A. 樹脂TG值標準是多少
你數字Tg值標准一般在55~60℃。
樹脂的Tg點指的是樹脂的玻璃化溫度,即高聚物由高彈態轉變為玻璃態的溫度。
是無定形聚合物包括結晶型聚合物中的非結晶部分,有玻璃態向高彈態或者向後者向前者的轉變溫度,是無定形聚合物大分子鏈段自由運動的最低溫度,通常用Tg表示。隨測定的方法和條件有一定的不同。
B. LED封裝膠參數中有一個叫Tg點,這個主要代表是什麼含義呢 是不是Tg越高越好呢
Tg點是玻璃態轉化溫度點的意思,說的是封裝膠在固化中從固態到玻璃態過程中的溫度點,由於封裝膠的Tg點與固化後的硬度及內應力有一定關系,所以封裝時把Tg點作為膠水衡量的標准,一般的A、B膠TG點在125-140度,TG點高一些的膠水相對較好。
C. 各位大神,請問:環氧樹脂膠水的固化溫度與Tg點關系固化溫度比Tg點高還是低,固化的效果會好一點呢
環氧固化來溫度取決於固化源劑,看看是常溫固化劑還是高溫固化劑,只要達到固化所需溫度就可以了;tg是玻璃化溫度,是產品使用的極限溫度,跟固化溫度沒關系,樹脂經過固化和後固化(80度或者100度)達到產品所需性能後,就可以使用了。
D. 樹脂的耐溫性和Tg有什麼聯系如丙烯酸樹脂、環氧樹脂等。
TG點是軟化溫度,樹脂才超過這個溫度的情況下,會發生軟化,導致機械性能大幅下降。一般來說tg是樹脂的極限使用溫度。
E. DSC監控環氧樹脂固化,為何有兩個Tg
樓主確定是兩個玻璃化轉變而不是兩個放熱峰?
如果是前者,那麼固化物是嵌段聚合物,兩個Tg分別是柔性段和剛性段的Tg
如果是後者,就是固化反應分兩步進行
F. 樹脂做TG實驗目的是什麼
玻化溫度,不飽和樹脂不是晶體沒有一個恆定的軟化溫度,他的軟化是個漸變的過程,tg就是各個溫度。
G. 復合材料為何會有兩個Tg
如果材料中有兩種樹脂,就會有兩次玻璃化轉變,也就有兩個Tg。
H. 環氧樹脂TG點圖怎麼看
外觀看不出來區別,它們包含的材料不同,一個是環氧樹脂,一個是聚氨酯樹脂。
I. 影響環氧樹脂TG值的主要因素有哪些
復合材料由於質量輕且具有比一般金屬材料高的比強度、比模量,熱固性樹脂特別是環氧樹脂通常用作復合材料基體樹脂,對基體樹脂進行增韌改性是提高復合材料的性能的關鍵措施之一。上世紀80年代初首次報道用Ulteml000R聚醚醯亞胺(PEI)改性環氧樹脂的研究:李善君等合成了一系列與環氧樹脂具有良好相容性的結構新穎的可溶性聚醚醯亞胺PEI,在EPOn-828和TGD-DM環氧樹脂體系中取得了非常優異的增韌效果,材料斷裂能提高5倍、模量和玻璃化溫度維持不變。那麼聚醚醯亞胺到底如何影響環氧樹脂性能?專家從化學結構和使用數量2個方面進行了介紹。
關於聚醚醯亞胺化學結構的影響,專家以4種不同主鏈結構的聚醚醯亞胺改性了4,4』-二氨基二苯甲烷四縮水甘油醚環氧樹脂(TG-DDM,環氧值為0.66)和4,4』-二氨基二苯碸(DDS)固化體系,雙酚A二醚酐(BISA-DA)與4種不同結構的二胺合成聚醚醯亞胺。觀察以20%聚醚醯亞胺(PEI)與TGDDM/DDS(40%)共混物在150%固化5 h後導致共混物呈現不同的相結構,結果TGDDM/PID共混物的斷裂面如有褶皺的絲綢(A),經CH2Cl2刻蝕也未發現兩相結構,表明共混物在固化反應過程中並未發生相分離;TGDDM/PIM共混物顯示PIM粒子分散在環氧樹脂連續相中(B);而PIP改性的環氧樹脂為雙連續結構,深色的環氧富集相中有PIP的粒子分散其中,淺色的聚醚醯亞胺富集相是相反轉結構(C);TGDDM/PIB共混物為相反轉結構(D),環氧形成粒子被聚醚醯亞胺的連續相所包圍。上述結果表明,聚醚醯亞胺的主鏈結構對改性體系相結構有顯著影響,PIP改性TGDDM體系具有雙連續相結構。
聚醚醯亞胺用量不僅對改性體系相結構有影響,且對其力學性能有顯著影響。以PIM聚醚醯亞胺改性雙馬來醯亞胺BMI/DBA為例(BMI是4,4』-雙馬來醯亞胺基二苯甲烷,DBA是0,0』-二烯丙基雙酚A),專家了聚醚醯亞胺用量,對PIM/BMI改性體系相結構的影響和對改性材料力學性能的影響。加入5%PIM後改性體系的斷裂能較純雙馬樹脂有所升高,加入10%及15%PIM的改性體系斷裂能有顯著的增大。在PIM 15%改性體系斷裂能增大了2倍多,而改性材料彎曲模量略有下降。可見聚醚醯亞胺用量的增大有利於材料韌性的升高。改性雙馬樹脂體系的相結構隨聚醚醯亞胺用量而變化,5%時所得為PIM分散粒子相結構,10%時形成雙連續相結構,15%以上導致相反轉,聚醚醯亞胺作為連續相和力學強度支撐相,有利於力學性能的大幅度提高,使斷裂韌性得以提高。
J. tg測定原理是什麼影響tg測定的因素有哪些
玻璃化轉變溫度(Tg)測定方法:
1.膨脹計法 在膨脹計內裝入適量的受測聚合物,通過抽真空的方法在負壓下將對受測聚合物沒有溶解作用的惰性液體充入膨脹計內,然後在油浴中以一定的升溫速率對膨脹計加熱,記錄惰性液體柱高度隨溫度的變化。由於高分子聚合物在玻璃化溫度前後體積的突變,因此惰性液體柱高度-溫度曲線上對應有折點。折點對應的溫度即為受測聚合物的玻璃化溫度。
2.折光率法 利用高分子聚合物在玻璃化轉變溫度前後折光率的變化,找出導致這種變化的玻璃化轉變溫度。
3.熱機械法(溫度-變形法) 在加熱爐或環境箱內對高分子聚合物的試樣施加恆定載荷;記錄不同溫度下的溫度-變形曲線。類似於膨脹計法,找出曲線上的折點所對應的溫度,即為:玻璃化轉變溫度。
4.DTA法(DSC)以玻璃化溫度為界,高分子聚合物的物理性質隨高分子鏈段運動自由度的變化而呈現顯著的變化,其中,熱容的變化使熱分析方法成為測定高分子材料玻璃化溫度的一種有效手段。目前用於玻璃化溫度測定的熱分析方法主要為差熱分析(DTA和差示掃描量熱分析法(DSC和熱機械法)。以DSC為例,當溫度逐漸升高,通過高分子聚合物的玻璃化轉變溫度時,DSC曲線上的基線向吸熱方向移動(見圖)。圖中A點是開始偏離基線的點。將轉變前後的基線延長,兩線之間的垂直距離為階差ΔJ,在ΔJ/2 處可以找到C點,從C點作切線與前基線相交於B點,B點所對應的溫度值即為玻璃化轉變溫度Tg。熱機械法即為玻璃化溫度過程直接記錄不做換算,比較方便。
5.動態力學性能分析(DMA)法 高分子材料的動態性能分析(DMA)通過在受測高分子聚合物上施加正弦交變載荷獲取聚合物材料的動態力學響應。對於彈性材料(材料無粘彈性質),動態載荷與其引起的變形之間無相位差(ε=σ0sin(ωt)/E)。當材料具有粘彈性質時,材料的變形滯後於施加的載荷,載荷與變形之間出現相位差δ:ε=σ0sin(ωt+δ)/E。將含相位角的應力應變關系按三角函數關系展開,定義出對應與彈性性質的儲能模量G』=Ecos(δ) 和對應於粘彈性的損耗模量G」=Esin(δ) E因此稱為絕對模量E=sqrt(G』2+G」2) 由於相位角差δ的存在,外部載荷在對粘彈性材料載入時出現能量的損耗。粘彈性材料的這一性質成為其對於外力的阻尼。阻尼系數 γ=tan(δ)=G』』/G』 由此可見,高分子聚合物的粘彈性大小體現在應變滯後相位角上。當溫度由低向高發展並通過玻璃化轉變溫度時,材料內部高分子的結構形態發生變化,與分子結構形態相關的粘彈性隨之的變化。這一變化同時反映在儲能模量,損耗模量和阻尼系數上。下圖是聚乙醯胺的DMA曲線。振動頻率為1Hz。在-60和-30°C之間,貯能模量的下降,阻尼系數的峰值對應著材料內部結構的變化。相應的溫度即為玻璃化轉變溫度Tg。
6.核磁共振法(NMR) 溫度升高後,分子運動加快,質子環境被平均化(處於高能量的帶磁矩質子與處於低能量的的帶磁矩質子在數量上開始接近;N-/N+=exp(-E/kT)),共振譜線變窄。到玻璃化轉變溫度,Tg時譜線的寬度有很大的改變。利用這一現象,可以用核磁共振儀,通過分析其譜線的方法獲取高分子材料的玻璃化轉變溫度。
影響玻璃化溫度的因素:
由於玻璃化轉變是與分子運動有關的現象,而分子運動又和分子結構有著密切關系,
所以分子鏈的柔順性、分子間作用力以及共聚、共混、增塑等都是影響高聚物Tg的重要內因。此外,外界條件如作用力、作用力速率,升(陣)溫速度等也是值得注意的影響因索。
1.化學結構
(1) 鏈的柔順性
分子鏈的柔順性是決定高聚物Tg的最重要的因素。主鏈柔順性越好,玻璃化溫度越低。
主鏈由飽和單鍵構成的高聚物,因為分子鏈可以固定單鍵進行內旋轉,所以Tg都不高,
特別是沒有極性側基取代時,其Tg更低。不同的單鍵中,內旋轉位壘較小的,Tg較低。例如, 高聚物聚二甲基硅氧烷聚甲醛聚乙烯SiCH3OCH3***H2CO*nn*H2CH2C*nTg/oC-123-83-68
主鏈中含有孤立雙鍵的高聚物,雖然雙鍵本身不能內旋轉,但雙鍵旁的α單鍵更易旋轉,
所以Tg都比較低。例如,丁二烯類橡膠都有較低的玻璃化溫度。
H2C*CHCHH2C*H2C*CCHH2C*CH3H2C*CHCHH2CH2CHC*聚丁二烯天然橡膠丁苯橡膠高聚物Tg/oC-95-73-51
(2)取代基
旁側基團的極性,對分子鏈的內旋轉和分子間的相互作用都會產生很大的影響。側基的
極性越強,Tg越高。一些烯烴類聚合物的Tg與取代基極性的關系如表
2 烯烴高聚物取代基的極性和Tg的關系 此外,增加分子鏈上極性基團的數量,也能提高高聚物的Tg.但當極性基團的數量超過一定值後,由於它們之間的靜電斥力超過吸引力,反而導致分子鏈間距離增大,Tg下降。取代基的位阻增加,分子鏈內旋轉受阻礙程度增加,Tg升高。應當強調指出,側基的存在並不總是使Tg增大的。取代基在主鏈上的對稱性對Tg也有很大影響,聚偏二氯乙烯中極性取代基對稱雙取代,偶極抵銷一部分,整個子極性矩減小,內旋轉位壘降低,柔性增加,其Tg比聚氯乙烯為低;而聚異丁烯的每個鏈節上,有兩個對稱的側甲基,使主鏈間距離增大,鏈間作用力減弱,內旋轉位壘降低,柔性增加,其Tg比聚丙烯為低。又如,當高聚物中存在柔性側基時,隨著側基的增大,在一定范圍內,由於柔性側基使分子間距離加大,相互作用減弱,即產生「內增塑」作用,所以,Tg反而下降。 (3)幾何異構單取代烯類高聚物如聚丙烯酸酯、聚苯乙烯等的玻璃化溫度幾乎與它們的立構無關,而雙取代烯類高聚物的玻璃化溫度都與立構類型有關。一般,全同立構的Tg較低,間同立構的Tg較高。在順反異構中,往往反式分子鏈較硬,Tg大。
(4)離子鍵的引入分子鏈間有離子鍵可以顯著提高Tg。例如,聚丙烯酸中加入金屬離子,T
g會大大提高,其效果又隨離子的價數而定。用Na+使Tg從l06℃提高到280℃;Cu2+取代Na+, Tg提高到500℃。
2,其他結構因素的影響
(1) 共聚
無規共聚物的Tg介於兩種共聚組分單體的Tg之間,並且隨著共聚組分的變化,其Tg在兩
種均聚物的Tg之間線性或非線性變化。 非無規共聚物中,最簡單的是交替共聚,他們以看成是兩種單體組成一個重復單元的均聚物,因此只有一個Tg。而嵌段或接枝共聚物情況就復雜多了。
(2)交聯
隨著交聯點的增加,高聚物自由體積減少,分子鏈的運動受到約束的程度也增加,相鄰交聯點之間平均鏈長變小,所以Tg升高。
(3)分子量
分子量的增加使Tg增加,特別是在分子量很小時,這種影響明顯,當分子量超過一定的程度後,Tg隨分子量變化就不明顯了。
(4)增塑劑和稀釋劑
增塑劑對Tg的影響也是相當顯著的,玻璃化溫度較高的聚合物在加入增塑劑後,可以使Tg明顯下降。例如:純的聚氯乙烯Tg=78℃,在室溫下是硬塑料,加入45%的增塑劑後,Tg=-30℃,可以作為橡膠代用品。澱粉的玻璃化溫度在加水前後就有明顯的變化。