1. 怎麼製作密胺樹脂,以及它的固化劑是什麼
密胺樹脂製作原料為三聚氰胺(2,4,6-三氨基-1,3,5-三嗪)和37%的甲醛水溶液,甲醛與三聚氰胺的摩爾比為2~3,第一步生成不同數目的N-羥甲基取代物,然後進一步縮合成線性樹脂。
反應條件不同,產物分子量不同,可從水溶性到難溶於水,甚至不溶不熔的固體,pH值對反應速率影響極大。
上述反應製得的樹脂溶液不宜貯存,工業上常用噴霧乾燥法製成粉狀固體。蜜胺樹脂在室溫下不固化,一般在130~150℃熱固化,加少量酸催化可提高固化速度。
蜜胺甲醛樹脂、蜜胺樹脂
三聚氰胺甲醛樹脂(melamine-formaldehyde resin),三聚氰胺與甲醛反應所得到的聚合物。又稱蜜胺甲醛樹脂、蜜胺樹脂。英文縮寫MF。加工成型時發生交聯反應,製品為不熔的熱固性樹脂。習慣上常把它與脲醛樹脂統稱為氨基樹脂。
物理性質
固化後的三聚氰胺甲醛樹脂無色透明,在沸水中穩定,甚至可以在150℃使用,且具有自熄性、抗電弧性和良好的力學性能。三聚氰胺樹脂是簡稱。
材料性質
三聚氰胺甲醛樹脂增硬耐刮填料,納米氧化鋁XZ-L290顯白色蓬鬆粉末狀態,晶型是γ-Al2O3。粒徑是20 nm;比表面積≥230m2/g。粒度分布均勻、純度高、極好分散,其比表面高,具有耐高溫的惰性,高活性,屬活性氧化鋁;多孔性;硬度高、尺寸穩定性好,XZ-L290可廣泛應用於各種塑料、橡膠、陶瓷、耐火材料等產品的補強增韌,特別是提高陶瓷的緻密性、光潔度、冷熱疲勞性、斷裂韌性、抗蠕變性能和高分子材料產品的耐磨性能尤為顯著。XZ-L290極好分散,在溶劑水裡面;溶劑乙醇、丙醇、丙二醇、異丙醇、乙二醇單丁醚、丙酮、丁酮、苯、二甲苯內,不需加分散劑,攪拌攪拌即可以充分的分散均勻。在環氧樹脂,塑料等中,極好添加使用。
用 量:根據用戶配方計量添加和使用。
蜜胺樹脂加無機填料後製成模塑製品,色彩豐富,大多用於裝飾板、餐具、日用品。餐具外觀酷似瓷器或象牙,不易脆裂又適宜機械洗滌。蜜胺樹脂與脲醛樹脂混合可配製成膠粘劑,用於製造層壓材料。用丁醇改性的密胺樹脂可作塗料和熱固性漆。
三聚氰胺樹脂膠的特點
具有較大的化學活性 很高的膠接強度 耐水能力高能經歷三小時以上的沸水 熱穩定性高 低溫固化能力較強 耐磨性好 固化快 不需加固化劑
三聚氰胺成品比脲醛樹脂成品硬度和耐磨性好 對化學葯物的抵抗能力 電絕緣性能等都好。但是固化後膠層容易破裂不宜單獨使用應用改性的三聚氰胺樹脂膠
儲存期短 易變質 製成粉狀可延長儲存期限 改性三聚氰胺樹脂價格較高 用於製造塑料貼面板 廣泛用於傢具、車輛建築等方面。
三聚氰胺甲醛樹脂
http://ke..com/link?url=-_fxaghr4F-JJLlb5-1kgty5-L9O5K308Up_
2. 三聚氰胺甲醛樹脂
三聚氰胺甲醛樹脂(melamine-formalin:MF)
3. 酚醛樹脂的合成工藝路線、方法、原理是其間的關鍵技術或需注意之處是
酚醛樹脂是以酚類化合物與醛類化合物為原料經縮聚反應製得的合成樹脂的總稱。它是最早實現工業化的合成樹脂,由於它具有很多優點,如絕緣性能好、隔熱、防腐、防潮、其模塑品強度高、尺寸穩定性好,耐高溫、價廉等,因此在現代工業中是應用最廣的塑料之一。本實驗是在酸性催化劑下,使甲醛與過量的苯酚縮聚而得到熱塑性樹脂。其反應式為: 分子量在1000以下。可加熱熔融,可溶於丙酮、酒精或鹼性溶液中。三、實驗內容1、實驗葯品 苯酚 甲醛(30%水溶液) 鹽酸(d=1.19)2、實驗步驟 將40g苯酚及33g甲醛溶液放入250ml的三口燒瓶中混合,用水浴加熱,溫度維持在60±2℃,取樣2~3g後,加入0.5ml鹽酸,反應立即開始,每隔30min用滴管取樣2~3g樣品放入三角瓶中,進行分析。反應3h後,將三口燒瓶內所有物料倒入水蒸發器中,冷卻倒掉上層水,將下層縮聚物用水攪拌洗滌數次,直到呈中性為止。然後用小火加熱,以除去水及未反應的苯酚等揮發成分。揮發完畢後泡沫消失,而且樹脂表面變得光滑。當溫度約達170~180℃時,停止加熱,把樹脂放在鐵皮上 使其冷卻,稱其產量,計算產率。四、苯酚存在下甲醛含量的測定 1、分析甲醛含量: 根據甲醛與亞硫酸鈉作用,生成氫氧化鈉,然後用標准鹽酸溶液滴定生成的氫氧化鈉 。2、測定步驟: 將准確稱量過的2—3g苯酚、甲醛混合物置於250ml的錐形瓶中,加入25ml蒸餾水,再加入3滴百里酚酞指示劑,用CNaOH=0.1mol·L-1NaOH標准液滴定至溶液出現藍色。然後加入1mol亞硫酸鈉溶液25ml,為了使亞硫酸鈉與甲醛反應完全,混合物在室溫下放置2h,然後用CHCl=0.5mol·L-1鹽酸滴定至藍色褪去。甲醛的百分含量計算式為:x%=C·V·MHCHO/1000W式中:x——甲醛含量 V——滴定所消耗的鹽酸體積,ml C——鹽酸的mol濃度 W——稱量樣品物質量 MHCHO——甲醛分子量五、實驗數據處理1、實驗數據:反 應時 間反 應現 象反 應溫 度取 樣空瓶質量g空瓶質量+樣品質量g物料量g百分含量 2、根據分析結果,計算在不同時間甲醛的轉化率,以時間對甲醛的濃度作圖。六、思考題:1、計算配方中苯酚甲醛mol比,為什麼要如此配方?2、苯酚與甲醛縮聚為什麼既能生成線型縮聚物,又能生成體型縮聚物?任務書實驗項目考核標准成果展示實驗室規則總結
4. 樹脂有毒性嗎
塑料是一類來高分子化合物,塑料制自品以合成樹脂為主要原料,添加適量的增塑料、穩定劑、抗氧劑等助劑,在一定的塑化條件下加工而成。目前我國容許使用的食品容器、包裝材料及以及於製造食品用工具、設備的熱塑料塑料有聚乙烯、聚丙烯、聚氯乙烯、偏氯乙烯、聚碳 酸酯、聚對苯二甲酸乙二醇脂、尼龍、不飽和聚酯樹脂、丙烯腈-苯乙烯共聚樹脂、再烯腈 -苯乙烯共聚樹脂、丙烯腈-丁二烯-苯乙烯共聚樹脂等;熱固性塑料有三聚氰胺甲醛樹脂等 。
5. 什麼是醇酸樹脂,什麼是乾性油,用乾性改性的目的是什麼
一、乾性油( drying oil,dry oil,siccative oil )
是指含有二個、三個或多個雙鍵的脂肪酸(如亞油酸、亞麻酸、桐油酸等) 所組成的油脂,如蘇子油(荏油)﹑亞麻油﹑桐油、梓油、大麻油(線麻油)、脫水蓖麻油等,一般為黃色液體,碘值在130以上,主要成分是亞麻酸、亞油酸等不飽和脂肪酸的甘油酯。在空氣中能吸收氧氣而乾燥固結成連續均勻、富有彈性的乾爽薄膜。是製造油墨﹑塗料、油畫顏料、密封劑、防銹劑、脫模劑、潤滑劑、肥皂等精細化工產品的重要原料。有些可以食用,有些不能食用。
醇酸樹脂的制備方法是將多官能醇、多元酸以及植物油或植物油酸縮聚酷化而成,不同種類的植物油或脂肪酸分子中雙鍵的數量不同,由此可劃分為乾性、不幹和半乾性醇酸樹脂。乾性醇酸樹脂在空氣中可自干,其乾燥是大分子在空中經氧氣交聯固化的過程。按照所用植物油或植物油酸的含量來劃分,有短油度、中油度、長油度、超長油度和超短油度醇酸樹脂醇酸樹脂的製造方法有熔融法和溶劑法。熔融法是採用多元醇、多元酸、植物油或植物油酸在惰性氣體保護下加熱,高溫酷化,待酸值達到要求,再加入溶劑稀釋。溶劑法是反應原料在溶劑二甲苯中反應,二甲苯作為溶劑,能夠與水產生共沸,加快反應速度。相比溶融法,溶劑法所需的反應溫度較低,反應條件易控制,合成的醇酸樹脂顏色較淺。醇酸樹脂的性能與油的種類有關,隨分子量的大小及結構不同,性能也有差異,在油漆、塗料、船舶等方面有很廣的應用。
三、乾性油醇酸樹脂
乾性油醇酸樹脂是指由不飽和脂肪酸或碘值125-135 或更高的乾性油、半乾性油為主改性製成的醇酸樹脂,可以直接塗成薄層。主要用於各種自乾性和低溫烘乾的醇酸清漆和瓷器產品。可用來塗裝大型汽車、玩具、機械部件等。
1特點
酸樹脂的一種,是用業麻油、蘇子油、梓油、大麻油等卜性油或豆油、葵花油等半十性油改性的醇酸樹脂:塗膜在室;}i與氧存在下能直接轉化成連續的固化薄膜.用於制備自干或烘乾塗料。根據含油量的不同,塗膜具有不同的彈性和耐久性,光澤、耐油性、附著力、硬度、耐磨性、耐水性、電絕緣性等均較好。
通過氧化交聯的方法,乾性醇酸樹脂在空氣中可自干,從某種原則上來說,乾性醇酸樹脂是乾性油的改性產物。此種漆膜的乾燥原理是醇酸樹脂分子經過一連串的反應交聯成大分子。乾性油的分子量較低,形成大分子要經過多步交聯,所以需要較長的時間漆膜才能實干。由乾性油合成出醇酸樹脂後,相當於增加了乾性油的分子量,只需要較少的交聯點便可固化成膜,同時醇酸樹脂的漆膜性能明顯優於乾性油漆膜。
2乾性油醇酸樹脂的類型
a.乾性短油度醇酸樹脂
乾性短油度醇酸樹脂含油或脂肪酸量在30%?40%。主要由亞麻油、部分桐油、豆油、蓖麻油、梓油和其他的乾性油及其脂肪酸為主要原料製成。醇酸樹脂粘度髙,須用芳烴類溶劑才能溶解。該醇酸樹脂製成漆採用噴塗或浸塗,最好不用刷塗。室溫下能自動氧化乾燥,自乾性能良好,柔朝性一般,具有良好的光澤性、保光保色性、耐候性,乾燥速度較快。短油度醇酸樹脂的硬度大,光澤性、耐磨性均較好,適用於汽車、機器零部件等金屬用品,能作為面漆和底漆使用。短油度醇酸樹脂能單獨作烘乾漆使用,也可和氛基樹脂、脲醛樹脂等混合使用。
b.乾性中油度醇酸樹脂
中油度醇酸樹脂含油或脂肪酸量40%~60%,在醇酸樹脂中最常用,其製成的漆能夠噴塗、刷塗、輯塗,漆膜實干較快,光澤性和耐候性很好,能自行烘乾,也可混合氧基樹脂烘乾。烘乾時間較短油度醇酸樹脂漆長,保光保色性略差些。乾性中油度醇酸樹脂用作自干清漆、底漆等,也可作裝飾漆、建築用漆、傢具漆、金屬底漆等,能夠施工於金屬、木材及其他材質上。
c.長油度醇酸樹脂
長油度醇酸樹脂含油或脂肪酸量在60%~70%。乾性長油度醇酸樹脂具有良好的乾燥性能,漆膜彈性好,有良好的保光保色性和耐候性,但漆膜硬度、耐磨性等比中油度醇酸樹脂差。長油度醇酸樹脂溶於脂肪烴類溶劑,粘度低,易於刷塗施工,流平性能好,可用於戶內戶外建築用塗料和船舶塗料,能與油基樹脂漆相容,可用來增強油基樹脂漆和乳膠漆。
d.極長油度醇酸樹脂
極長油度醇酸樹脂含油或脂肪酸量大於70%,溶於脂肪烴類溶劑,能與油基樹脂漆相容。這種醇酸樹脂乾燥慢,但其刷塗性和耐候性優良。可用於油墨、調色基料、戶外房屋用漆。
6. 丙烯酸酯型塗料助劑的特點
一直以來,從事塗料配方研發的技術人員在選用助劑方面過於簡單,多數會聽從供應商的推薦,但這並
不是最好的。希望通過這個話題,使得我們在選助劑上不會盲目,會選得更快更好。
當然,首先條件是要懂得這些助劑起作用的機理。就從這里開個頭吧:技術人員差不多都接觸過丙烯酸
樹脂,但是有多少人清楚,為什麼有的適合作塗料的基料,而有些則適合作助劑,到底在分子量、分子
量分布、聚合物結構、官能團等等方面有什麼不同?類似結構的助劑有一個系列,這些不同的品種有多
大區別,從結構上如何理解?
這個問題對於我們應用助劑的人來說有些難度,如果生產開發助劑的人來講講那肯定非常好的。對於一
提起助劑,廠家對它的結構,分子量等都是比較保密
確實如此,但也正因為如此,才增加了助劑的神秘感。這里先從丙烯酸酯類化合物談起,看看做樹脂基
料和不同種類助劑的丙烯酸酯化合物在結構上面有什麼區別。
我們知道,丙烯酸類樹脂既可以用作塗料的樹脂,也可以做流平劑或消泡劑。在丙烯酸酯樹脂裡面加入
丙烯酸酯流平劑,丙烯酸酯消泡劑都可以有很好的效果,可見同樣是丙烯酸類樹脂,區別是很大的。從
原理角度來講,決定一個化合物在給定體系裡面到底能否用作助劑,是流平劑還是消泡劑,決定的因素
還是與體系的相容性和表面張力兩個因素。在表面張力低於所用體系的情況下,如果是有限不相容的,
適合做流平劑,如果相容性更差一些,就只能用作消泡劑。同樣是丙烯酸酯化合物,到底適合做樹脂還
是助劑,適合做哪種助劑歸根到底看參與聚合的單體和分子量的選擇以及相應的結構對其表面張力和相
容性的影響。
下面我們從分子結構的角度來看這個問題。
塗料中所用的丙烯酸樹脂一般可以寫成如下結構式如下(在這里為了寫結構式討論方便,不區分丙烯酸
酯與甲基丙烯酸酯的區別,實際體系中,這兩類單體是共存的):—(CH2CHCOORm)x—(CH2CHCOORf)
y—,其中Rm 一般是C1-C4 的基團混合物,其中短碳鏈部分含量相對高一些,Rf 一般是官能基,在一般
的羥基丙烯酸樹脂當中,Rf 是羥乙基或者羥丙基。分子量一般是一萬到幾萬不等。
常見的丙烯酸酯流平劑結構式如下:—(CH2CHCOORl)x—,在這里Rl 主要是C4-C8 的基團的混合物,
分子量一般小於一萬。
常見的丙烯酸酯消泡劑結構式如下:—(CH2CHCOORd)x—,在這里Rd 主要是C10-C18 的基團混合物,
分子量一般是一萬到幾萬不等。
從上面的結構式可以看出來,聚丙烯酸酯化合物用作樹脂,還是用作流平劑或消泡劑,它所使用的單體
的種類大不一樣。從樹脂到流平劑再到消泡劑,所使用單體的碳鏈是增長的趨勢。從分子結構角度來講,
聚丙烯酸酯化合物的側碳鏈越長,其表面張力就越低,相應的極性和溶度參數也就變得越小。當用作流
平劑的聚丙烯酸酯化合物與用作樹脂的比較,流平劑的側碳鏈(C4-C8)更長,表面張力低於樹脂的聚
丙烯酸酯,且由於極性的明顯差別,兩者是不相容的,正是滿足了這兩點,當流平劑用的聚丙烯酸酯化
合物在丙烯酸樹脂裡面可以起到流平的作用。另外,流平劑需要有一個比較快速地遷移到表面而起作用
的過程,所以不能把分子量做得太大,一般小於一萬。如果加入更長的側碳鏈如C10-C18 的聚丙烯酸酯
化合物,那麼可以預測,它的表面張力比樹脂用C1-C4 的聚丙烯酸酯更低,相容性更差,這樣C10-C18
的丙烯酸酯化合物在丙烯酸酯樹脂體系裡面可以當消泡劑使用。從消泡能力的角度,因為分子量越大與
體系的相容性越不好,消泡能力也就越強,所以聚丙烯酸酯消泡劑的分子量一般都不小。當然,由於側
碳鏈對於表面張力和相容性的影響是漸變的過程,所以某些結構的聚丙烯酸酯化合物可以同時扮演流平
劑和消泡劑的角色,比如8 個碳的聚丙烯酸酯化合物,它介於流平劑和消泡劑的邊界位置,同時具備兩
者的性能。
以上就是不同的聚丙烯酸酯化合物有不同用途的一些基本原理。因為從樹脂到流平劑到消泡劑是一個系
列,所以我們把它們放在一起討論。另外,作為聚丙烯酸酯分散劑的結構與他們又有區別。
丙烯酸樹脂合成做過幾年,但是還不知道丙烯酸酯助劑也是通過丙烯酸合成過來的,看了上面的內容覺
得區別是不是就是Rm 的碳鏈長度,一般丙烯酸樹脂的酯長度最多的也就是4 個碳,也就是丙丁酯類,
是不是助劑用的單體確實有區別?
上面為了描述聚丙烯酸酯在不同用途最基本的變化趨勢,結構簡式都是最基本的結構,實際的結構相對
會更多一些,當然丙烯酸樹脂的碳鏈的長度是影響丙烯酸樹脂用途的一個重要因素,其它因素如功能基
團的種類也是很重要的,可以用來改進潤濕性,相容性等等其他性能。一般來說,助劑裡面特別是流平
劑會用一些特殊結構的單體。至於說應用,聚丙烯酸酯化合物用作塗料的樹脂和助劑所需要考慮的問題
通常有很大差別。
單從用途的角度來看(消泡與流平),聚氨酯和有機硅看來也類同了,只不過分子結構中換成特徵性的
氨酯基或硅氧結構。不知是否可以這樣推測?
可以這樣理解,總的原則就是在一個基準結構的基礎上通過調整分子結構來改變表面張力和極性,就可
以得到相應的助劑。
看完上面的回答,眼界有開闊了許多,至少消泡劑與流平劑的本質不像以前那麼神秘了。現在的認識就
是,消泡與流平的本質或者作用原理就是低的表面張力與相容性的控制,在這個基礎上可以自由發揮,
不知對否?那麼再往前一步,怎樣判斷自己選的消泡劑和流平劑是最合適的或者是更合理的?除了價格
因素,當然還有一些效果評判外,換句話說,許多人說他的東西很好,但是否為性價比最高的東西呢?
從原理上講,消泡劑與流平劑的本質就是對表面張力和相容性的控製程度不同,在這個基礎上,肯定可
以自由發揮。
但是我們剛才討論的基準是以塗料用丙烯酸酯樹脂為標桿的,表面張力比它低一些,相容性差一些就是
流平劑,再低,再差就是消泡劑。如果換成其他樹脂,又會有不同,比如說原來在丙烯酸樹脂體系裡面
可以做流平劑的物質,如果放到極性比丙烯酸樹脂大得多的樹脂體系如環氧體系,那麼可能流平劑的表
面張力就會比環氧體系要低得多,相容性也差得多,於是在環氧體系,這個物質就成了一個消泡劑了。
很多時候助劑的使用是靈活的,並不是說明書說它是流平劑,它就只能做流平劑來用。流平與消泡的轉
變是相對你所使用的樹脂體系的極性來看的。 要是對這個助劑的極性范圍有一個清楚的了解,這樣助
劑用起來就靈活了,也就是我們說的自由發揮了。遺憾的是絕大多數情況下,助劑商對所提供的助劑產
品的化學成分上面的信息是嚴格保密的,這樣以來工程師就無法利用理論對助劑的使用進行預測了,只
能全憑供應商的介紹和推薦,如果碰上供應商對情況也不太了解的話,就會做很多無用功了。要想要最
合適的性價比最高的助劑,可能要相對費點精力多做試驗了,選出適用的可以解決問題的最便宜的一種
就行了。這樣試驗的助劑品種可能較多,但是由於仔細區分各種情況與應用體系,選出的東西最不浪費。
對於丙烯酸類分散劑,主要側重點應該是官能團了,同時考慮到不同顏料的表面特性,表面的酸鹼性,
表面的活性部位,還有表面的電位情況等等。關於這些方面如何理解的?
所有的分散劑從結構上講,都屬於是兩親型分子,有一頭親顏料,另一頭親介質。小分子的分散劑就是
我們常見的各種表面活性劑,而高分子型分散劑在結構上有其特點,可以討論的內容很多。
丙烯酸酯類分散劑從使用角度分兩大類,一類是常見的水性體系的丙烯酸酯胺鹽,鈉鹽類的分散劑,這
類分散劑很早就已經出現並廣泛運用到了水性塗料的生產當中,這類助劑結構簡單明確,這里不做過多
的討論。另外一類就是丙烯酸類的高分子型分散劑,准確地說是具備錨固基團與溶劑化鏈段組合的分散
劑,這類分散劑目前在一些高檔塗料當中有廣泛的應用。
丙烯酸酯類分散劑的結構也非常多變,源於丙烯酸酯單體種類的日益豐富,為了簡化結構,我們選擇最
基本的結構來做一說明,以下結構可以看做最基本的丙烯酸酯高分子型分散劑的結構—(CH2CHCOOR)a—
(CH2CHCOOCH2CH2N(CH3)2)b—(CH2CH2COOH)c— (CH2CHCOOCH2CH2CH2(OCH2CH2)nOH)d—,其中R
基團是烷基或者為了提高潤濕效果部分採用含氟烷基,a 鏈段主要為了調整整個分散劑的溶解性,a 鏈
段越少,極性越高,逐漸會從油溶性轉向水溶性,b 鏈段是錨固基團,丙烯酸二甲基乙醇胺酯是丙烯酸
酯超分散劑裡面常用的錨固基團單體,該錨固基團對於碳黑以及其他有機顏料均有較好的吸附能力,當
然,對於不同的顏料,也有其他的含氮單體可以選擇,c 鏈段也是錨固基團,主要用於對無機顏料的錨
固,d 鏈段含有長鏈的聚醚鏈段,很明顯,該鏈段是作為溶劑化鏈段,長的聚醚鏈在體系當中伸展開來,
可以阻止不同粒子之間相互靠近,從而達到穩定顏料的作用,同時聚醚鏈段裡面單體的調整也是調整整
個分散劑極性的一種手段,決定了該分散劑適用於何種極性的體系。
一 般來說,分散劑裡面的氨類錨固基團都是以叔氨基或者季胺鹽為主,主要原因就是為了防止用於PU
體系的時候與固化劑反應,含伯氨基的分散劑很少用於PU 體 系。除了氨基,還有一種錨固基團就是芳
香環類(比如苯環,萘環等等),這類錨固基團主要通過P 電子雲共軛效應與顏料粒子進行錨固,很多
通用色漿的分散劑都含有此類基團。但是這一類錨固基團也有一個缺點,就是和氨基相比較,他們對無
機顏料沒有任何親和力,一般只適合分散有機顏料。很多時候為了增加分散劑的通用性,還是要共聚少
量的氨類基團。
我這里更想了解的是用於單組分PU 體系的較為理想的分散劑。其實叔胺類對PU 也有很強的催化作用。
分散劑單用或者合用能基本滿足普通的各種需求。之前找到了一類分散劑,分子鏈中以部分醚鍵和叔胺
為主,但沒有驗證過實際效果。不知你對這方面的看法如何?
對於你的體系,個人認為以芳香環為錨固基團的分散劑可以滿足你的要求,另外如果錨固基團是季胺鹽,
其催化作用也不是很強,可以使用,建議試一下Solseperse-27000。
對於顏料的潤濕性問題,非丙烯酸類樹脂如用量很大的醇酸樹脂,從理論上分析其結構上除了羥基、羧
基等官能團,還有分子量、分子量分布等對潤濕有多大影響,有沒有一個較為確定的規律?
醇酸樹脂對顏料良好的潤濕性能一般認為是由於醇酸樹脂含有大量的長鏈飽和脂肪烴或者不飽和脂肪
烴基團,由於這類基團的存在,醇酸樹脂相比一般的聚酯樹脂具有更低的表面張力,從而有更好的潤濕
能力。當然,分子結構中含有一些極性基團對於潤濕也很有幫助,另外一點,就是醇酸樹脂合成的反應,
最終產物含有大量的低分子量組分,這類低分子量組分具有更好的潤濕顏料的能力。
通常的熱塑性丙烯酸體系對顏料的潤濕分散性很差,最主要的原因,在一般人認為是因為缺少極性基團,
那麼這樣的體系的表面張力如何呢?一般也認為其表面張力是要小於醇酸類的,為什麼潤濕性如此差?
潤濕首先是一個動態過程。同樣條件下,分子量越小,潤濕越快。塗料中用的潤濕劑一般也都是低分子
化合物。熱塑性丙烯酸樹脂的分子量一般都在七八萬以上,屬於比較高分子量,所以潤濕效果會差一點,
而醇酸樹脂裡面分子量小於一萬的佔有一定比例,這部分潤濕效果很好的;另外其中極性官能團較少也
是一個原因,丙烯酸樹脂通過選擇單體,表面張力的可變化范圍很大。
高分子的分散劑和傳統型的潤濕分散劑對顏料的潤濕性能相比哪種更好一些呢? 高分子型的是不是空
間位阻越大潤濕性能就越好?
單從字面上看,高分子分散劑和超分散劑不完全等同。高分子分散劑從分子量的角度說的,強調的是溶
劑化鏈段的穩定作用,當然也隱含了錨固基團的數目;超分散劑更強調錨固基團數目,有些超分散劑的
分子量並不是很高。
所謂潤濕是指一種流體被另一種流體從固體表面或固液界面所取代的過程。單純從潤濕的角度看,溶劑
通常比分散劑潤濕更快,但是穩定性很差。傳統的潤濕分散劑分子量小,潤濕較快。但傳統的潤濕分散
劑對顏料的錨固基團從種類和數量上講一般不及高分子分散劑或超分散劑,其穩定效果通常要差些。傳
統的分散劑由於錨固基團少,需要更多量的分散劑充分吸附顏料表面的活性點。但這並不是說超分散劑
或高分子分散劑的效果總會好過傳統的分散劑,這中間還牽涉到分子結構的控制,比如兩個錨固基團之
間的鏈長,如果控制不好的話,會更容易形成顏料的架橋絮凝,另外空間位阻起的是穩定作用,但對前
期的潤濕鋪展過程其實不利。