導航:首頁 > 耗材問題 > 半透膜活化

半透膜活化

發布時間:2022-08-18 22:18:36

A. 酶、細胞、原生質體固定化

酶的一些不足之處:
(1)酶的穩定性較差
(2)酶的一次性使用
(3)產物的分離純化較困難
◆改善方法之一就是固定化技術的應用:
(1)固定化酶是指固定在一定載體上並在一定的空間范圍內進行催化反應的酶。固定化酶既保持了酶的催化特性,又克服了游離酶的不足之處,具有增加穩定性,可反復或連續使用以及易於和反應產物分開等顯著優點。
(2)固定化細胞是指固定在載體上並在一定的空間范圍內進行生命活動的細胞。也稱為固定化活細胞或固定化增值細胞。通常只能用於胞外酶等胞外產物的生產。
(3) 固定化原生質體技術,有利於胞內物質的分泌。
1. 酶固定化
◆採用各種方法,將酶與水不溶性的載體結合,制備固定化酶的過程稱為酶的固定化。固定在載體上並在一定的空間范圍內進行催化反應的酶稱為固定化酶。
◆固定在載體上的菌體或菌體碎片稱為固定化菌體,它是固定化酶的一種形式。
1.1酶的固定化方法
固定化的方法:吸附法、包埋法、結合法、交聯法和熱處理法等。
(1)吸附法:
◆利用各種固體吸附劑將酶或含酶菌體吸附在其表面上,而使酶固定化的方法稱為物理吸附法,簡稱吸附法。
◆物理吸附法常用的固體吸附劑有活性炭、氧化鋁、硅藻土、多孔陶瓷、多孔玻璃、硅膠、羥基磷灰石等。
◆靠物理吸附作用,結合力較弱,酶與載體結合不牢固而容易脫落,所以使用受到一定的限制。
(2)包埋法
◆將酶或含酶菌體包埋在各種多孔載體中,使酶固定化的方法稱為包埋法。
◆包埋法使用的多孔載體主要有:瓊脂、瓊脂糖、海藻酸鈉、角叉菜膠、明膠、聚丙烯醯胺、光交聯樹脂、聚醯胺、火棉膠等。
◆包埋法制備固定化酶或固定化菌體時,根據載體材料和方法的不同,可分為凝膠包埋法和半透膜包埋法兩大類。
◇凝膠包埋法:凝膠包埋法是將酶或含酶菌體包埋在各種凝膠內部的微孔中,製成一定形狀的固定化酶或固定化含酶菌體。大多數為球狀或片狀,也可按需要製成其他形狀。
常用的凝膠有瓊脂凝膠、海藻酸鈣凝膠、角叉菜膠、明膠等天然凝膠以及聚丙烯醯胺凝膠、光交聯樹脂等合成凝膠。
◇半透膜包埋法:半透膜包埋法是將酶包埋在由各種高分子聚合物製成的小球內,製成固定化酶。
常用於制備固定化酶的半透膜有聚醯胺膜、火棉膠膜等。
(3)結合法
◆選擇適宜的載體,使之通過共價鍵或離子鍵與酶結合在一起的固定化方法稱為結合法。
◆根據酶與載體結合的化學鍵不同,結合法可分為離子鍵結合法和共價鍵結合法。
◇離子鍵結合法:通過離子鍵使酶與載體結合的固定化方法稱為離子鍵結合法。
離子鍵結合法所使用的載體是某些不溶於水的離子交換劑。常用的有DEAE-纖維素、TEAE-纖維素、DEAE-葡聚糖凝膠等。
◇共價鍵結合法:通過共價鍵將酶與載體結合的固定化方法稱為共價鍵結合法。
共價鍵結合法所採用的載體主要有:纖維素、瓊脂糖凝膠、葡聚糖凝膠、甲殼質、氨基酸共聚物、甲基丙稀醇共聚物等。
酶分子中可以形成共價鍵的基團主要有:氨基、羧基、巰基、羥基、酚基和咪唑基等。
◇要使載體與酶形成共價鍵,必須首先使載體活化,即藉助於某種方法,在載體上引進一活潑基團。然後此活潑基團再與酶分子上的某一基團反應,形成共價鍵。
◇使載體活化的方法很多。主要的有重氮法、迭氮法、溴化氰法和烷化法等。
(4)交聯法
◆藉助雙功能試劑使酶分子之間發生交聯作用,製成網狀結構的固定化酶的方法稱為交聯法。交聯法也可用於含酶菌體或菌體碎片的固定化。
◆常用的雙功能試劑有戊二醛、己二胺、順丁烯二酸酐、雙偶氮苯等。其中應用最廣泛的是戊二醛。
(5)熱處理法
◆將含酶細胞在一定溫度下加熱處理一段時間,使酶固定在菌體內,而制備得到固定化菌體。◆熱處理法只適用於那些熱穩定性較好的酶的固定化,在加熱處理時,要嚴格控制好加熱溫度和時間,以免引起酶的變性失活。
1.2固定化酶的特性
(1)穩定性:固定化酶的穩定性一般比游離酶的穩定性好。
(2)最適溫度: 固定化酶的最適作用溫度一般與游離酶差不多,活化能也變化不大。
(3)最適pH值: 酶經過固定化後,其作用的最適pH值往往會發生一些變化。
◆影響固定化酶最適pH值的因素主要有兩個,一個是載體的帶電性質,另一個是酶催化反應產物的性質。
(4)底物特異性: 固定化酶的底物特異性與游離酶比較可能有些不同,其變化與底物分子量的大小有一定關系。對於那些作用於低分子底物的酶,固定化前後的底物特異性沒有明顯變化。
◆固定化酶底物特異性的改變,是由於載體的空間位阻作用引起的。
1.3固定化酶的應用
固定化酶既保持了酶的催化特性,又克服了游離酶的不足之處,具有如下顯著的優點:
(1)酶的穩定性增加,減少溫度、pH值、有機溶劑和其他外界因素對酶的活力的影響,可以較長期地保持較高的酶活力。
(2)固定化酶可反復使用或連續使用較長時間,提高酶的利用價值,降低生產成本。
(3)固定化酶易於和反應產物分開,有利於產物的分離純化,從而提高產品質量。
固定化酶已廣泛地應用於食品、輕工、醫葯、化工、分析、環保、能源和科學研究等領域。

2.細胞固定化
◆通過各種方法將細胞與水不溶性的載體結合,制備固定化細胞的過程稱為細胞固定化。(固定化活細胞或固定化增殖細胞)
◆微生物細胞、植物細胞和動物細胞都可以製成固定化細胞。
2.1細胞固定化的方法
◆主要可分為吸附法和包埋法兩大類方法。
(1)吸附法
◆利用各種固體吸附劑,將細胞吸附在其表面而使細胞固定化的方法稱為吸附法。
◆用於細胞固定化的吸附劑主要有:硅藻土、多孔陶瓷、多孔玻璃、多孔塑料、金屬絲網、微載體和中空纖維等。
(2) 包埋法
◆將細胞包埋在多孔載體內部而製成固定化細胞的方法稱為包埋法。
◆包埋法可分為凝膠包埋法和半透膜包埋法。
◇以各種多孔凝膠為載體,將細胞包埋在凝膠的微孔內而使細胞固定化的方法稱為凝膠包埋法。
○凝膠包埋法是應用最廣泛的細胞固定化方法,適用於各種微生物、動物和植物細胞的固定化。
○凝膠包埋法所使用的載體主要有瓊脂、海藻酸鈣凝膠、角叉菜膠、明膠、聚丙烯醯胺凝膠和光交聯樹脂等。
2.2微生物細胞固定化
2.2.1固定化微生物細胞的特點:
①固定化微生物細胞保持了細胞的完整結構和天然狀態,穩定性好。
②固定化微生物細胞保持了細胞內原有的酶系、輔酶體系和代謝調控體系,可以按照原來的代謝途徑進行新陳代謝,並進行有效的代謝調節控制。
③發酵穩定性好,可以反復使用或者連續使用較長的一段時間。
④固定化微生物細胞密度提高,可以提高產率。
⑤提高工程菌的質粒穩定性,
2.2.2固定化微生物細胞的應用
◆主要用在兩個方面:
◇是利用固定化微生物細胞發酵生產各種胞外產物。
◇二是利用固定化微生物細胞與各種電極結合製成微生物電極。
(1)利用固定化微生物生產各種產物
(2)固定化微生物細胞製造微生物感測器
2.3植物細胞固定化
2.3.1固定化植物細胞的特點:
(1)植物細胞經固定化後,由於有載體的保護作用,可減輕剪切力和其他外界因素對植物細胞的影響,提高植物細胞的存活率和穩定性。
(2)細胞經固定化後,被束縛在一定的空間范圍內進行生命活動,不容易聚集成團。
(3)固定化植物細胞發酵可以簡便地在不同地培養階段更換不同的培養液,即首先在生長培養基中生長增殖,在達到一定的細胞密度後,改換成發酵培養基,以利於生產各種所需的次級代謝物。
(4)固定化植物細胞可反復使用或連續使用較長的一段時間,大大縮短生產周期,提高產率。
(5)固定化植物細胞易於與培養液分離,利於產品的分離純化,提高產品質量。
2.3.2 植物細胞固定化的方法:
◆植物細胞固定化的方法主要有吸附法和包埋法兩種。
◆吸附法是將植物細胞吸附在泡沫塑料的孔洞或裂縫內,或者將植物細胞吸附在中空纖維的外壁上。
◆包埋法是將植物細胞包埋在瓊脂、角叉菜膠、海藻酸鈣凝膠、聚丙烯醯胺凝膠、明膠等多孔凝膠之中。包埋方法與微生物細胞包埋時基本相同。
2.3.3固定化植物細胞的應用:
◆固定化植物細胞的主要用途是製造人工種子,就有可能獲得大量具有相同遺傳特性的植株。對種質的保存具有重要意義。並可以節約種子的用量。
◆固定化植物細胞還可以用於生產各種色素、香精、葯物、酶等次級代謝物。
2.4動物細胞固定化
2.4.2固定化動物細胞的特點:
(1)提高細胞存活率:動物細胞經固定化後,由於有載體的保護作用,可以減輕或免受剪切力的影響,同時動物細胞可附著在載體表面生長,從而可顯著提高動物細胞的存活率。
(2)提高產率:動物細胞固定化後,可先在生長培養基中生長繁殖,使細胞在載體上形成最佳分布並達到一定的細胞密度。然後可簡便地改換成發酵培養基,控制發酵條件,使細胞從生長期轉變到生產期,以利於提高產率。
(3)固定化動物細胞可反復使用或連續使用較長的時間。例如,中國倉鼠卵巢細胞(CHO)生產人干擾素可以穩定地生產30天。
(4)固定化細胞易於與產物分開,利於產物分離純化,提高產品質量。
2.4.2動物細胞固定化方法:
◆動物細胞固定化地方法有吸附法和包埋法兩種。
(1)吸附法:
◆大多數動物細胞屬於附著細胞,它們在培養過程中,必須趨向於附著在固體表面。故此吸附法特別適合於動物細胞的固定化。
◆轉瓶是由玻璃或塑料製成,表面經過一定方法處理而帶上電荷。
◆微載體是指顆粒細小的固定化載體,直徑一般為100~200μm,相對密度接近1.0。是由帶有表面電荷的葡聚糖、明膠、纖維素、聚丙烯醯胺、聚苯乙烯或玻璃等材料製成。微載體已用於多種動物細胞的固定化;
◆中空纖維由聚丙烯、硅化聚碳酸酯等高分子聚合物製成。
(2)包埋法
◆包埋固定化法一般適用於懸浮細胞。
◆根據載體和方法的不同,有凝膠包埋法、半透膜包埋法兩種。
①凝膠包埋法:利用各種多孔凝膠為載體將動物細胞固定化。細胞被固定在凝膠的微孔中生長繁殖和新陳代謝,由於有載體的保護,動物細胞有較好的穩定性,可顯著提高其存活率。
用於動物細胞固定化的凝膠載體主要有瓊脂糖凝膠、海藻酸鈣凝膠和血纖維蛋白等。
②半透膜包埋法:利用高分子聚合物形成的半透膜將動物細胞包埋,形成微囊型固定化動物細胞。
2.4.3固定化動物細胞的應用:
動物細胞中大部分為貼壁細胞,需要貼附在載體的表面才能正常生長。所以固定化動物細胞廣泛應用。特別是採用微載體對動物細胞進行吸附固定化。

3.原生質體固定化
◆固定化原生質體的制備主要包括原生質體的制備和原生質體固定化兩個階段。
3.1原生質體的制備
◆不同種類的細胞,由於各自細胞壁的組成、結構和性質不同,原生質體的制備方法也不一樣。
◆原生質體的制備過程是首先將對數生長期的細胞收集起來,懸浮在含有滲透壓穩定劑的高滲緩沖液中。然後加入適宜的細胞壁水解酶,在一定的條件下作用一段時間,使細胞壁破壞。分離除去細胞壁碎片、未作用的細胞以及細胞壁水解酶,而得到原生質體。
◆除去細胞壁所使用的酶應根據細胞壁的主要成分的不同而進行選擇。
◇細菌的細胞壁主要成分是肽多糖,所以細菌原生質體制備時主要採用從蛋清中得到的溶菌酶;
◇酵母細胞壁主要由β-葡聚糖構成,故採用β-1,3-葡聚糖酶;
◇黴菌的細胞壁組分比較復雜,除含有幾丁質外,還有其他多種組分,故要去除黴菌的細胞壁,則需有幾丁質酶與其他有關酶共同作用。
◇植物細胞壁由纖維素、半纖維素和果膠組成,故制備植物原生質體時主要應用纖維素酶和果膠酶。
◆為防止制備得到的原生質體破裂,應加入適當的滲透壓穩定劑。如:無機鹽、糖類、糖醇等化合物。
◆應選擇對數生長期的細胞制備原生質體,以獲得較高的原生質體形成率。
◆所加進的細胞壁溶解酶的種類和濃度、酶作用溫度,pH值以及作用時間等對原生質體的制備都有明顯影響,必須經過試驗確定其最佳條件。
3.2原生質體固定化
◆採用包埋法製成固定化原生質體。
◆原生質體固定化一般採用凝膠包埋法。常用的凝膠有:瓊脂凝膠、海藻酸鈣凝膠、角叉菜膠和光交聯樹脂等。
3.3固定化原生質體的特點:
(1)固定化原生質體由於解除了細胞壁這一擴散屏障,可增加細胞膜的通透性,有利於氧氣和營養物質的傳遞和吸收,也有利於胞內物質的分泌,可顯著提高產率。
(2)固定化原生質體由於有載體的保護作用,具有較好的操作穩定性和保存穩定性,可反復使用和連續使用較長的時間,利於連續化生產。在冰箱保存較長時間後仍能保持其生產能力。
(3)固定化原生質體易於和發酵產物分開,有利於產物的分離純化,提高產品質量。
(4)固定化原生質體發酵的培養基中需要添加滲透壓穩定劑,以保持原生質體的穩定性。這些滲透壓穩定劑在發酵結束後,可用層析或膜分離技術等方法與產物分離。
3.4固定化原生質體的應用
固定化原生質體一方面保持了細胞原有的新陳代謝特性,可以照常產生原來在細胞內產生的各種代謝產物,另一方面又去除了細胞壁這一擴散屏障,有利於胞內產物不斷地分泌到胞外,這樣就可以不經過細胞破碎和提取工藝而在發酵液中獲得所需的發酵產物,為胞內物質的工業化生產開辟了新途徑。
固定化原生質體可用於各種氨基酸、酶和生物鹼等物質的生產以及甾體轉化等。

B. 哪種工業電鍍廢水處理方式成本低

電鍍廢水處理工藝通常包括物理化學法、生物法、高級氧化工藝包括電化學法等,其中涉及到生物法的話,通常會在生物法前段加上物化或高級氧化工藝等,以防止廢水中的有毒重金屬或有機物對後端的微生物產生毒害作用。
電鍍廢水處理零排放系統還涉及膜處理和蒸發器處理,運行成本相較於達標排放,電鍍廢水處理零排放的運行成本根據水量不同、每個工藝段的設備的選擇不同,運行成本約為35-100元每噸水不等。
近年來,隨著電鍍工業的產業園集中化,電鍍廢水處理項目通常涉及到整個電鍍工業園區的集中處理,處理水量和規模通常也比較大,因電鍍廢水處理系統占據整個電鍍產業園投資比例較大,直接涉及到投資回報率,投資方對噸水投資和運行成本核算得越來越精細化,因此對廢水處理機構的技術要求和項目管理水平也越來越高。

C. 反滲透超濾有什麼區別

1.UF(超濾)

UF能截留0.002~0.1微米之間的顆粒和雜質,UF膜允許小分子物質和溶解性固體(無機鹽)等通過,但將有效阻擋住膠體、蛋白質、微生物和大分子有機物,用於表徵UF膜的切割分子量一般介於1,000~100,000之間,RO膜兩側的運行壓力一般為0.2~7bar。

2.RO(反滲透)

RO是最精密的膜法液體分離技術,它能阻擋所有溶解性鹽及分子量大於100的有機物,但允許水分子透過,醋酸纖維素RO膜脫鹽率一般可大於95%,RO復合膜脫鹽率一般大於98%。它們廣泛用於海水及苦成水淡化,鍋爐給水、工業純水及電子級超純水制備,飲用純凈水生產,廢水處理及特種分離等過程,在離子交換前使用RO可大幅度地降低操作費用和廢水排放量。RO膜的運行壓力,當進水為苦鹹水時一般大於5bar,當進水為海水時,一般低於84bar。


一、處理細菌效果不同

由於反滲透膜的孔徑更為狹小,能夠對水中的雜質和細菌數量得到有效的控制。反滲透膜處理過的水菌落總數比超濾膜凈化後的菌落總數少許多,因此反滲透膜處理水中細菌的能力要比超濾膜性能更為優越。

二、凈化後的水使用方向不同

常情況下反滲透膜凈化後的水分為兩種,一種純水可供飲用,一種濃水可供洗滌使用。使用超濾凈水器凈化的水通常只能做洗滌用水,其水質不符合飲用水的標准。

三、化學污染物處理效果不同

反滲透膜的孔隙僅超濾膜的百分之一,因此能夠有效地去除水中的重金屬和農葯的化學污染物,不僅能夠去除其中的顆粒污染物及較大的雜質,在化學處理方面反滲透膜效果比超濾膜更為突出。


D. 「半透膜」是物理概念還是生物概念半透膜是否具有生物活性

一般泛指的半透膜應該是物理概念,沒有生物活性。但生物膜是一種特殊的半透膜,它有生物活性。

E. 超濾和反滲透有什麼區別

1、使用膜清洗不同

超濾:超濾用的膜可以通過反洗來有效的清洗膜面,以保持其高流速。

反滲透:反滲透用的膜不能反洗。

2、原理不同

超濾:超濾是一種加壓膜分離技術,即在一定的壓力下,使小分子溶質和溶劑穿過一定孔徑的特製的薄膜,而使大分子溶質不能透過,留在膜的一邊,從而使大分子物質得到了部分的純化。

超濾原理也是一種膜分離過程原理,超濾利用一種壓力活性膜,在外界推動力(壓力)作用下截留水中膠體、顆粒和分子量相對較高的物質,而水和小的溶質顆粒透過膜的分離過程。

反滲透:把相同體積的稀溶液(如淡水)和濃液(如海水或鹽水)分別置於一容器的兩側,中間用半透膜阻隔,稀溶液中的溶劑將自然的穿過半透膜,向濃溶液側流動,濃溶液側的液面會比稀溶液的液面高出一定高度,形成一個壓力差,達到滲透平衡狀態,

此種壓力差即為滲透壓,滲透壓的大小決定於濃液的種類,濃度和溫度,與半透膜的性質無關。若在濃溶液側施加一個大於滲透壓的壓力時,濃溶液中的溶劑會向稀溶液流動,此種溶劑的流動方向與原來滲透的方向相反,這一過程稱為反滲透。

3、優點不同

超濾:超濾技術的優點是操作簡便,成本低廉,不需增加任何化學試劑,尤其是超濾技術的實驗條件溫和,與蒸發、冷凍乾燥相比沒有相的變化,而且不引起溫度、pH的變化,因而可以防止生物大分子的變性、失活和自溶。

反滲透:壓力是反滲透分離過程的主動力,不經過能量密集交換的相變,能耗低;反滲透不需要大量的沉澱劑和吸附劑,運行成本低;反滲透分離工程設計和操作簡單,建設周期短;反滲透凈化效率高,環境友好。

F. 一般水處理方法有哪些

常用的水處理方法有: (一)沉澱物過濾法、 (二)硬水軟化法、 (三)活性炭吸附法、 (四)去離子法、 (五)逆滲透法、 (六)超過濾法、 (七)蒸餾法、 (八)紫外線消毒法 (九)生物化學法等, 現在將這些處理法之原理及功能在此一一說明。 沉澱物過濾法 沉澱物過濾法的目的是將水源內之懸浮顆粒物質或膠體物質清除乾凈。這些顆粒物質如果沒有清除,會對透析用水其它精密的過濾膜造成破壞或甚至水路的阻塞。這是最古老且最簡單的凈水法,所以這個步驟常用在水純化的初步處理,或有必要時,在管路中也會多加入幾個濾器(filter)以清除體積較大的雜質。濾過懸浮的顆粒物質所使用的濾器種類很多,例如網狀濾器,沙狀濾器(如石英沙等)或膜狀濾器等。只要顆粒大小大於這些孔洞之大小,就會被阻擋下來。對於溶解於水中的離子,就無法阻攔下來。如果濾器太久沒有更換或清洗,堆積在濾器上的顆粒物質會愈來愈多,則水流量及水壓會逐漸減少。人們就是利用入水壓與出水壓差來判斷濾器被阻塞的程度。因此濾器要定時逆沖以排除堆積其上的雜質,同時也要在固定時間內更換濾器。 沉澱物過濾法還有一個問題值得注意,因為顆粒物質不斷被阻攔而堆積下來,這些物質 面或許有細菌在此繁殖,並釋放毒性物質通過濾器,造成熱原反應,所以要經常更換濾器,原則上進水與出水的壓力落差升高達到原先的五倍時,就需要換掉濾器。 硬水軟化法 硬水的軟化需使用離子交換法,它的目的是利用陽離子交換樹脂以鈉離子來交換硬水中的鈣與鎂離子,*此來降低水源內之鈣鎂離子的濃度。其軟化的反應式如下: Ca2++2Na-EX→Ca-EX2+2Na+1 Mg2++2Na-EX→Mg-EX2+2Na+1 式中的EX表示離子交換樹脂,這些離子交換樹脂結合了Ca2+及Mg2+之後,將原本含在其內的Na+離子釋放出來。 現在市面上出售的離子交換樹脂為球狀的合成有機物高分子電解質。樹脂基質(resin matrix)內藏氯化鈉,在硬水軟化的過程中,鈉離子會逐漸被使用耗盡,則交換樹脂的軟化效果也會逐漸降低,這時需要作還原(regeneration)的工作,也就是每隔固定時間加入特定濃度的鹽水,一般是10%,其反應方式如下: Ca-EX2+2Na+ (濃鹽水)→ 2Na-EX+Ca2+ Mg-EX2+2Na+ (濃鹽水)→ 2Na-EX+Mg2+ 如果水處理的過程中沒有陽離子的軟化,不只是逆滲透膜上會有鈣鎂體的沉積以致降低功效甚至破壞逆滲透膜,同時病人也容易得到硬水癥候群。硬水軟化器也會引起細菌繁殖的問題,所以設備上需要有逆沖的功能,一段時間後就要逆沖一次以防止太多雜質吸附其上。另一個值得注意問題的是高血鈉症,因為透析用水的軟化與再還原過程是*計時器來控制,正常情況還原作用大多發生在半夜,這是*閥門在控制,如果發生故障,大量鹽水就會涌進水源,進而造成病人的高血鈉症。 活性炭 活性炭是由木頭,殘木屑,水果核,椰子殼,煤炭或石油底渣等物質在高溫下乾餾炭化而成,製成後還需以熱空氣或水蒸氣加以活化。它的主要作用是清除氯與氯氨以及其它分子量在60到300道爾頓的溶解性有機物質。活性炭的表面呈顆粒狀,內部是多孔的,孔內有許多約1Onm~lA大小的毛細管,1g的活性炭內部表面積高達700-1400m2,而這些毛細管內表面及顆粒表面就是吸附作用之所在。影響活性炭清除有機物能力的因素有活性炭本身的面積,孔洞大小以及被清除有機物的分子量及其極性(Polarity),它主要*物理的吸附能力來排除雜物,當吸附能力達飽合之後,吸附過多的雜質就會掉落下來污染下游的水質,所以必須定時利用逆沖的方式來清除吸附其上的雜質。 這種活性炭濾器如果吸附能力明顯下降,必須更新。測定進水及出水的TOC濃度差(或細菌數量差)是考量更換活性炭的依據之一。有些逆滲透膜對氯的耐受性不佳,所以在逆滲透之前要有活性碳的處理,使氯能夠有效的被活性炭吸附,但是活性碳上的孔洞吸附的細菌容易繁殖滋長,同時對於分子較大有機物的清除,活性炭的功效有限,所以必須*逆滲透膜在後面補強。 去離子法 去離子法的目的是將溶解於水中的無機離子排除,與硬水軟化器一樣,也是利用離子交換樹脂的原理。在這 使用兩種樹脂-陽離子交換樹脂與陰離子交換樹脂。陽離子交換樹脂利用氫離子(H+)來交換陽離子;而陰離子交換樹脂則利用氫氧根離子(OH-)來交換陰離子,氫離子與氫氧根離子互相結合成中性水,其反應方程式如下: M+x+xH-Re→M-M-Rex+xH+1 A-z+zOH-Re→A-Rez+zOH-1 上式中的的M+x表陽離子,x表電價數,M+x陽離子與陽離子樹脂上H-Re的氫離子交換,A-z則表陰離子,z表電價數,A-z與陰離子交換樹脂結合後,釋放出OH-離子。H+離子與OH-離子結合後即成中性的水。 這些樹脂之吸附能力耗盡之後也需要再還原,陽離子交換樹脂需要強酸來還原;相反的,陰離子則需要強礆來還原。陽離子交換樹脂對各種陽離子的吸附力有所差異,它們的強弱程度及相對關系如下: Ba2+>Pb2+>Sr2+>Ca2+>Ni2+>Cd2+>CU2+>Co2+>Zn2+>Mg2+>Ag1+>Cs1+>K1+>NH41+>Na1+>H1+ 陰離子交換樹脂與各陰離子的親合力強度如下: S02-4+>I->NO3->NO2->Cl->HCO3->OH->F- 如果陰離子交換樹脂消耗殆盡而沒有還原,則吸附力最弱的氟就會逐漸出現在透析用水中,造成軟骨病,骨質疏鬆症及其它骨病變;如果陽離子交換樹脂消耗盡了,氫離子也會出現在透析用水之中,造成水質酸性的增加,所以去離子功能是否有效,需要時常監視。一般是*水質的電阻系數(resistivity)或傳導度(conctivity)來判斷。去離子法所使用的離子交換樹脂同樣也會造成細菌的繁殖引起菌血症,這是值得注意的一點。 逆滲透法 逆滲透法可以有效的清除溶解於水中的無機物,有機物,細菌,熱原及其它顆粒等,是透析用水之處理中最重要的一環。要了解"逆滲透"原理之前,要先解釋"滲透(osmosis)的觀念。所謂滲透是指以半透膜隔開兩種不同濃度的溶液,其中溶質不能透過半透膜,則濃度較低的一方水分子會通過半透膜到達濃度較高的另一方,直到兩側的濃度相等為止。在還沒達到平衡之前,可以在濃度較高的一方逐漸施加壓力,則前述之水分子移動狀態會暫時停止,此時所需的壓力叫作 "滲透壓 (osmotic pressure)",如果施加的力量大於滲透壓時,則水份的移動會反方向而行,也就是從高濃度的一例流向低濃度的一方,這種現象就叫作"逆滲透"。逆滲透的純化效果可以達到離子的層面,對於單價離於(monovalent ions)的排除率(rejection rate)可達90%-98%,而雙價離子(divalent ions)可達95%-99%左右(可以防止分子量大於200道爾敦的物質通過)。 逆滲透水處理常用的半透膜材質有纖維質膜(cellulosic),芳香族聚醞胺類(aromatic polyamides),polyimide或polyfuranes等,至於它的結構形狀有螺旋型(spiral wound),空心纖維型(hollow fiber)及管狀型(tubular)等。至於這些材質中纖維素膜的優點是耐氯性高,但在礆性的條件下(pH ≥8.0)或細菌存在的狀況下,使用壽命會縮短。polyamide的缺點是對氯及氯氨之耐受性差。至於採用那一種材質較好,則目前還沒有定論。 如果逆滲透前沒有作好前置處理則滲透膜上容易有污物堆積,例如鈣,鎂,鐵等離子,造成逆滲透功能的下降;有些膜(如polyamide)容易被氯與氯氨所破壞,因此在逆滲透膜之前要有活性碳及軟化器等前置處理。逆滲透雖然價錢較高,因為一般逆滲透膜的孔徑約在l0A以下,它可以排除細菌,病毒及熱原甚至各種溶解性離子等,所以在准備血液透析析釋用水最好准備這一道步驟。 詳細說明請參考: http://www.beijingshui.cn/tech/ http://www.ruanhuashui.net/
求採納

G. mg-AgCl原電池,正極材料Agcl為何有還原反應

在理論上,對於原電池來說,氧化劑(此處為AgCl)在正極得電子,發生還原反應,得到還原產物Ag

三,總結語:

因為,電池都有兩極,兩極上必須都有電化學反應時,才能形成電池並驅動電流流動。電極本身參不參加氧化還原反應,取決於溶液條件是什麼,電極不參見反應,才會被保護,電極參與不參與反應,電極材料和電解質溶液都是關鍵。

H. 生物化學題目,列舉5個活化單位,,活化單位指的是什麼

生物化學題目,列舉5個活化單位,,活化單位指的是什麼?
氨基酸(amino acid):是含有一個鹼性氨基和一個酸性羧基的有機化合物,氨基一般連在α-碳上.
必需氨基酸(essential amino acid):指人(或其它脊椎動物)(賴氨酸,蘇氨酸等)自己不能合成,需要從食物中獲得的氨基酸.
非必需氨基酸(nonessential amino acid):指人(或其它脊椎動物)自己能由簡單的前體合成不需要從食物中獲得的氨基酸.
等電點(pI,isoelectric point):使分子處於兼性分子狀態,在電場中不遷移(分子的靜電荷為零)的pH值.
茚三酮反應(ninhydrin reaction):在加熱條件下,氨基酸或肽與茚三酮反應生成紫色(與脯氨酸反應生成黃色)化合物的反應.
肽鍵(peptide bond):一個氨基酸的羧基與另一個的氨基的氨基縮合,除去一分子水形成的醯氨鍵.
肽(peptide):兩個或兩個以上氨基通過肽鍵共價連接形成的聚合物.
蛋白質一級結構(primary structure):指蛋白質中共價連接的氨基酸殘基的排列順序.
層析(chromatography):按照在移動相和固定相 (可以是氣體或液體)之間的分配比例將混合成分分開的技術.
離子交換層析(ion-exchange column)使用帶有固定的帶電基團的聚合樹脂或凝膠層析柱
透析(dialysis):通過小分子經過半透膜擴散到水(或緩沖液)的原理,將小分子與生物大分子分開的一種分離純化技術.

I. 怎樣學好高一生物

理科是不能光背的。還要懂得生物系統的原理
把課本吃透就什麼都好辦了
試驗不要掉以輕心

我是生物系畢業的。
回答者:今日立冬 - 試用期 一級 2-6 12:46

高一生物?你不是上海的吧?我們上海高一沒有生物的。不過我可以建議你:1.上課一定要認真聽講,不動的一定要問老師,一定,或者問同學~
2.狂作生物的課後練習。
3.到了高三要分理科和文科班,如果你的生物實在不行的話,就放棄它吧~因為高考不用考生物~~~
回答者:透嫇╃字JUN團 - 秀才 三級 2-6 12:48

帥哥你是哪的啊
回答者:81473608 - 試用期 一級 2-7 12:53

懸賞200分以求教,你的心情我了解!!!
我只發表自己的觀點,我以前的生物老師帶了我三年。我很崇拜他,他側重理解,並且讓我們自己拿出紙去總結。比如關於蛋白質,就是所以的信息都要理出來,然後再是綜合性,把每條線形成網!他還讓我們每天弄懂一個知識點,不用多,他說,高考也就那麼些知識點,真正理解,透徹,「一不變應萬變」
他讓我們經常看習題,像看小說一樣,而不是就知道蠻做。我作到了他說的70%,生物自認為還行,我想你也應該去嘗試一下,你有這一份求學之心,你會成功的,相信自己!!!!!!!
回答者:danny80 - 進士出身 九級 2-7 13:56

嘻嘻
我們高一不學生物
回答者:∵楊姮恱∴ - 魔法學徒 一級 2-7 14:54

1.理解
2.上課專注
3.在做課外練習時,挑不會的做
4.考前練練筆
5.已有時間就整理概念
5.筆記詳細
回答者:陳秉真 - 魔法學徒 一級 2-7 16:00

盡說些沒用的,這些誰不知道,就是做不到嘛,要是能做到還要問什麼呢!
還不如我這實在.
高中生物必修1教案

《分子與細胞》

元素 細胞膜 基質
化學成分 結構與功能 細胞質
化合物 細胞核 細胞器
細胞 生物膜系統
有絲分裂
無絲分裂 細胞分裂 細胞分化 細胞工程
減數分裂

高一生物內容構成

(一)走近細胞
一、 比較原核與真核細胞(多樣性)
原核細胞 真核細胞
細胞 較小(1—10um) 較大(10--100 um)
細胞核 無成形的細胞核,核物質集中在核區。無核膜,無核仁。DNA不和蛋白質結合 有成形的真正的細胞核。有核膜,有核仁。DNA不和蛋白質結合成染色體
細胞質 除核糖體外,無其他細胞器 有各種細胞器
細胞壁 有。但成分和真核不同,主要是肽聚糖 植物細胞、真菌細胞有,動物細胞無
代表 放線菌、細菌、藍藻、支原體 真菌、植物、動物
二、生命系統的層次性
植:營養、保護、機械、輸導 植:根、莖、葉
細胞 組織 分泌 器官 花、果、種
動:上皮、結締、肌肉、神經 動:心、肝……
運動、循環
消化、呼吸 病毒
系統(動) 個體 單細胞 種群 群落
泌尿、生殖 多細胞
神經、內分泌
非生物因素 Ⅰ號
生態系統 生產者 生物圈
生物因素 消費者 Ⅱ號
分解者
三、細胞學說內容(統一性)
○從人體的解剖和觀察入手:維薩里、比夏
○顯微鏡下的重要發明:虎克、列文虎克
○理論思維和科學實驗的結合:施來登、施旺

1. 細胞是一個有機體,一切動植物都由細胞發育而來,並由細胞和細胞產物所構成。
2. 細胞是一個相對獨立的單位,既有它自己的生命,又對與其他細胞共同組成的整體的生命起作用。
3. 新細胞可以從老細胞中產生。

○在修正中前進:細胞通過分裂產生新的細胞。

註:現代生物學的三大基石
1.1838—1839年 細胞學說 2.1859年 達爾文 進化論 3.1866年 孟德爾 遺傳學
四、結論
除病毒以外,細胞是生物體結構和功能的基本單位,也是地球上最基本的生命系統。
(二)組成細胞的分子
基本:C、H、O、N (90%)
大量:C、H、O、N、P、S、(97%)K、Ca、Mg
元素 微量:Fe、Mo、Zn、Cu、B、Mo等
(20種) 最基本:C,占乾重的48.4%,生物大分子以碳鏈為骨架
物質 說明生物界與非生物界的統一性和差異性。
基礎 水:主要組成成分;一切生命活動離不開水
無機物 無機鹽:對維持生物體的生命活動有重要作用
化合物 蛋白質:生命活動(或性狀)的主要承擔者/體現者
核酸:攜帶遺傳信息
有機物 糖類:主要的能源物質
脂質:主要的儲能物質
一、蛋白質 (占鮮重7-10%,乾重50%)

結構 元素組成 C、H、O、N,有的還有P、S、Fe、Zn、Cu、B、Mn、I等
單體 氨基酸 (約20種,必需8種,非必需12種)
化學結構 由多個氨基酸分子脫水縮合而成,含有多個肽鍵的化合物,叫多肽。
多肽呈鏈狀結構,叫肽鏈。一個蛋白質分子含有一條或幾條肽鏈。
高級結構 多肽鏈形成不同的空間結構,分二、三、四級。
結構特點 由於組成蛋白質的氨基酸的種類、數目、排列次序不同,於是肽鏈的空間結構千差萬別,因此蛋白質分子的結構是極其多樣的。
功能 ○蛋白質的結構多樣性決定了它的特異性/功能多樣性。
1. 構成細胞和生物體的重要物質:如細胞膜、染色體、肌肉中的蛋白質;
2. 有些蛋白質有催化作用:如各種酶;
3. 有些蛋白質有運輸作用:如血紅蛋白、載體蛋白;
4. 有些蛋白質有調節作用:如胰島素、生長激素等;
5. 有些蛋白質有免疫作用:如抗體。
備注 ○連接兩個氨基酸分子的鍵(—NH—CO—)叫肽鍵。
○各種蛋白質在結構上所具有的共同特點(通式):

1. 每種氨基酸至少都含有一個氨基和一個羧基連同一碳原子上;
2. 各種氨基酸的區別在於R基的不同。
○ 變性(熟雞蛋)&鹽析&凝固(豆腐)
計算 ○由N個aa形成的一條肽鏈圍成環狀蛋白質時,產生水/肽鍵 N 個;
○N個aa形成一條肽鏈時,產生水/肽鍵 N-1 個;
○N個aa形成M條肽鏈時,產生水/肽鍵 N-M 個;
○N個aa形成M條肽鏈時,每個aa的平均分子量為α,那麼由此形成的蛋白質
的分子量為 N×α-(N-M)×18 ;

二、核酸
一切生物的遺傳物質,是遺傳信息的載體,是生命活動的控制者。
元素組成 C、H、O、N、P等
分類 脫氧核糖核酸(DNA雙鏈) 核糖核酸(RNA單鏈)
單體

成分 磷酸 H3PO4
五碳糖 脫氧核糖 核糖
含氮
鹼基 A、G、C、T A、G、C、U
功能 主要的遺傳物質,編碼、復制遺
傳信息,並決定蛋白質的合成 將遺傳信息從DNA傳遞給
蛋白質。
存在 主要存在於細胞核,少量在線粒
體和葉綠體中。甲基綠 主要存在於細胞質中。吡羅紅

△ 每一個單體都以若干個相連的碳原子構成的碳鏈為基本骨架,由許多單體連接成多聚體。

三、糖類和脂質
元素 類別 存在 生理功能
糖類 C、H、O 單糖 核糖C5H10O5 主細胞質 核糖核酸的組成成分;
脫氧核糖C4H10O5 主細胞核 脫氧核糖核酸的組成成分;
六碳糖:葡萄糖
C6H12O6、果糖等 主細胞質 是生物體進行生命活動的重要能源物質(70%以上);
二糖
C12H22O11 麥芽糖、蔗糖 植物
乳糖 動物
多糖 澱粉、纖維素 植物 (細胞壁的組成成分),
重要的儲存能量的物質;
糖原(肝、肌) 動物
脂質 C、H、O
有的 還有N、P 脂肪 動、植物 儲存能量、維持體溫恆定;
類脂/磷脂 腦、豆 構成生物膜的重要成分;
固醇 膽固醇 動物 動物的重要成分;
性激素 促性器官發育和第二性徵;
維生素D 促進鈣、磷的吸收和利用;

△ 組成生物體的任何一種化合物都不能夠單獨地完成某一種生命活動,而只有按照一定的方式有機地組織起來,才能表現出細胞和生物體的生命現象。細胞就是這些物質最基本的結構形式。
四、鑒別實驗
試劑 成分 實驗現象 常用材料
蛋白質 雙縮脲 A: 0.1g/mL NaOH 紫色 大豆
雞蛋
B: 0.01g/mL CuSO4
脂肪 蘇丹Ⅲ 橘黃色 花生
還原糖 班氏(加熱) 磚紅色沉澱 蘋果、梨、白蘿卜
澱粉 碘液 I2 藍色 馬鈴薯

○具有還原性的糖:葡萄糖、麥芽糖、果糖

五、無機物
存在方式 生理作用

結合水4.5%

自由水95% 部分水和細胞中
其他物質結合。 細胞結構的組成成分。
絕大部分的水以
游離形式存在,可以自由流動。 1.細胞內的良好溶劑;
2.參與細胞內許多生物化學反應;
3.水是細胞生活的液態環境;
4.水的流動,把營養物質運送到細胞,並把廢物運送到排泄器官或直接排出;
無機鹽 多數以離子狀態存,如K+、
Ca2+、Mg2+、Cl--、PO2+等 1.細胞內某些復雜化合物的重要組成部分,如Fe2+是血紅蛋白的主要成分;
2.持生物體的生命活動,細胞的形態和功能;
3.維持細胞的滲透壓和酸鹼平衡;

六、小結
化合 有機組合 分化
化學元素 化合物 原生質 細胞

○原生質 1.泛指細胞內的全部生命物質,但並不包括細胞內的所有物質,如細胞壁;
2.包括細胞膜、細胞質和細胞核三部分;其主要成分為核酸、蛋白質(和脂類);
3.動物細胞可以看作一團原生質。
○細胞質 : 指細胞中細胞膜以內、細胞核以外的全部原生質。
○原生質層:成熟的植物細胞的細胞膜、液泡膜以及兩層膜之間的細胞質,為一層半透膜。
(三)細胞的基本結構

細胞壁(植物特有): 纖維素+果膠,支持和保護作用

成分:脂質(主磷脂)50%、蛋白質約40%、糖類2%-10%
細胞膜
作用:隔開細胞和環境;控制物質進出;細胞間信息交流;

真核 基質: 有水、無機鹽、脂質、糖類、氨基酸、核苷酸和多種酶等
細胞 細胞質 是活細胞進行新陳代謝的主要場所。
分工:線、內、高、核、溶、中、葉、液、
細胞器
協調配合:分泌蛋白的合成與分泌;生物膜系統
核膜:雙層膜,分開核內物質和細胞質
核孔:實現核質之間頻繁的物質交流和信息交流
細胞核 核仁:與某種RNA的合成以及核糖體的形成有關
染色質:由DNA和蛋白質組成,DNA是遺傳信息的載體

一、 細胞器 差速離心:美國 克勞德

線粒體 葉綠體 高爾基體 內質網 液泡 核糖體 中心體
分布 動植物 植物 動植物 動植物 植物和某
些原生動物 動植物 動物
低等植物
形態 橢球形、棒形 扁平的球形或橢球形 大小囊泡、扁平囊 網狀 橢球形粒狀小體
結構 雙層膜,有少量DNA 單層膜,形成囊泡狀和管狀,內有腔 沒有膜結構
嵴(TP酶復合體)、基粒、基質 基粒(類體)、基質(片層結構)、酶 外連細胞膜,內連核膜 液泡膜、細胞液 蛋白質、RNA、和酶 兩個互相垂直的中心粒
功能 有氧呼吸的主場所 進行光合作用的場所 細胞分泌,
成細胞壁 提供合成、運輸條件 貯存物質,調節內環境 蛋白質合成的場所 與有絲分裂有關
備注 在核仁
形成

△ 細胞器是指在細胞質中具有一定形態結構和執行一定生理功能的結構單位,

三、協調配合 分泌蛋白 放射性同位素示蹤法:羅馬尼亞 帕拉德
有機物、O2
葉綠體 線粒體
能量、CO2

基因調控 初步合成 加工 修飾
細胞核 核糖體 內質網 高爾基體 細胞膜 胞外
氨基酸 肽鏈 一定空間結構

○生物膜系統:細胞器膜 + 細胞膜 + 核膜等形成的結構體系

四、細胞核 = 核膜(雙層) + 核仁 + 染色質 + 核液

美西螈實驗、蠑螈橫縊實驗、變形蟲實驗、傘藻嫁接與移植實驗
細胞核是遺傳信息儲存和復制的場所,是代謝活動和遺傳特性的控制中心。

○ 染色質和染色體是同一物質在細胞周期不同階段相互轉變的形態結構。
DNA 螺旋
○ + = 核小體(串珠結構) 染色質 30nm纖維
組蛋白 非組蛋白
螺旋化
0.4um超螺旋管(圓筒形) 2-10um染色單體(圓柱狀、桿狀)

二、樹立觀點(基本思想)
1.有一定的結構就必然有與之相對應功能的存在;
○結構和功能相統一
2.任何功能都需要一定的結構來完成
1.各種細胞器既有形態結構和功能上的差異,又相互聯系,相互依存;
○分工合作
2.細胞的生物膜系統體現細胞各結構之間的協調配合。
○生物的整體性:整體大於各部分之和;只有在各部分組成一個整體的時才能體現出生命現象。
1.結構:細胞的各個部分是相互聯系的。如分布在細胞質的內質網內連核膜,外接細胞膜。
2.功能:細胞的不同結構有不同的生理功能,但卻是協調配合的。如分泌蛋白的合成與分泌。
3.調控:細胞核是代謝的調控中心。其DNA通過控制蛋白質類物質的合成調控生命活動。
4.與外界的關繫上:每個細胞都要與相鄰細胞、而與外界環境直接接觸的細胞都要和外界環境進行物質交換和能量轉換。

六、總結
細胞既是生物體結構的基本單位,也是生物體代謝和遺傳的基本單位。
(四)細胞物質的運輸

○科學家研究細胞膜結構的歷程是從物質跨膜運輸的現象開始的,分析成分是了解結構的基礎,現象和功能又提供了探究結構的線索。人們在實驗觀察的基礎上提出假說,又通過進一步的實驗來修正假說,其中方法與技術的進步起到關鍵的作用

成分:磷脂和蛋白質和糖類
結構:單位膜(三明治)→ 流動鑲嵌模型
細胞膜 特性 結構特點:具有相對的流動性
生理特性:選擇透過性(對離子和小分子物質具選擇性)
保護作用
功能 控制細胞內外物質交換
細胞識別、分泌、排泄、免疫等

一、物質跨膜運輸的實例
1.水分
條件 濃度 外液 > 細胞質/液 外液 < 細胞質/液
現象 動物 失水皺縮 吸水膨脹甚至漲破
植物 質壁分離 質壁分離復原
原理 外因 水分的滲透作用
內因 原生質層與細胞壁的伸縮性不同造成收縮幅度不同
結論 細胞的吸水和失水是水分順相對含量梯度跨膜運輸的過程

○ 滲透現象發生的條件:半透膜、細胞內外濃度差
○ 滲透作用:水分從水勢高的系統通過半透膜向水勢低的系統移動的現象。
○ 半透膜:指一類可以讓小分子物質通過而大分子物質不能通過的一類薄膜的總稱。
○ 質壁分離與復原實驗可拓展應用於:(指的是原生質層與細胞壁)
①證明成熟植物細胞發生滲透作用; ②證明細胞是否是活的;
③作為光學顯微鏡下觀察細胞膜的方法; ④初步測定細胞液濃度的大小;

2. 無機鹽等其他物質
① 不同生物吸收無機鹽的種類和數量不同。
② 物質跨膜運輸既有順濃度梯度的,也有逆濃度梯度的。
3. 選擇透過性膜
可以讓水分子自由通過,一些離子和小分子也可以通過,而其他離子、小分子和大分子則不能通過的膜。
□ 生物膜是一種選擇透過性膜,是嚴格的半透膜。

二、流動鑲嵌模型

1.要點
①磷脂雙分子層 構成生物膜的基本支架,但這個支架不是靜止的,它具有流動性。
②蛋白質 鑲嵌、貫穿、覆蓋在磷脂雙分子層上,大多數蛋白質也是可以流動的。
③天然糖蛋白 蛋白質和糖類結合成天然糖蛋白,形成糖被具有保護、潤滑和細胞識別等

2.與單位膜的異同
相同點:組成細胞膜的主要物質是脂質和蛋白質
不同點:①流:蛋白質的分布有不均勻和不對稱性;強調組成膜的分子是運動的。
②單:蛋白質均勻分布在脂雙層的兩側;認為生物膜是靜止結構。

三、跨膜運輸的方式

例子 方式 濃度梯度 載體 能量 作用
水、甘油、氣體、乙醇、苯 自由擴散 順 × × 被選擇吸收的物質從高濃度的一側通過細胞膜向濃度低的一側轉運
葡萄糖進入紅細胞 協助擴散 順 √ ×
進入紅細胞的鉀離子 主動運輸 逆 √ √ 能保證活細胞按照生命活動的需要,主動地選擇吸收所需要
的物質,排出新陳代謝產生的廢物和對細胞要害的物質。

○大分子或顆粒:胞吞、胞吐

四、小結
組成 決定
磷脂分子+蛋白質分子 結構 功能(物質交換)
具有
導致 保證 體現
運動性 流動性 物質交換正常 選擇透過性
成分組成結構,結構決定功能。構成細胞膜的磷脂分子和蛋白質分子大都是可以流動的,因此決定了由它們構成的細胞膜的結構具有一定的流動性。結構的流動性保證了載體蛋白能把相應的物質從細胞膜的一側轉運到到另一側。由於細胞膜上不同載體的數量不同,所以,當物質進出細胞時能體現出不同的物質進出細胞膜的數量、速度及難易程度的不同,即反映出物質交換過程中的選擇透過性。可見,流動性是細胞膜結構的固有屬性,無論細胞是否與外界發生物質交換關系,流動性總是存在的,而選擇透過性是細胞膜生理特性的描述,這一特性,只有在流動性基礎上,完成物質交換功能方能體現出來。

(五)細胞的能量供應和利用

H2O 外界

H2O O2 礦質元素
[H]
光 ATP 原生質
ADP+PI 熱能
ATP
ADP+PI
CO2+H2O C3H6O3 C2H5OH+CO2

一、 酶——降低反應活化能
◎ 新陳/細胞代謝:活細胞內全部有序化學反應的總稱。
◎ 活化能:分子從常態轉變成容易發生化學反應的活躍狀態所需要的能量。

1. 發現

①巴斯德之前:發酵是純化學反應,與生命活動無關。
②巴斯德(法、微生物學家):發酵與活細胞有關;發酵是整個細胞。
③利比希(德、化學家):引起發酵的是細胞中的某些物質,但這些物質只有在酵母細胞死亡並裂解後才能發揮作用。
④比希納(德、化學家):酵母細胞中的某些物質能夠在酵母細胞破碎後繼續起催化作用,就像在活酵母細胞中一樣。
⑤薩姆納(美、科學家):從刀豆種子提純出來的脲酶是一種蛋白質。
⑥許多酶是蛋白質。
⑦切赫與奧特曼(美、科學家):少數RNA具有生物催化功能。

2.定義

酶是活細胞產生的具有催化作用的有機物,其中絕大多數酶是蛋白質。
註:
①由活細胞產生(與核糖體有關)
②催化性質:A.比無機催化劑更能減低化學反應的活化能,提高化學反應速度。
B.反應前後酶的性質和數量沒有變化。
③成分:絕大多數酶是蛋白質,少數酶是RNA。

3.特性

① 高效性:催化效率很高,使反應速度很快,是一般無機催化集的107——1013倍。
② 專一性:每一種酶只能催化一種或一類化學反應。 → 多樣性 。
③ 需要合適的條件(溫度和pH值) → 溫和性 → 易變性 。

酶的催化作用需要適宜的溫度、pH值等,過酸、過鹼、高溫都會破壞酶分子結構。低溫也會影響酶的活性,但不破壞酶的分子結構。

圖例

解析 在底物足夠,其他因素固定的條件下,酶促反應的速度與酶濃度成正比。 1.在S較低時,V隨S增加而加快,近乎成正比;
2.在S較低時,V隨S增加而加快,但不顯著;
3.當S很大且達到一定限度時,V也達到一個最大值,此時即使再增加S,反應也幾乎不再改變。
1.在一定T內V隨T的
升高而加快;
2.在一定條件下,每一種酶在某一T時活力最大,稱最適溫度;
3.當T升高到一定限度時,V反而隨溫度的升高而降低。
◎動物T:35—40℃
PH : 6.5—8.0

◎ 酶工程

生產提取 製成 酶制劑 應用 治療疾病;加工和生產一些產品;
和分離純化 固定化酶 化驗診斷和水質檢測;其他分支。

二、ATP(三磷酸腺苷)
◎ ATP是生物體細胞內普遍存在的一種高能磷酸化合物,是生物體進行各項生命活動的直接
能源,它的水解與合成存在著能量的釋放與貯存。

1.結構簡式
A — P ~ P ~ P

腺苷 普通化學鍵13.8KJ/mol 高能磷酸鍵 30.54 KJ/mol 磷酸基團

2.ATP與ADP的轉化
ATP
呼吸作用
(線粒體) 吸 Pi
(細胞質基質) 能 吸收分泌(滲透能)
(葉綠體) 放 肌肉收縮(機械能)
光合作用 Pi 能 神經傳導、生物電(電能)
ADP (每個活細胞) 合成代謝(化學能)
體溫(熱能)
螢火蟲(光能)
◎ 糖類—主要能源物質 熱能 散失
太陽光能 脂肪—主要儲能物質 氧化
(直接能源) 蛋白質—能源物質之一 分解 化學能 ATP

水解酶、放
◎ ATP ADP + Pi + 能量
合成酶、吸

3.能產生ATP: 線粒體、葉綠體、細胞質基質
能產生水: 線粒體、葉綠體、核糖體、細胞核
能鹼基互補配對: 線粒體、葉綠體、核糖體、細胞核

三、ATP的主要來源——細胞呼吸
◎呼吸是通過呼吸運動吸進氧氣,排出二氧化碳的過程。
◎細胞呼吸是指有機物在細胞內經過一系列的氧化分解,生成二氧化碳或其他產物,釋放出能量並生成ATP的過程。分為:

有氧呼吸 無氧呼吸
概念 指細胞在氧的參與下,通過多種酶的催化作用,把葡萄糖等有機物徹底氧化分解,產生二氧化碳和水,釋放能量,生成許多ATP的過程。 指細胞在氧的參與下,通過多種酶的催化作用,把葡萄糖等有機物分解成不徹底的氧化產物,同時釋放出少量能量的過程。
過程 ① C6H12O6 → 2丙酮酸 + [H] + 2ATP
② 2丙酮酸+ 6H2O → 6CO2 + [H]+ 2ATP
③ [H] + 6O2 → 12H2O + 34ATP ① C6H12O6 → 2丙酮酸 + [H] + 2ATP
→ 2C3H6O3
② 2丙酮酸 → 2C2H5OH + 2CO2
反應式 C6H12O6+6H2O+6O2→6CO2 + 12H2O + 38ATP C6H12O6 → 2C3H6O3 + 2ATP
→ 2C2H5OH + 2CO2 + 2ATP
不同點 場所 : ①②線粒體基質 ③內膜 始終在細胞質基質
條件 : 除①外,需分子氧、酶 不需分子氧、需酶
產物 : CO2 、H2O 酒精和CO2或乳酸
能量 : 大量、合成38ATP(1161KJ) 少量、合成2ATP(61.08KJ)
相同點 聯系 : 從葡萄糖分解成丙酮酸階段相同,以後階段不同
實質 : 分解有機物,釋放能量,合成ATP
意義 : 為生物體的各項生命活動提供能量;為體內其他化合物合成提供原料

◎比較
光合作用 呼吸作用
反應場所 綠色植物(在葉綠體中進行) 所有生物(主要在線粒體中進行)
反應條件 光、色素、酶 酶(時刻進行)
物質轉變 把無機物CO2和H2O合成有機物(CH2O) 分解有機物產生CO2和H2O
能量轉變 把光能轉變成化學能儲存在有機物中 釋放有機物的能量,部分轉移ATP
實質 合成有機物、儲存能量 分解有機物、釋放能量、產生ATP
聯系 有機物、氧氣
光合作用 呼吸作用
能量、二氧化碳

◎ 光合作用的實質
通過光反應把光能轉變成活躍的化學能,通過暗反應把二氧化碳和水合成有機物,同時把活躍的化學能轉變成穩定的化學能貯存在有機物中。
四、光和光合作用

◎光合作用是指綠色植物通過葉綠體,利用光能,把二氧化碳和水轉化成儲存著能量的
有機物,並釋放出氧氣的過程。影響因素有:光、溫度、CO2濃度、水分、礦質元素等。
1.發現
內容 時間 過程 結論
普里斯特 1771年 蠟燭、小鼠、綠色植物實驗 植物可以更新空氣
薩克斯 1864年 葉片遮光實驗 綠色植物在光合作用中產生澱粉
恩格爾曼 1880年 水綿光合作用實驗 葉綠體是光合作用的場所釋放出氧。
魯賓與卡門 1939年 同位素標記法 光合作用釋放的氧全來自水

2.場所
雙層膜
葉綠體 基質
基粒 多個類囊體(片層)堆疊而成
胡蘿卜素(橙黃色)1/3
類胡蘿卜素 葉黃素(黃色) 2/3 吸藍紫光
色素 (1/4) 葉綠素A(藍綠色)3/4
葉綠素(3/4) 葉綠素B(黃綠色)1/4 吸紅橙和藍紫光
3.過程

光反應 暗反應
條件 光、色素、酶 CO2、[H]、ATP、酶
時間 短促 較緩慢
場所 內囊體的薄膜 葉綠體的基質
過程 ① 水的光解
2H2O → 4[H] + O2
② ATP的合成/光合磷酸化
ADP + Pi + 光能 → ATP ① CO2的固定
CO2 + C5 → 2C3
② C3/ CO2的還原
2C3 + [H] →(CH2O)
實質 光能 → 化學能,釋放O2 同化CO2,形成(CH2O)
總式 CO2 + H2O → (CH2O)+ O2
或 CO2 + 12H2O → (CH2O)6 + 6O2 + 6H2O
物變 無機物CO2、H2O → 有機物(CH2O)
能變 光能 → ATP中活躍的化學能 → 有機物中穩定的化學能
◎ 同位素示蹤
14C 光反應 2C 3 暗反應 (14CH2O)
3H2O 固定 [3H] 還原 (C3H2O)
H218O 光 18O2

◎ 人為創設條件,看物質變化:

1. 光照 → [H]和ATP → 暗反應 → (CH2O)
↓ ↓ ↓ ↓
切斷 → 不能生成 → 不能進行 → 不能生成

2
回答者:海T_T - 見習魔法師 三級 2-7 16:28

同學 你的心情可以理解 但學好生物可不是幾句話就可以搞定的 但總結起來有以下幾點 希望你能在以後的學習中注意:
1 培養興趣 興趣是最好的老師 你可以在生活中多注意一下關於生物方面的知識 用來幫助他人解決一些生物方面的問題 比如看完動物世界 你明白了植物的生長規律 當家裡中花 你可以幫助爸媽管理花草 通過類似的方法可以提高你對學習的積極性
2 記憶的反復 在學習一課前及時的預習,對知識有一個初步的了解. 在課上,對老師的講解要認真聽講 並及時記下自己的疑問 當然筆記也是不可缺少的
在老師講解完後及時的提出自己的問題 當然在全體同學的面前提出自己獨到深刻的見解也是提高你學習積極性的一種方法 相信在課上你會有大量的收獲
在自習的時候 先復習課上得到的信息 無論大小 全都在大腦中過一邊 然後做老師的作業 在作業中鞏固自己對信息的記憶和認識 在早晨讀時用5分鍾來復習昨天學過的知識 這樣可以保證記憶的永久性
3 問到底的精神 要知道一個所以然就要問 下了課 把不會的問下老師 著一點看似簡單 但很多人沒有那個勇氣和想法
4 求新 在現代 生物 醫學 科研 都發展迅速 及時的關注新科技有助於你的學習 因為很多題是以新科技為材料來問舊知識 而且你還可以用這些材料和自己的見解 問題來和老師探討一下 不僅可以加深對知識的理解 也可以加深老師對你的印象
5 持之以橫 你還是高

閱讀全文

與半透膜活化相關的資料

熱點內容
大胸電影大尺度 瀏覽:119
水垢水泡茶 瀏覽:915
杭州提升泵廠家直銷 瀏覽:185
邁騰汽油濾芯怎麼樣 瀏覽:937
李海仁拍過的限製片 瀏覽:392
超濾膜進水cod的要求 瀏覽:116
怡口凈反滲透膜 瀏覽:990
一根住凈水器怎麼換 瀏覽:253
美國男露器官電影 瀏覽:88
水性達克羅專用樹脂 瀏覽:532
收姨收母的小說 瀏覽:21
蒸餾酒的製作工藝流程 瀏覽:86
除垢劑是幹嘛的 瀏覽:975
深圳濱河污水處理廠規模 瀏覽:156
漏點最大的十大電影 瀏覽:849
飲水機怎麼拆解內膽 瀏覽:209
煤礦污水廢水監測分析的作用 瀏覽:582
揭陽榕城191樹脂材料 瀏覽:253
沁園顆粒活性炭濾芯怎麼沖洗 瀏覽:678
如何給凈水器儲氣罐打氣 瀏覽:359