應溫度較低,副反應少,催化劑負荷高,壽命長,設備生產能力大,不足之處是反應物與催化劑以及溶劑必須進行分離,設備操作以及維修費用高。
目前,成功應用於硝基苯加氫工藝的催化劑主要是還原態的銅基催化劑和貴金屬鉑系催化劑。
俄羅斯催化研究所披露了硝基苯加氫制苯胺的銅加強催化劑的制備方法:通過在不銹鋼的柵格中燒結分布在熱交換器表面的鎳和鋁粉末,得到鎳.鋁載體,銅催化劑便依附在此載體上,用此方法製得的催化劑活性高。
硝基苯催化加氫工藝的技術進展主要表現在催化劑的改進方面。
美國杜邦公司成功開發了硝基苯液相催化加氫工藝:在150—250℃和0.15—1.0 MPa條件下,採用貴金屬催化劑,在無水條件下硝基苯進行加氫反應生成苯胺,收率為99%。俄國物理有機研究所研製出以稀土金屬氧化物為載體的硝基苯催化加氫鈀催化劑,實驗證明,在硝基苯加氫制苯胺中,l%Pd/Sm:03比1%Pd/A120 的催化活性高,兩者的穩定性比值為3.5。莫貝公司研製出由金、銀鉑或鈀等貴金屬製成的網狀、波紋狀或蜂窩狀催化劑,在此催化劑存在下,以甲醇為溶劑,於131—150oC和6.4 MPa條件下硝基苯加氫反應63 rain,苯胺收率98.1%以上。天津大學製成了一種功能性磷樹脂,把Pd、Pt或Ni負載於該樹脂上製成催化劑,可用於硝基苯的氫化反應。

B. 食品加工論文範文

食品加工質量安全管理工作是保障企業產品質量安全符合質量標準的關鍵、是維護企業市場信譽的關鍵,是企業在現代激烈市場競爭中贏得市場競爭力的關鍵。下面是我為大家推薦的食品加工論文,供大家參考。

食品加工論文 範文 一:食品工業泡沫分離技術的應用

泡沫分離又稱泡沫吸附分離技術,是以氣泡為介質,以各組分之間的表面活性差為依據,從而達到分離或濃縮目的的一種分離 方法 [1].20世紀初,泡沫分離技術最早應用於礦物浮選,後來應用於回收工業廢水中的表面活性劑.直到20世紀70年代,人們開始將泡沫分離技術應用於蛋白質與酶的分離提取[2-3].目前,在食品工業中,泡沫分離技術已經應用於蛋白質與酶、糖及皂苷類有效成分的分離提取.由於大部分食品料液都有起泡性,泡沫分離技術在食品工業中的應用將越來越廣泛.

1泡沫分離技術的原理及特點

1.1泡沫分離技術的原理

泡沫分離技術是依據表面吸附原理,基於液相中溶質或顆粒之間的表面活性差異性.表面活性強的物質先吸附於分散相與連續相的界面處,通過鼓泡形成泡沫層,使泡沫層與液相主體分離,表面活性物質集中在泡沫層內,從而達到濃縮溶質或凈化液相主體的目的.

1.2泡沫分離技術的特點

1.2.1優點

(1)與傳統分離稀濃度產品的方法相比,泡沫分離技術設備簡單、易於操作,更加適合於稀濃度產品的分離.(2)泡沫分離技術解析度高,對於組分之間表面活性差異大的物質,採用泡沫分離技術分離可以得到較高的富集比.(3)泡沫分離技術無需大量有機溶劑洗脫液和提取液,成本低、環境污染小,利於工業化生產.

1.2.2缺點

表面活性物質大多數是高分子化合物,消化量比較大,同時比較難回收.此外,溶液中的表面活性物質濃度不易控制,泡沫塔內的返混現象會影響到分離效果[4].

2泡沫分離技術在食品工業中的應用

2.1蛋白質的分離

在分離蛋白質的過程中,表面活性差異小的蛋白質,吸附效果受到氣-液界面吸附結構的影響,因此蛋白質表面活性的強度是考察泡沫分離效果的主要指標.譚相偉等[5]研究了牛血清蛋白與酪蛋白在氣-液界面的吸附,並發現酪蛋白對牛血清蛋白在氣-液界面處的吸附有顯著影響.此後,Hossain等[6]利用泡沫分離技術對β-乳球蛋白和牛血清蛋白進行分離富集,結果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]採用連續式泡沫分離技術從混合液中分離牛血清蛋白與酪蛋白,結果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分離法從乳鐵傳遞蛋白、牛血清蛋白和α-乳白蛋白3種蛋白混合液中分離出乳鐵傳遞蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同濃度的乳鐵傳遞蛋白,並不斷改變氣速,優化了最佳工藝條件.結果得出:在最佳工藝條明閉件下,87%的乳鐵傳遞蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在於泡沫夾帶液中.由此可見,利用泡沫分離法可以有效地從3種蛋白質激禪裂混合液中分離出乳鐵傳遞蛋白.Chen等[9]利用泡沫分離技術從牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白濃度、氮流量、柱的高度及發泡時間等因素對反應的影響,結果表明:採用泡沫分離方法可以有效地從牛奶中分離出免疫球蛋白.Liu等[10]從工業大豆廢水濃縮富集大豆蛋白,最佳工藝條件:溫度為50℃,pH值為5.0,空氣流量為100mL?min-1,裝載液體高度為400mm,得到大豆蛋白富集比為3.68.Li等[11]為了提高泡沫析水性,研發了一種新型的利用鐵絲網進行整裝填料的泡沫分離塔,利用鐵絲網整體填料塔泡沫分離法對牛血清蛋白進行分離.通過研究填料對氣泡大小、持液量、富集比和在不同條件下以牛血清蛋白水溶液作為一個參考物的有效收集率的影響,評價填料的作用.結果表明,填料可以加速氣泡破裂、減少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在積液量為490mL,空氣流速為300mL?min-1,牛血清蛋白初始濃度為0.10g?L-1,填料床高度為300mm和初始pH值為6.2的條件下,最佳的牛血清蛋白富集比為21.78,是控制塔條件下富集比的2.44倍.劉海彬等[12]以桑葉為原料,採用泡沫分離法對襲明桑葉蛋白進行分離,並分析了影響分離效果的主要因素,結果測得桑葉蛋白回收率為92.50%、富集比為7.63.由此可見,利用泡沫分離法對桑葉進行分離可得到含量較高的桑葉蛋白.與傳統的葉蛋白分離方法如酸(鹼)熱法、有機溶劑法相比較[13-14],泡沫分離法分離效果好,避免了加熱導致蛋白質變性以及減少有機溶劑帶來的環境污染等問題.李軒領等[15]以亞麻蛋白濃度、NaCl濃度、原料液pH值以及裝液量為主要考察因素,用響應面法優化了從未脫膠亞麻籽餅粕中泡沫分離亞麻蛋白的工藝條件.在最佳工藝條件下,得到95.8%的亞麻蛋白質,而多糖的損失率僅為6.7%.可見,採用泡沫分離技術可以從未脫膠亞麻籽餅粕中有效分離出亞麻蛋白.

2.2酶的分離

蛋白質屬於生物表面活性劑,包含極性和非極性基團,在溶液中可選擇性地吸附於氣-液界面.因此,從低濃度溶液中可泡沫分離出酶和蛋白質等物質.Linke等[16]研究了從發酵液中泡沫分離胞外脂肪酶,考察了通氣時間、pH值及氣速等主要因素對回收率的影響,研究得出通氣時間為50min、pH值為7.0及氣速為60mL/min時,酶蛋白回收率為95%.Mohan等[17]從啤酒中泡沫分離回收酵母和麥芽等,結果表明,分離酵母和麥芽所需的時間不同,而且低濃度時更加容易富集.Holmstr[18]從低濃度溶液中泡沫分離出澱粉酶,研究發現在等電點處鼓泡,泡沫夾帶液中的澱粉酶活性是原溶液中的4倍.Lambert等[19]採用泡沫分離技術考察了β-葡糖苷酶的pH值與表面張力之間的關系,研究表明,纖維素二糖酶和纖維素酶的最佳起泡pH值分別為10.5和6~9.Brown等[7]利用泡沫分離技術對牛血清蛋白與溶菌酶以及酪蛋白與溶菌酶的混合體系分別進行了分離純化的研究.結果表明,溶菌酶不管與牛血清蛋白混合還是與酪蛋白混合,回收率都很低,但是由於溶菌酶可提高泡沫的穩定性,從而提高了牛血清蛋白與溶菌酶的回收率.Samita等[20]對牛血清蛋白與酪蛋白、牛血清蛋白與溶菌酶兩種二元體系分別進行了研究,發現在牛血清蛋白與酪蛋白的蛋白質二元體系中酪蛋白在氣-液界面處的吸附佔了大部分的氣-液界面,從而阻止了牛血清蛋白在氣-液界面處的吸附.而在牛血清蛋白與溶菌酶的二元體系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同時提高了泡沫的穩定性.針對這種現象,Noble等[21]也採用泡沫分離法分離牛血清蛋白與溶菌酶的二元體系,研究發現泡沫夾帶液中存在少量的溶菌酶,提高了泡沫的穩定性,牛血清蛋白溶液在低濃度下本來不能產生穩定泡沫,溶菌酶的存在使得其也能產生穩定的泡沫.這些研究表明,泡沫分離技術可以在較低的濃度下分離具有表面活性的蛋白質,為泡沫分離技術在蛋白質分離中的應用研究開辟了新的領域.國內泡沫分離技術已應用在酶類物質分離中,范明等[22]設計了泡沫分離裝置,利用泡沫分離技術分離脂肪酶模擬液和實際生產生物柴油的水相脂肪酶溶液,對水相脂肪酶進行回收並富集.考察了通氣速度、進料酶濃度及水相脂肪酶溶液中pH值等主要因素對分離效果的影響,當通氣速度為10L/(LH)、進料酶濃度為0.2g/L、pH值為7.0時,蛋白和酶活回收率接近於100%,富集比為3.67.研究表明,初始脂肪酶濃度對泡沫分離的富集比和蛋白回收率有顯著影響,pH值對富集比、蛋白和酶活回收率無顯著影響,而氣速是影響蛋白回收速率的一個重要因素.回收水相脂肪酶的過程中酶活性無損失.可見,泡沫分離是一個回收液體脂肪酶的有效方法[22].

2.3糖的分離

糖一般存在於植物和微生物體內,可根據糖與蛋白質或者其他物質的表面活性差異性,利用泡沫分離技術對糖進行分離提取[23].Fu等[24]採用離心法從基隆產的甘薯塊中分離提取可溶性糖和蛋白,得到的回收率分別為4.8%和33.8%;而採用泡沫分離法時,可溶性糖和蛋白的回收率分別為98.8%和74.1%.Sarachat等[25]採用泡沫分離法富集假單胞菌生產的鼠李糖脂,最佳工藝條件下得到鼠李糖脂97%,富集比為4.__洲[26]利用間歇式泡沫分離法從美味牛肝菌水提物中分離牛肝菌多糖,考察了pH值、原料液濃度、空氣流速、表面活性劑用量及浮選時間等主要因素對分離效果的影響,以回收率為指標評價分離的效果,並優化了分離牛肝菌多糖的工藝條件.在最佳工藝條件下,牛肝菌多糖回收率為83.1%.國內關於食用菌多糖的提取一般利用水提醇析法,但是該法需要消耗大量的乙醇,操作周期長,能耗大[27-28],而泡沫分離法具有快速分離、設備簡單、操作連續、不需高溫高壓及適合分離低濃度組分等優勢,因此間歇式泡沫分離法是提取食用菌多糖的一種有效方法.

2.4皂苷類有效成分的分離

皂苷包含親水性的糖體和疏水性的皂苷元,具有良好的起泡性,是一種優良的天然非離子型表面活性成分,因此可採用泡沫分離法從天然植物中分離皂苷[29].泡沫分離法已廣泛用於大豆異黃酮苷元、人參皂苷、無患子皂苷、竹節參皂苷、文冠果果皮皂苷等有效成分的分離.

2.4.1大豆異黃酮苷元的分離Liu等[10]

採用泡沫分離與酸解方法從大豆乳清廢水中分離大豆異黃酮苷元,指出從工業大豆乳清廢水中提取的異黃酮苷元主要以β-苷元的形式存在,並利用傅里葉變換紅外光譜分析發現大豆異黃酮和大豆蛋白以復合物的形式存在.研究結果表明,利用泡沫分離技術可以從大豆乳清廢水中有效地富集大豆異黃酮,分離出大豆異黃酮苷元和β-苷元.

2.4.2無患子總皂苷的分離魏鳳玉等[30]

分別採用間歇和連續泡沫分離法分離純化無患子皂苷,利用正交試驗,考察了原始料液濃度、氣體流速、溫度、pH值等因素對無患子皂苷回收率的影響,確定了泡沫分離最佳工藝條件.林清霞等[31]採用泡沫分離技術分離純化無患子皂苷,利用紫外分光光度計測定無患子皂苷含量,通過富集比、純度及回收率判斷分離純化的效果.在進料濃度為2.0g/L、進料量為150mL、氣速為32L/h、溫度為30℃、pH值為4.3時,得到富集比為2.153,純度與回收率分別為74.68%和79.19%.研究結果表明:無患子皂苷的回收率隨著進料濃度的增大而減小,隨著氣速、進料量的增大而增大;富集比隨著進料濃度、氣速及進料量的增大而減小,pH值對富集比的影響較小;純度隨著進料濃度、氣速的增大而降低,進料量、pH值對純度的影響較小.

2.4.3竹節參總皂苷的分離

竹節參的主要成分皂苷是一種優良的天然表面活性劑,而竹節參中的竹節參多糖、無機鹽及氨基酸等是非表面活性劑,因此可根據表面活性的差異,採用泡沫分離技術對竹節參皂苷進行分離純化[32-34].張海濱等[35]考察了氣泡大小、pH值、原料液溫度及電解質物質的量濃度等主要因素對泡沫分離竹節參總皂苷的影響,以富集比、純度比及回收率等為指標分析分離純化的效果,得出最佳工藝條件:氣泡直徑為0.4~0.5mm,pH值為5.5,溫度為65℃,電解質NaCl濃度為0.015mol?L-1.在最佳工藝條件下,總皂苷富集比為2.1,純度比為2.6,回收率為98.33%,能夠得到較好的分離.張長城等[36]研究了利用泡沫分離技術對竹節參中皂苷進行分離純化的方法與條件,指出泡沫分離技術分離純化竹節參皂苷具有產品回收率高、工藝簡單、能耗低及不使用有機溶劑等優點,為竹節參皂苷的開發利用提供了技術支持.

2.4.4文冠果果皮皂苷的分離

文冠果籽油是優質的食用油,含油率達35%~40%[37],同時可作為生物柴油的原料.文冠果果皮含有皂苷1.5%~2.4%.研究表明,文冠果果皮皂苷具有抗腫瘤、抗氧化及抗疲勞等功效[38].文冠果果皮皂苷的開發利用帶來的附加價值可以有效地降低生物柴油的生產成本.在生產生物柴油的過程中需要處理大量的果皮,因此需要尋求一種簡單可行、成本低、收率高以及對環境污染小的皂苷分離方法.吳偉傑等[39]使用自製起泡裝置,研究了泡沫分離技術分離文冠果果皮總皂苷的可行性及最佳反應條件.研究得出泡沫分離文冠果皂苷的最佳工藝條件為:料液氣體流速為2.5L?min-1,初始濃度為2mg?mL-1,溫度為20℃,pH值為5.與泡沫分離人參、三七等皂苷的氣體流速相比較,文冠果果皮的氣體流速較低,這樣可以更大限度地降低能耗、節約成本.同時,泡沫分離文冠果果皮皂苷可在室溫條件下進行,降低了加熱所需的能耗.此外,由於文冠果果皮皂苷的水溶液pH值在5左右,泡沫分離時無需調節pH值.在最佳工藝條件下,得到富集比為3.05,回收率為60.02%,純度為63.35%.研究表明,泡沫分離文冠果果皮皂苷可以達到較高的富集比、回收率和純度,對於大力開發利用生物能源、綜合利用文冠果以及降低生物柴油的成本有著重要意義.

3展望

泡沫分離技術是一種很有發展前景的新型分離技術,在食品工業中的應用將會越來越廣泛,今後在天然產物及稀有物質的分離提取等方面有著更加廣泛的應用.同時,泡沫分離技術也存在一定的局限性,為促進泡沫分離技術在食品工業中的應用發展,應該在以下方面進行深入研究:(1)對泡沫分離復雜物料實際分離過程的泡沫形成情況建立理論模型,對標准表面活性劑的分離提取建立標准資料庫,對標准表面活性劑和非表面活性物質間的分離建立指紋圖譜;(2)如何減少泡沫分離非表面活性物質時的表面活性劑消耗量;(3)如何解決泡沫分離高濃度產品時回收率低的問題;(4)目前泡沫分離設備存在局限性,應研究開發新型的適合食品工業分離的泡沫分離設備,提高泡沫分離的效果[40].

食品加工論文範文二:食品工業廢水處理節能研究

食品工業包括製糖、釀造、肉類、乳品加工等,食品工業的廢水主要來源於原料的處理、洗滌、脫水、過濾、脫酸、脫臭和蒸煮過程中產生的,這些廢水含有大量的有機物、蛋白質、有機酸和碳水化合物,具有很強的耗氧性,如果不經處理直接排入水體會大量消耗水中的溶解氧,從而造成水體缺氧,造成水生生物的死亡。食品工業廢水油脂含量高,多伴隨大量懸浮物隨廢水排出,其中動物性食品加工排出的廢水還可能含有病菌,此外,這些廢水還含有銅、錳、鉻等金屬離子。近年來,隨著食品加工業的快速發展,每年由此產生的廢水量也呈現快速增長態勢,許多廢水未經有效處理便被直接排放,給環境產生了十分嚴重的破壞。因此,探討食品工業廢水處理對於生態環境保護具有非常重要的現實意義。

1食品工業廢水處理工藝現狀

目前,國內外對於食品工業廢水的處理過程中主要採用的是生物處理工藝,其中主要包括有好氧生物處理工藝、厭氧生物處理工藝,以及由好氧生物處理工藝與厭氧生物處理工藝相結合的處理工藝。在好氧生物處理工藝方面,主要有活性污泥法(目前實際應用較為廣泛的主要有SBR法)和生物膜法(具有代表性的是曝氣生物濾池法)。由於厭氧生物處理工藝相較於好氧生物處理工藝無論在後期的運行管理費用還是前期的基建投資方面的費用都有較大優勢,其中比較具有典型的處理工藝有厭氧顆粒污泥膨脹床(EGSB)工藝、第三代厭氧處理工藝———厭氧內循環反應器(IC)被廣泛應用到了食品工業廢水處理中。此外,厭氧生物處理工藝在處理食品工業廢水方面具有良好的處理效果[1]。

2各種工藝特點及應用效果分析

目前國內外,食品工業廢水的處理以生物處理[2]為主。在實際中運用較廣,技術較為成熟的主要有厭氧接觸法、厭氧污泥床法、淺層曝氣、延時曝氣、曝氣沉澱池法等等。

2.1好氧生物處理工藝

好氧生物處理是在不斷供氧的環境中,利用好氧微生物來氧化有機物。在好氧過程中,微生物對復雜的有機物進行分解,一部分被轉化為穩定的無機物CO2、H2O和NH3,一部分則由微生物合成為新細胞,最後去除污水中的有機物。

2.1.1SBR法,即間歇式活性污泥系統(又叫序批式間歇活性污泥法)。SBR法目前在國內外應用較為廣泛,生物反應池中集中了生物降解過程、沉澱過程以及污泥迴流功能為一體,這種工藝比較簡單,它是在以前間歇式活性污泥工藝基礎上發展來的一種新工藝,採用SBR法處理廢水的運行過程一般包括了進水、充氧曝氣、靜止沉澱、排水和排泥五個步驟。與連續性活性污泥工藝相比,該工藝具有的有點主要有:曝氣池兼具二沉池的功能,不設二沉池,也沒有污泥迴流設備,系統結構簡單,易於管理;耐沖擊負荷,一般無需設置調節池;反應推動力大,較為簡便的得到優質出水水質;污泥沉澱性能好,SVI值較低,便於自控運行,後期維護管理也較為簡便。居華[3]通過SBR法在醬油、醬菜食品廢水處理中的應用研究後得出,原廢水CODcr在2000mg/L~4000mg/L范圍內,經SBR法處理後出水水質得到了二級標准,去除率達96%以上,沒有出現污泥膨脹現象,而且操作管理方便,佔地面積小,運行的費用也低。

2.1.2BAF法,即曝氣生物濾池法。這種工藝最早可以追溯上個世紀80年代,是由歐美等國家應用和發展起來的,大連馬欄河污水處理廠是我國最早採用BAF工藝。該工藝是在生物接觸工藝基礎上,在濾池中填裝陶粒、石英砂等粒狀填料,以填料及其附著生產生物膜為介質,發揮生物的代謝功能,通過物理過濾功能,發揮膜和填料的截留吸附作用從而實現污染物的高效處理。廖艷[4]等採用混凝—ABR與曝氣生物濾池(BAF)聯合處理工藝,對某市肉聯廠高濃度廢水化學需氧量和氨氮的去除研究後發現,化學需氧量和氨氮的去除效果從原水時的1500mg/L~4500mg/L、30mg/L~85mg/L,經處理後出水COD<100mg/L,氨氮<50mg/L,達到了國家一、二級排放標准,取得良好的環境和社會效益。

2.1.3MBR法,即膜生物反應器法。是上個世紀90年代逐漸發展起來的一種廢水處理技術,該工藝是將膜組件替代傳統的二沉池,實現固相和液相分離。其實質是把細菌和微生物以生物膜的方式附著在固體表面上,以污水中的有機物為營養物進行新陳代謝和生長繁殖,從而達到實現凈化污水的效果。該工藝具有較強的抗沖擊力,對水質和水量變化具有較強適應性;污泥產量較低且沉降性能優,易於固液分離;對於低濃度污水也可以進行處理,在正常運行時可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;運行費用也不高,管理方便。張亮平,王峰[5]以MBR在湖北某食品廠廢水處理中的應用為例進行研究後發現,採用MBR-活性炭-殺菌聯合工藝,出水COD和BOD的去除率達到了99%以上,系統工藝能耗低,運行穩定。

2.2厭氧生物處理工藝

在食品廢水處理過程中,厭氧處理法與好氧處理法相比由於產生的污泥少,動力流耗小,管理簡便,既能節能又能降低成本,逐漸在高濃度有機廢水行業———食品工業廣泛推崇。

2.2.1UASB法,即升流式厭氧污泥床法。該種工藝是由高活性厭氧菌體構成的粒狀污泥,在UASB裝置內隨上升的氣流呈向上流動的狀態。處理效率高、性能可靠、能耗低,也不需要填料和載體,運行成本低等優點,既可以處理高負荷廢水,也不會產生堵塞等優點。也是當前應用最為廣泛的高速反應器之一。王煒,何好啟[6]研究發現,食品廢水經由UASB+接觸氧化法工藝處置後,CODcr、BOD5、SS和植物油由原水濃度的1170mg/L、570mg/L、600mg/L、150mg/L,處置後的效果為60.2mg/L、15.5mg/L、40mg/L和3mg/L,出水水質達到了《污水綜合排放標准》中的一級標准,且工程的經濟運行效益也良好,總運行費用約為0.54元/m3,工藝佔地小,處理成本低,運行方式靈活,值得推廣。

2.2.2EGSB反應器,即膨脹顆粒污泥床反應器。該工藝是在UASB基礎上發展起來的一種新厭氧工藝,與UASB工藝相比,EGSB增加了出水的迴流,提升了反應器中水流的速度,其速度可以達到5m/h~10m/h,比UASB的0.6m/h~0.9m/h高出近10倍。李克勛[7]等以天津某澱粉廠採用EGSB處理澱粉廢水為例,EGSB的厭氧反應器對COD的去除率超過了85%,出水水質達到了國家一級排放標准,大量有機物被去除,後續單元的處理壓力被減輕,此外,厭氧反應器的介入使用,可以產生沼氣作為能源進行二次利用,降低運行費用(總運轉費用為0.73元/m3?d),具有良好的環境效益和社會效益。

2.2.3ASBR法,即厭氧序批式活性污泥法。ASBR厭氧序批式活性污泥法最早誕生於上世紀90年代的美國,是在SBR基礎上發展起來的,該工藝的顯著特點是以序批間歇運行,按次序分為進水、反應、沉澱和排水四個步驟,與連續流厭氧反應器相比,該工藝由於不需要大阻力的配水系統,因此極大地減少了系統的能耗,也不會產生斷流和短流,運行靈活,抗擊能力較強,實現厭氧功能,也同時兼有了SBR的優點。

3厭氧生物處理工藝優勢分析

與好氧生物處理工藝相比,在食品工業廢水處理方面,厭氧生物處理工藝具有很多優勢:工藝運行時污泥的剩餘量非常少,由於不需要附加氧源而降低運行管理費用;食品工業廢水有機物濃度高,而厭氧生物處理工藝擁有良好的抗高濃度有機物的沖擊負荷力優勢,能夠做到間接性排放;另外,厭氧生物處理工藝能夠產生沼氣,實現資源的二次利用,真正實現了 變廢為寶 ,降低能耗,因此,厭氧處理工藝在食品工業廢水處理中是一種節能型廢水處理工藝。作為低能耗而且能夠產生二次能源的厭氧生物處理工藝必將成為食品工業廢水處理的主流方向[8]。

C. 鐣滅藉吇孌栧簾姘村勭悊錛


鐣滅藉吇孌栧簾姘村勭悊鏄闈炲父閲嶈佺殑錛岀暅紱藉吇孌栬兘甯︽潵緇忔祹鏁堢泭錛屼絾闅忎箣鑰屾潵鐨勭幆澧冩薄鏌撲篃鏄涓嶅彲閬垮厤鐨勶紝緇嗚妭澶勭悊闈炲父鍏抽敭銆備腑杈懼挩璇㈠氨鐣滅藉吇孌栧簾姘村勭悊鍜屽ぇ瀹惰存槑涓涓嬨
銆銆1 鐣滅藉吇孌栦笟鐨勬薄鏌撶幇鐘
銆銆鐣滅戒笟鏄鎴戝浗鍐滀笟鍜屽啘鏉戠粡嫻庣殑閲嶈佺粍鎴愰儴鍒,鐣滅藉吇孌栦笟澶у姏鍙戝睍鎵甯︽潵鐨勭幆澧冩薄鏌撻棶棰樻棩鐩婁弗閲, 涓嶄粎褰卞搷緇忔祹鍙戝睍, 鑰屼笖榪樺嵄鍙婄敓鎬佸畨鍏, 宸叉垚涓轟漢浠鏅閬嶅叧娉ㄧ殑紺句細闂棰樸 鐣滅藉吇孌栧満浜х敓鐨勭勃渚垮拰奼℃按閫犳垚鍦拌〃姘淬 鍦頒笅姘淬 鍦熷¥鍜岀幆澧冪┖姘旂殑涓ラ噸奼℃煋, 鐩存帴褰卞搷浜嗕漢浠鐨勮韓浣撳仴搴峰拰姝e父鐢熶駭鐢熸椿銆傜暅紱藉吇孌栧満鏈緇忓勭悊鐨勬薄姘 涓鍚鏈夊ぇ閲忔薄鏌撶墿璐, 鍏舵薄鏌撹礋鑽峰緢楂, 鍚勭被鐣滅界勃灝挎帓娉勭郴鏁拌佽〃 1 銆傝繖縐嶉珮嫻撳害鏈夋満搴熸按鐩存帴鎺掑叆鎴栭殢闆ㄦ按鍐插埛榪涘叆奼熸渤婀栧簱 , 澶ч噺娑堣楁按浣撲腑鐨勬憾瑙f哀 , 浣挎按浣撳彉榛戝彂鑷銆傛按涓鍚鏈夊ぇ閲忕殑 N 銆 P 絳夎惀鍏葷墿鏄閫犳垚姘翠綋瀵岃惀鍏誨寲鐨勯噸瑕佸師鍥犱箣涓, 鎺掑叆楸煎樺強娌蟲祦浣垮規湁鏈虹墿奼℃煋鏁忔劅鐨勬按鐢熺敓鐗╅愭笎姝諱骸, 涓ラ噸鑰呭艱嚧楸煎樺強娌蟲祦涓уけ浣跨敤鍔熻兘銆傚吇孌栨薄姘撮暱鏃墮棿娓楀叆鍦頒笅, 浣垮湴涓嬫按涓鐨勭濇佹愛鎴栦簹紜濇佹愛嫻撳害澧為珮, 鍦頒笅姘存憾瑙f哀鍚閲忓噺灝, 鏈夋瘨鎴愬垎澧炲, 瀵艱嚧姘磋川鎮跺寲, 鐢氳嚦涓уけ鍏朵嬌鐢ㄥ姛鑳, 鍚屾椂鍗卞強鍛ㄨ竟鐢熸椿鐢ㄦ按姘磋川銆傞珮嫻撳害奼℃按榪樺彲瀵艱嚧鍦熷¥瀛旈殭鍫靛, 閫犳垚鍦熷¥閫忔皵銆 閫忔按鎬т笅闄嶅強鏉跨粨銆佺洂鍖, 涓ラ噸闄嶄綆鍦熷¥璐ㄩ噺, 鐢氳嚦浼ゅ沖啘浣滅墿 , 閫犳垚鍑忎駭鍜屾諱骸銆
銆銆涓烘帶鍒剁暅紱藉吇孌栦笟浜х敓鐨勫簾姘淬 搴熸福鍜屾伓鑷瀵圭幆澧冪殑奼℃煋, 鍥藉剁幆澧冧繚鎶ゆ誨矓鍙戝竷浜嗐 鐣滅藉吇孌栦笟奼℃煋鐗╂帓鏀炬爣鍑嗐 , 鐫鎵嬫不鐞嗙暅紱藉吇孌栧満鍜屽吇孌栧尯鐨勬薄鏌撻毦棰樸傝繖涓鏍囧噯鏃ㄥ湪榧撳姳鐢熸佸吇孌, 鎺ㄥ姩鐣滅藉吇孌栦笟鍙鎸佺畫鍋ュ悍鍙戝睍; 淇冭繘鐣滅藉満鍦ㄥ簾寮冪墿澶勭悊榪囩▼涓鑰冭檻璧勬簮鍖栧埄鐢, 鍑忓皯鏈絝奼℃煋鐗╁勭悊閲忋傜暅紱藉吇孌栦笟奼℃煋鐗╂帓鏀炬爣鍑嗚佽〃 2 銆
銆銆2 鐣滅藉吇孌栧簾姘寸殑棰勫勭悊
銆銆鐣滅藉吇孌栧簾姘存棤璁轟互浣曠嶅伐鑹烘垨緇煎悎鎺鏂借繘琛屽勭悊, 閮借侀噰鍙栦竴瀹氱殑棰勫勭悊鎺鏂姐傞氳繃棰勫勭悊鍙浣垮簾姘存薄鏌撶墿璐熻嵎闄嶄綆, 鍚屾椂闃叉㈠ぇ鐨勫滻浣撴垨鏉傜墿榪涘叆鍚庣畫澶勭悊鐜鑺, 閫犳垚璁懼囩殑鍫靛炴垨鐮村潖絳夈傞拡瀵瑰簾姘翠腑鐨勫ぇ棰楃矑鐗╄川鎴栨槗娌夐檷鐨勭墿璐, 鐣滅藉吇孌栦笟閲囩敤榪囨護銆 紱誨績銆 娌夋穩絳夊滻娑插垎紱繪妧鏈榪涜岄勫勭悊, 甯哥敤鐨勮懼囨湁鏍兼爡銆 娌夋穩奼犮 絳涚綉絳夈 鏍兼爡鏄奼℃按澶勭悊鐨勫伐鑹烘祦紼嬩腑蹇呬笉鍙灝戠殑閮ㄥ垎, 鍏朵綔鐢ㄦ槸闃繪嫤奼℃按涓綺楀ぇ鐨勬紓嫻鍜屾偓嫻鍥轟綋, 浠ュ厤闃誨炲瓟媧炪 闂擱棬鍜岀¢亾, 騫朵繚鎶ゆ按娉電瓑鏈烘拌懼囥 娌夋穩娉曟槸鍦ㄩ噸鍔涗綔鐢ㄤ笅灝嗛噸浜庢按鐨勬偓嫻鐗╀粠姘翠腑鍒嗙誨嚭鏉ョ殑澶勭悊宸ヨ壓, 鏄搴熸按澶勭悊涓搴旂敤鏈騫跨殑鏂規硶涔嬩竴銆傜洰鍓, 鍑℃槸鏈夊簾姘村勭悊璁炬柦鐨勫吇孌栧満鍩烘湰涓婇兘鏄鍦ㄨ垗澶栦覆鑱 2鑷3涓娌夋穩奼, 閫氳繃榪囨護銆 娌夋穩鍜屾哀鍖栧垎瑙e皢綺姘磋繘琛屽勭悊銆傜瓫緗戞槸絳涙護鎵鐢ㄧ殑璁炬柦, 搴熸按浠庣瓫緗戜腑鐨勭紳闅欐祦榪, 鑰屽滻浣撻儴鍒嗗垯鍑鏈烘版垨鍏舵湰韜鐨勯噸閲, 鎴嫻佷笅鏉, 鎴栨帹縐誨埌絳涚綉鐨勮竟緙樻帓鍑恆傚父鐢ㄧ殑鐣滅界勃渚垮滻娑插垎紱葷瓫緗戞湁鍥哄畾絳涖佹尟鍔ㄧ瓫鍜岃漿鍔ㄧ瓫銆傛ゅ, 榪樻湁甯哥敤鐨勬満姊拌繃婊よ懼囧傝嚜鍔ㄨ漿榧撹繃婊ゆ満銆 杞杈婂帇婊ゆ満銆 紱誨績鐩樺紡鍒嗙繪満絳夈
銆銆3 鐣滅藉吇孌栧簾姘寸殑涓昏佸勭悊鎶鏈
銆銆3.1 鑷鐒跺勭悊娉
銆銆鑷鐒跺勭悊娉曟椂鐣滅藉吇孌栧簾姘村勭悊鎶鏈鏈浼犵粺鐨勬柟娉曘傝嚜鐒跺勭悊娉曟槸鍒╃敤澶╃劧姘翠綋銆佸湡澹ゅ拰鐢熺墿鐨勭墿鐞嗐 鍖栧︿笌鐢熺墿鐨勭患鍚堜綔鐢ㄦ潵鍑鍖栨薄姘淬傚叾鍑鍖栨満鐞嗕富瑕佸寘鎷榪囨護銆 鎴鐣欍 娌夋穩銆 鐗╃悊鍜屽寲瀛﹀惛闄勩 鍖栧﹀垎瑙c 鐢熺墿姘у寲浠ュ強鐢熺墿鐨勫惛鏀剁瓑銆傚叾鍘熺悊娑夊強鐢熸佺郴緇熶腑鐗╃嶅叡鐢熴 鐗╄川寰鐜鍐嶇敓鍘熺悊銆 緇撴瀯涓庡姛鑳藉崗璋冨師鍒, 鍒嗗眰澶氱駭鎴鐣欍 鍌ㄨ棌銆 鍒╃敤鍜岃漿鍖栬惀鍏葷墿璐ㄦ満鍒剁瓑銆傝繖綾繪柟娉曟姇璧勭渷銆 宸ヨ壓綆鍗曘 鍔ㄥ姏娑堣楀皯 , 浣嗗噣鍖栧姛鑳藉彈鑷鐒舵潯浠剁殑鍒剁害銆 鑷鐒跺勭悊鐨勪富瑕佹ā寮忔湁姘у寲濉樸 鍦熷¥澶勭悊娉曘 浜哄伐婀垮湴澶勭悊娉曠瓑銆傛哀鍖栧樺張縐頒負鐢熺墿紼沖畾濉 , 鏄涓縐嶅埄鐢ㄥぉ鐒舵垨浜哄伐鏁翠慨鐨勬睜濉樿繘琛屾薄姘寸敓鐗╁勭悊鐨勬瀯絳戠墿銆 鍏跺規薄姘寸殑鍑鍖栬繃紼嬪拰澶╃劧姘翠綋鐨勮嚜鍑榪囩▼寰堢浉浼 , 奼℃按鍦ㄥ樺唴鍋滅暀鏃墮棿闀 , 鏈夋満奼℃煋鐗╅氳繃姘翠腑寰鐢熺墿鐨勪唬璋㈡椿鍔ㄨ岃闄嶈В , 婧惰В姘у垯鐢辮椈綾婚氳繃鍏夊悎浣滅敤鍜屽橀潰鐨勫嶆哀浣滅敤鎻愪緵 , 浜﹀彲閫氳繃浜哄伐鏇濇皵娉曟彁渚涖備綔涓虹幆澧冨伐紼嬫瀯絳戠墿 , 姘у寲濉樹富瑕佺敤鏉ラ檷浣庢按浣撶殑鏈夋満奼℃煋鐗 ,鎻愰珮婧惰В姘х殑鍚閲 , 騫墮傚綋鍘婚櫎姘翠腑鐨勬愛鍜岀7 , 鍑忚交姘翠綋瀵岃惀鍏誨寲鐨勭▼搴︺傚湡澹ゅ勭悊娉曚笉鍚屼簬瀛h妭鎬х殑奼℃按鐏屾簤, 鏄甯稿勾鎬х殑奼℃按澶勭悊鏂規硶銆 灝嗘薄姘存柦浜庡湡鍦頒笂, 鍒╃敤鍦熷¥ - 寰鐢熺墿 - 妞嶇墿緇勬垚鐨勭敓鎬佺郴緇熷瑰簾姘翠腑鐨勬薄鏌撶墿榪涜屼竴緋誨垪鐗╃悊鐨勩 鍖栧︾殑鍜岀敓鐗╁噣鍖栬繃紼, 浣垮簾姘寸殑姘磋川寰楀埌鍑鍖, 騫墮氳繃緋葷粺鐨勮惀鍏葷墿璐ㄥ拰姘村垎鐨勫驚鐜鍒╃敤,浣跨豢鑹叉嶇墿鐢熼暱綣佹畺, 浠庤屽疄鐜板簾姘寸殑璧勬簮鍖栥 鏃犲沖寲鍜岀ǔ瀹氬寲銆備漢宸ユ箍鍦板彲閫氳繃娌夋穩銆 鍚擱檮銆 闃婚殧銆 寰鐢熺墿鍚屽寲鍒嗚В銆 紜濆寲銆 鍙嶇濆寲浠ュ強妞嶇墿鍚告敹絳夐斿緞鍘婚櫎搴熸按涓鐨
銆銆鎮嫻鐗┿ 鏈夋満鐗┿ 姘銆 紓峰拰閲嶉噾灞炵瓑銆 榪戝勾鏉, 浜哄伐婀垮湴鐨勭爺絀惰秺鏉ヨ秺鍙楀埌閲嶈, 鍙跺媷絳夊埄鐢ㄧ孩鏍戞嶇墿鏈ㄦ勫拰縐嬭寗澶勭悊鐗茬暅搴熸按钀ュ吇鐩 N 銆 P , 緇撴灉琛ㄦ槑涓ょ嶆嶇墿瀵筃 銆 P 鐨勫幓闄ゆ晥鏋滆緝濂 銆傚粬鏂頒郡 , 楠嗕笘鏄庡垎鍒浠ラ欐牴鑽夊拰椋庤濺鑽変負妞嶈 , 寤虹珛浜哄伐婀垮湴 , 闅忓h妭涓嶅悓 , 瀵規薄鏌撶墿鐨勫幓闄ょ巼涓嶅悓 , COD Cr 鍘婚櫎鐜囧彲杈 90% 浠ヤ笂 , BOD 5鍙杈 80% 浠ヤ笂銆傜敱浜庤嚜鐒跺勭悊娉曟姇璧勫皯 , 榪愯岃垂鐢ㄤ綆 , 鍦ㄦ湁瓚沖熷湡鍦板彲鍒╃敤鐨勬潯浠朵笅 , 瀹冩槸涓縐嶈緝涓虹粡嫻庣殑澶勭悊鏂規硶 , 鐗瑰埆閫傚疁浜庡皬鍨嬬暅紱藉吇孌栧満鐨勫簾姘村勭悊銆
銆銆3.2 鍘屾哀澶勭悊鎶鏈
銆銆20 涓栫邯 50 騫翠唬鍑虹幇浜嗗帉姘ф帴瑙︽硶 (anaerobiccontact process) 宸 鑹 , 姝 鍚 闅 鐫 鍘 姘 婊 鍣 A F(anaerobic filter) 鍜屼笂嫻佸紡鍘屾哀奼℃償搴 UASB (Upflowanaerobic sludge bed) 鐨勫彂鏄, 鎺ㄥ姩浜嗕互鎻愰珮奼℃償嫻撳害鍜屾敼鍠勫簾姘翠笌奼℃償娣峰悎鏁堟灉涓哄熀紜鐨勪竴緋誨垪楂樿礋鑽峰帉姘у弽搴斿櫒鐨勫彂灞 , 騫墮愭ュ簲鐢ㄤ簬紱界暅奼℃按澶勭悊涓銆1/2 12涓嬩竴欏靛熬欏靛帉姘у勭悊鐗圭偣鏄閫犱環浣, 鍗犲湴灝, 鑳介噺闇奼備綆, 榪樺彲浠ヤ駭鐢熸布姘 ; 鑰屼笖澶勭悊榪囩▼涓嶉渶瑕佹哀 , 涓嶅彈浼犳哀鑳藉姏鐨勯檺鍒 , 鍥犺屽叿鏈夎緝楂樼殑鏈夋満鐗╄礋鑽鋒綔鍔 , 鑳戒嬌涓浜涘ソ姘у井鐢熺墿鎵涓嶈兘闄嶈В鐨勯儴鍒嗚繘琛屾湁鏈虹墿闄嶈В銆傚父鐢ㄧ殑鏂規硶鏈 : 瀹屽叏娣峰悎寮忓帉姘ф秷鍖栧櫒銆 鍘屾哀鎺ヨЕ鍙嶅簲鍣ㄣ 鍘屾哀婊ゆ睜銆 涓婃祦寮忓帉姘ф薄娉ュ簥銆 鍘屾哀嫻佸寲搴娿 鍗囨祦寮忓滻浣撳弽搴斿櫒絳夈 閭撹壇浼熴 闄堥摤閾鐢ㄥ唴寰鐜鍘屾哀鍙嶅簲鍣( IC ) 宸ヨ壓澶勭悊鐚鍦哄簾姘 , 鍏 TP 鍘婚櫎鐜囪揪53.8% ,COD 鍘婚櫎鐜囪揪 80.3% ,BOD 5 鍘婚櫎鐜囪揪 95.8% ,SS 鍘婚櫎鐜囪揪 78% , 娌兼皵浜ф皵鐜囪揪 1.5鍀 3 m 3 - d -1 銆 寮犲浗娌葷瓑閫夌敤灝忕悆鈃匯 棰よ椈絳夎椈綾 , 閲囩敤鎮嫻鈃葷被娉曞拰鍥哄畾鈃葷被娉曚袱縐嶅伐鑹 , 瀵圭尓綺鍘屾哀搴熸恫榪涜屽噣鍖栧勭悊, 涔熷彇寰椾簡杈冨ソ鐨勬晥鏋溿傜洰鍓嶅浗鍐呭吇孌栧満搴熸按澶勭悊涓昏侀噰鐢ㄧ殑鏄涓婃祦寮忓帉姘ф薄娉ュ簥鍙婂崌嫻佸紡鍥轟綋鍙嶅簲鍣ㄥ伐鑹恆 榪戝勾鏉 , 瀛﹁呭瑰悇縐嶅帉姘у弽搴斿櫒鐮旂┒杈冨 , 璁や負鏂板瀷瓚呴珮鏁堝帉姘у弽搴斿櫒澶勭悊鐚鍦烘薄姘存湁鏈烘薄鏌撶墿鏈夊箍闃旂殑鍓嶆櫙銆
銆銆3.3 濂芥哀澶勭悊鎶鏈
銆銆濂芥哀澶勭悊鐨勫熀鏈鍘熺悊鏄鍒╃敤寰鐢熺墿鍦ㄥソ姘ф潯浠朵笅鍒嗚В鏈夋満鐗 , 鍚屾椂鍚堟垚鑷韜緇嗚優 ( 媧繪ф薄娉 ) 銆傚湪濂芥哀澶勭悊涓 , 鍙鐢熺墿闄嶈В鐨勬湁鏈虹墿鏈緇堝彲琚瀹屽叏姘у寲涓虹畝鍗曠殑鏃犳満鐗┿傝ユ柟娉曚富瑕佹湁媧繪ф薄娉ユ硶鍜岀敓鐗╂護奼犮 鐢熺墿杞鐩樸 鐢熺墿鎺ヨЕ姘у寲銆 搴忔壒寮忔椿鎬ф薄娉ャ A/O鍙婃哀鍖栨矡絳夈傞噰鐢ㄥソ姘ф妧鏈瀵圭暅紱藉簾姘磋繘琛岀敓鐗╁勭悊 , 榪欐柟闈㈢爺絀剁殑杈冨氱殑鏄姘磋В涓 SBR 緇撳悎鐨勫伐鑹恆係BR ( sequencing batch reactor) 宸ヨ壓 , 鍗沖簭鎵瑰紡媧繪ф薄娉ユ硶, 鏄鍩轟簬浼犵粺鐨 Fill- Draw 緋葷粺鏀硅繘騫跺彂灞曡搗鏉ョ殑涓縐嶉棿姝囧紡媧繪ф薄娉ュ伐鑹, 瀹冩妸奼℃按澶勭悊鏋勭瓚鐗╀粠絀洪棿緋誨垪杞鍖栦負鏃墮棿緋誨垪 , 鍦ㄥ悓涓鏋勭瓚鐗╁唴榪涜岃繘姘淬 鍙嶅簲銆 娌夋穩銆 鎺掓按銆 闂茬疆絳夊懆鏈熷驚鐜銆 SBR 涓庢按瑙f柟寮忕粨鍚堝勭悊鐣滅藉簾姘存椂, 姘磋В榪囩▼瀵 COD Cr 鏈夎緝楂樼殑鍘婚櫎鐜 , SBR 瀵規葷7鍘婚櫎鐜囦負 74.1% , 楂樻祿搴︽皚姘鍘婚櫎鐜囪揪 97% 浠ヤ笂銆傛ゅ, 鍏朵粬濂芥哀澶勭悊鎶鏈涔熼愭笎搴旂敤浜庣暅紱藉簾姘村勭悊涓, 濡傞棿姝囧紡鎺掓按寤舵椂鏇濇皵( IDEA )銆 寰鐜寮忔椿鎬ф薄娉ョ郴緇( CASS )銆 闂存瓏寮忓驚鐜寤舵椂鏇濇皵媧繪ф薄娉ユ硶( ICEAS )銆
銆銆3.4 娣峰悎澶勭悊娉
銆銆涓婅堪鐨勮嚜鐒跺勭悊娉曘 鍘屾哀娉曘 濂芥哀娉曠敤浜庡勭悊鐣滅藉吇孌栧簾姘村悇鏈変紭緙虹偣鍜岄傜敤鑼冨洿, 涓轟簡鍙栭暱琛ョ煭,鑾峰緱鑹濂界ǔ瀹氱殑鍑烘按姘磋川, 瀹為檯搴旂敤涓鍔犲叆鍏朵粬澶勭悊鍗曞厓銆傛販鍚堝勭悊灝辨槸鏍規嵁鐣滅藉簾姘寸殑澶氬皯鍜屽叿浣撴儏鍐 , 璁捐″嚭鐢變互涓 3 縐嶃 鎴栦互瀹冧滑涓轟富浣撳苟緇撳悎鍏朵粬澶勭悊鏂規硶榪涜屼紭鍖栫殑緇勫悎鍏卞悓澶勭悊鐣滅藉簾姘淬 榪欑嶆柟寮忚兘浠ヨ緝浣庣殑澶勭悊鎴愭湰 , 鍙栧緱杈冨ソ鐨勬晥鏋溿
銆銆褰鍐涚瓑閫夋嫨鍘屾哀 - 鍏兼哀緇勫悎寮忕敓鐗╁樹綔涓轟富浣撳伐鑹, 灝嗕笂嫻佸紡鍘屾哀奼℃償搴婄Щ妞嶅埌鍏兼у, 鐚鍦哄簾姘寸粡澶勭悊鍚, 鍏 BOD 5 銆 COD Cr 銆 NH 4 - N 鍙鍒嗗埆浠 9 000 銆14 000 銆 1 200 闄嶈嚦 20 銆 60 銆 65 mg - L -1 , 鎴愬姛鍦拌В鍐充簡鐑甯﹀湴鍖鴻勬ā鍖栫尓鍦烘薄姘存薄鏌撹礋鑽烽珮鍜屽吇鐚琛屼笟鍒╂鼎浣庣殑涓ゅぇ闅鵑樸傛澀宸炶タ瀛愬吇孌栧満閲囩敤浜嗗帉姘уソ姘х粨鍚堢殑澶勭悊宸ヨ壓 , 緇忓勭悊鍚 , 姘翠腑 COD Cr 綰︿負 400 mg - L -1 ,BOD 5涓 140 mg - L -1 , 鍩烘湰杈懼埌搴熸按鎺掓斁鏍囧噯銆傞煩鍔涘鉤絳夐噰鐢ㄧ洿鎺ユ姇鍔犱紭鍔胯弻鐨勬柟娉, 鍙澶уぇ鏀瑰杽鍘熻嚜鐒跺勭悊緋葷粺鐨勮兘鍔, 鎻愰珮瀵規按浣撴垨鍦熷¥涓闅鵑檷瑙f湁鏈虹墿鐨勯檷瑙h兘鍔涖傛繁鍦沖啘鐗у疄涓氬叕鍙哥殑奼℃按澶勭悊宸ョ▼宸ヨ壓嫻佺▼涓烘薄姘 鈫 鍥烘恫鍒嗙 鈫 璋冭妭奼 鈫 涓婃祦寮忓帉姘ф秷鍖 鈫 妞嶇墿濉 鈫 楸煎 鈫 鎺掓斁 , 澶勭悊鍚庡簾姘翠篃鑳借揪鍒版繁鍦沖競搴熸按鎺掓斁鏍囧噯銆 鏉庨噾縐絳夐噰鐢 ASBR- SBR 緇勫悎鍙嶅簲鍣ㄧ郴緇 ,ASBR 浣滀負棰勫勭悊鍣 ( 鍘屾哀 ) , 涓昏佺敤浜庡幓闄ゆ湁鏈虹墿 , SBR ( 濂芥哀 ) 鐢ㄤ簬鐢熺墿鑴辨愛澶勭悊銆傝啘鐢熺墿鍙嶅簲鍣ㄦ槸鐢辮啘鍒嗙繪妧鏈涓庣敓鐗╁弽搴斿櫒鐩哥粨鍚堢殑鏂板瀷鐢熺墿鍖栧﹀弽搴旂郴緇熴 瀹冪敤鑶滃彇浠d簡浼犵粺鐨勪簩娌夋睜, 鍏鋒湁鍑烘按紼沖畾銆 媧繪ф薄娉ユ祿搴﹂珮銆 鎶楀啿鍑昏礋鑽瘋兘鍔涘己銆 鍓╀綑奼℃償灝戙 瑁呯疆緇撴瀯緔у噾銆 鍗犲湴灝戠瓑鐗圭偣銆傝繎騫存潵, 宸茬粡閫愭笎搴旂敤浜庡悇縐嶆薄姘寸殑澶勭悊銆 鑼冨緩浼, 寮犳澃閲囩敤鑶滅敓鐗╁弽搴斿櫒瀵逛笂嫻峰競閮婁竴鐣滅藉満鐨勬帓鍑哄簾姘磋繘琛屽勭悊, 閫氳繃涓孌墊椂闂寸殑璋冩暣, 澶勭悊緋葷粺閫愭ョǔ瀹, 鍑烘按杈懼埌鍥藉朵竴綰ф帓鏀炬爣鍑 銆傜暅紱藉吇孌栧簾姘存槸姣旇緝闅懼勭悊鐨勬湁鏈哄簾姘, 涓昏佹槸鍥犱負鍏舵帓閲忓ぇ, 娓╁害杈冧綆, 搴熸按涓鍥烘恫娣鋒潅, 鏈夋満鐗╁惈閲忚緝楂, 鍥哄艦鐗╀綋縐杈冨皬, 寰堥毦榪涜屽垎紱, 鑰屼笖鍐叉礂鏃墮棿鐩稿歸泦涓, 浣垮緱澶勭悊榪囩▼鏃犳硶榪炵畫榪涜屻傜敱浜庡簾姘翠腑鐨 COD , BOD 絳夋寚鏍囦弗閲嶈秴鏍, 鎮嫻鐗╅噺澶, 姘紓峰惈閲忎赴瀵, 姘ㄦ愛鍚閲忛珮涓斾笉鏄撳幓闄, 鍗曠函閲囩敤鐗╃悊銆 鍖栧︽垨鑰呯敓鐗╁勭悊鏂規硶閮藉緢闅捐揪鍒版帓鏀捐佹眰銆 鍥犳や竴鑸鍏繪畺鍦虹殑搴熸按澶勭悊閮介渶瑕佷嬌鐢ㄥ氱嶅勭悊鏂規硶鐩哥粨鍚堢殑宸ヨ壓銆傛牴鎹鐣滅藉簾姘寸殑鐗圭偣鍜屽埄鐢ㄩ斿緞, 鍙閲囩敤浠ヤ笂涓嶅悓鐨勫勭悊鎶鏈銆傚吀鍨嬬殑宸ヨ壓嫻佺▼瑙佸浘 1 銆
銆銆4 緇撹
銆銆鐣滅藉吇孌栧簾姘寸殑澶勭悊鏂規硶榪樻湁寰堝 , 鏌愪竴縐嶅勭悊鏂規硶鑳藉惁琚鎺ュ彈 , 涓嶄粎瑕佽冭檻榪欑嶅勭悊鏂規硶鍦ㄦ妧鏈涓婄殑浼樺娍 , 榪樿佽冭檻璇ユ柟娉曠殑鎶曡祫銆 鏃ュ父榪愯岃垂鐢ㄥ拰鎿嶄綔鏄鍚︽柟渚跨瓑闂棰樸備負浜嗗仛濂界暅紱藉吇孌栦笟奼℃煋闃叉不宸ヤ綔 , 瀹炵幇搴熸按鍥炴敹鍐嶅埄鐢, 鍑忓皯搴熸按鐨勬帓鏀懼拰鍖栧︾墿璐ㄥ圭幆澧冪殑杈撳叆, 浣挎薄鏌撳噺杞誨埌鏈浣庨檺搴, 涓嶄粎瑕佸疄鐜板勭悊榪囩▼鐨勬棤瀹沖寲, 鑰屼笖瑕佸疄鐜板勭悊榪囩▼鐨勮祫婧愬寲, 鏈夋晥鍦頒繚鎶ゅ拰鏀瑰杽鍐滄潙鐢熸佺幆澧 , 淇冭繘鐣滅藉吇孌栫幆澧冧笌緇忔祹鐨勫彲鎸佺畫鍗忚皟鍙戝睍銆
鏇村氬叧浜庡伐紼/鏈嶅姟/閲囪喘綾葷殑鏍囦功浠e啓鍒朵綔錛屾彁鍗囦腑鏍囩巼錛屾偍鍙浠ョ偣鍑誨簳閮ㄥ畼緗戝㈡湇鍏嶈垂鍜ㄨ錛https://bid.lcyff.com/#/?source=bdzd

閱讀全文

與ASBR污水處理相關的資料

熱點內容
第一次保養沒換掉機油濾芯怎麼辦 瀏覽:889
凈水器紅燈亮綠燈不亮怎麼解決 瀏覽:48
純凈水不能與什麼一起吃 瀏覽:313
內蒙污水泵怎麼選 瀏覽:990
純水為什麼是膠 瀏覽:487
純凈水如何繳納增值稅 瀏覽:704
專業的農村污水工程多少錢 瀏覽:997
怎麼快速鑒定是不是生活污水 瀏覽:53
濱海污水處理二期建設 瀏覽:450
瀑布過濾器進水管改造 瀏覽:315
鍋爐水處理級別劃分 瀏覽:821
間苯樹脂比鄰苯樹脂貴嗎 瀏覽:55
中空膜超濾膜區別 瀏覽:367
深圳負離子凈化器多少錢 瀏覽:715
樹脂立體模型 瀏覽:174
動物細胞的相當於半透膜嗎 瀏覽:657
新裝凈水器為什麼發酸 瀏覽:65
ASBR污水處理 瀏覽:510
純水增壓泵什麼牌子好 瀏覽:589
汽油機濾芯處冒煙是什麼原因 瀏覽:542