導航:首頁 > 污水知識 > 污水調試技術計算

污水調試技術計算

發布時間:2023-10-09 19:35:43

㈠ 【污水處理廠工藝流程設計計算】 污水處理廠基本流程

1概述

1.1 設計依據

本設計採用的主要規范及標准:

《城市污水處理廠污染物排放標准 (GB18918-2002) 》二級排放標准 《室外排水設計規范》(1997年版) (GBJ 14-87) 《給水排水工程概預算與經濟評價手冊》

1.2 設計任務書(附後)

2原水水量與水質和處理要求

2.1 原水水量與水質

Q=60000m3/胡攜d

BOD 5=190mg/L COD=360mg/L SS=200mg/L NH 3-N=45mg/L TP=5mg/L

2.2處理要求

污水排放的要求執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准:

BOD 5≤30mg/L COD≤100mg/L SS≤30mg/L NH 3-N ≤25(30)mg/L TP≤3mg/L

3污水處理工藝的選擇

本污水處理廠水質執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准,其污染物的最高允許排放濃度為:BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L;TP ≤3mg/L。

城市污水中主要污染物質為易生物降解的有機污染物,因此常採用二級生物處理的方法來進行處理。

二級生物處理的方法很多,主要分兩類:一類是活性污泥法,主要包括傳統活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延時活性污泥法(氧化溝)、AB 工藝、A/O工藝、A 2/O工藝、SBR 工藝等。另一類是生物膜法,主要包括生物濾池、生物轉盤、生物接觸氧化法等工藝。任何工藝都有其各自的特點和使用條件。

活性污泥法是當前使用比較普遍並且有比較實際的參考數據。在該工藝中微生物在處理單元內以懸浮狀態存在,因此與污水充分混合接觸,不會產生阻塞,對進水有機物濃度的適應范圍較大,一般認為BOD 5在150—400 mg/L之間時,都具有良好的處理效果。但是傳統活性污泥處理工藝在處理的多功能性、高效穩定性和經濟合理性方面已經難以滿足不斷提高的要求, 特別是進入90年代以來, 隨著水體富營養化的加劇, 我國明確制定了嚴格的氨氮和硝酸鹽氮的排放標准, 從而各種具有除磷、脫氮功能的污水處理工藝:如 A/O工藝、A 2/O工藝、SBR 工藝、氧化溝等污水處理工藝得到了深入的研究、開發和廣泛的應用, 成為當今污水處理工藝的主流。

該地的污水中BOD 5 在190 mg/L左右, 要求出水BOD 5低於30mg/L。在出水的水質中,

不僅對COD 、BOD 5、SS 去除率都有較高的要求, 同時對氮和磷的要求也進一步提高. 結合具體情況在眾多的污水處理工藝中選擇了具有良好脫氮除磷效果的兩種工藝—CASS 工 藝和Carrousuel 氧化溝工藝進行方案技術經濟比較。

4污水處理工藝方案比選

4.1 Carrousuel氧化溝工藝(方案一)

氧化溝時二十世紀50年代由荷蘭的巴斯維爾開發,後在歐洲、北美迅速推廣,80年代中期,我國部分地區也建造了氧化溝污水處理工程。近幾年來,處理廠的規模也發展到日處理水量數萬立方米的工業廢水及城市污水的大、中型污水處理工程。

氧化溝之所以能在近些年來褲孝伏得到較快的發展,在於它管理簡便、運行穩定、流程簡單、耐慎局沖擊負荷、處理效果好等優點,特別是氧化溝具有特殊的水流混合特徵,氧化

溝中的曝氣裝置只設在某幾段處,溶解氧濃度較高,理NH 3-N 效果非常好,同時由於存在厭氧、好氧條件,對污水中的磷也有一定的去除率。

氧化溝根據構造和運行方式的不同,目前較多採用的型式有「Carrousel 型氧化溝」、「Orbal 型氧化溝」、「一體化氧化溝」和「交替式氧化溝」等,其中,由於交替式氧化溝要求自動化水平較高,而Orabal 氧化溝因水深較淺,佔地面積較大,本報告推選Carrousel 氧化溝作為比選方案之一。

本設計採用的是Carrousel 氧化溝工藝. 其工藝的處理流程圖如下圖4-1所示: `

圖4-1 Carrousel氧化溝工藝流程圖

4.1.1污水處理系統的設計與計算

4.1.1.1進水閘門井的設計

進水閘門井單獨設定, 為鋼筋混凝土結構。設閘門井一座, 閘門的有效面積為1.8m 2, 其具體尺寸為1.2×1.5 m,有效尺寸為1.2 m×1.5 m×4.5 m。設一台矩形閘門。當污水廠正常運行時開啟, 當後序構築物事故檢修時, 關閉某一閘門或者全部關閉, 使污水通過超越管流出污水處理廠。

4.1.1.2 中格柵的設計與計算

其計算簡圖如圖4-2所示

(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.02m,格柵傾角α=60°,建議格柵數為2,一備一用。

Q max sin α0. 652⨯sin 60

=≈68個 n =

Nbhv 0. 02⨯0. 5⨯0. 9

(2)格柵寬度:設柵條寬度S=0.01m,

B=S(n-1)+bn=0.01×(68-1)+0.02×68=2.03≈2.00m

(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.60m,其漸寬部分的展開角

α1=20(進水渠道內的流速為0.82m/s),

l 1=

B -B 12. 0-1. 6

=≈0.56m 2tg α12tg 20



(4)柵槽與出水渠道連接處漸窄部分的長度:

l 2=

l 10. 56==0.28m 22

(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),

2

⎛S ⎫v h 1=β ⎪sin αK

b 2g ⎝⎭

4

3

0. 92⎛0. 01⎫

sin 600⨯3 =2. 42 ⎪⨯

19. 6⎝0. 02⎭

43

=0.103m

(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,

H =h +h 1+h 2=0.5+0.103+0.3≈0.9m

(7)柵槽總長度:

L =l 1+l 2+0. 5+1. 0+

H 1



tg 60

0. 5+0. 3

=2.8m

tg 60

=0. 56+0. 28+0. 5+1. 0+

(8)每日柵渣量:在格柵間隙為20mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,

W =

Q max W 1⨯864000. 652⨯0. 07⨯86400

=3. 29m 3/d>0.2 m3/d =

1. 2⨯1000K Z ⨯1000

宜採用機械清渣。

圖4-2 格柵計算示意圖

4.1.1.3細格柵的設計與計算

其計算簡圖如圖4-2所示

(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.006m,格柵傾角α=600,格柵數為2。

Q max 0. 652⨯sin 60

=≈109個 n =

Nbhv 2⨯0. 006⨯0. 5⨯0. 9

(2)格柵寬度:設柵條寬度S=0.01m,

B=S(n-1)+bn=0.01×(109-1)+0.006×109=1.73≈1.75m

(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.6m,其漸寬部分的展開角α1=20

(進水渠道內的流速為0.82m/s),

l 1=

B -B 11. 75-1. 60

=≈0.22m 2tg α12tg 20

(4)柵槽與出水渠道連接處漸窄部分的長度:

l 2=

l 10. 22

==0.11m 22

(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),

2

⎛S ⎫v h 1=β ⎪sin αK

b 2g ⎝⎭

4

3

0. 92⎛0. 01⎫

sin 600⨯3 =2. 42 ⎪⨯

19. 6⎝0. 006⎭

43

=0.51m

(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,

H =h +h 1+h 2=0.5+0.3+0.51≈1.3m (7)柵槽總長度:

L =l 1+l 2+0. 5+1. 0+

H 1

tg 60

0. 5+0. 3

=2.41m

tg 60

=0. 22+0. 11+0. 5+1. 0+

(8)每日柵渣量:在格柵間隙為6mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,

W =

Q max W 1⨯864000. 652⨯0. 07⨯86400

=1. 65m 3/d>0.2 m3/d =

2⨯1. 2⨯1000K Z ⨯1000

宜採用機械清渣。

4.1.1.4 曝氣沉砂池的設計與計算

本設計採用曝氣沉砂池是考慮到為污水的後期處理做好准備。建議設兩組沉砂池一備一用。其計算簡圖如圖4-3所示。具體的計算過程如下:

(1)池子總有效容積:設t=2min,

V=Q max t ×60=0.652×2×60=78 m3

(2)水流斷面積:

A=

Q max 0. 652

==9.31m2 0. 07v 1

沉砂池設兩格,有效水深為2.00m ,單格的寬度為2.4m 。

(3)池長:

V 78L===8.38m,取L=8.5 m A 9. 31

(4)每格沉砂池沉砂斗容量:

V 0=0.6×1.0×8.5=5.1 m

(5)每格沉砂池實際沉砂量:設含砂量為20 m3/106 m3污水,每兩天排一次,

3

20⨯0. 652

⨯86400⨯2=1.13〈5.1 m3

6

10⨯2

(6)每小時所需空氣量:設曝氣管浸水深度為2.5 m,查表得單位池長所需空氣量為28 m3/(m·h),

q=28×8.5×(1+15%)×2=547.4 m3

圖4-3 曝氣沉砂池計算示意圖

4.1.1.5 厭氧池的設計與計算

4.1.1.5.1 設計參數

設計流量為60000 m3/d,設計為兩座每座的設計流量為30000 m3/d。 水力停留時間:

T =2h 。

污泥濃度:

X =3000mg/L

污泥迴流液濃度:

V 0"=

X R =10000 mg/L

4.1.1.5.2 設計計算 (1)厭氧池的容積:

V =QT =30000×2/24=2500 m3

(2)厭氧池的尺寸:

水深取為h =5,則厭氧池的面積:

V 2500A ===500 m2。

h 5

厭氧池直徑:

D =

4A

π

=

4⨯500

=25 m。 3. 14

考慮0.3的超高,故池總高為H =h +0. 3=5.3 m。 (3)污泥迴流量的計算 迴流比計算:

R =

X

=0.42

X R -X

污泥迴流量:

Q R =RQ =0.42×30000=12600 m/d

4.1.1.6 Carrousel氧化溝的設計與計算

氧化溝,又被稱為循環式曝氣池,屬於活性污泥法的一種。見圖4-4氧化溝計算示3

4.1.1.6.1設計參數

設計流量Q=30000m3/d設計進水水質BOD 5=190mg/L; COD=360mg/L;SS=200mg/L;NH 3-N=45mg/L;污水水溫T =25℃。

設計出水水質BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L; TP ≤3mg/L。

污泥產率系數Y=0.55; 污泥濃度(MLSS )X=4000mg/L;揮發性污泥濃度(MLVSS )X V =2800mg/L; 污泥齡θc =30d; 內源代謝系數K d =0.055. 4.1.1.6.2設計計算

(1)去除BOD

氧化溝出水溶解性BOD 濃度S 。為了保證沉澱池出水BOD 濃度S e ≤30mg/L,必須控制所含溶解性BOD 濃度S 2,因為沉澱池出水中的VSS 也是構成BOD 濃度的一個組成部分。

S=Se -S 1

S 1為沉澱池出水中的VSS 所構成的BOD 濃度。

S 1=1.42(VSS/TSS)×TSS ×(1-e-0. 23⨯5) =1.42×0.7×20×(1-e-0. 23⨯5)

=13.59 (mg/L)

S=20-13.59=6.41(mg/L)

好氧區容積V 1。好氧區容積計算採用動力學計算方法。

V 1=

Y θc Q (S 0-S )

X V (1+K d θc )

=

0. 55⨯30⨯30000⨯(0. 16-0. 00641)

2. 8⨯(1+0. 055⨯30)

=10247m 3

好氧區水力停留時間:t=剩餘污泥量∆X

Y

∆X=Q (S 0-S ) +Q (X 0-X 1) -QX e

1+K d θc

V 110247⨯24==8.20h

30000Q

=2096(kg/d)

去除每1kgBOD 5所產生的干污泥量=

∆X

=0.499(kgD S /kgBOD5)。

Q (S 0-S )

(2)脫氮

需氧化的氨氮量N 1。氧化溝產生的剩餘污泥中含氮率為12.4%,則用於生物合成的總氮量為:

0. 124⨯769. 93⨯1000N 0==3.82(mg/L)

25000

需要氧化的氨氮量N 1=進水TKN-出水NH 3-N-生物合成所需要的氨N 。

N 1=45-15-3.82=26.18(mg/L)

脫氮量NR=進水TKN-出水TN-生物合成所需要的氨N=45-20-3.82=21.18(mg/L) 脫氮所需要的容積V 2

脫硝率q dn(t)= qdn(20)×1.08(T-20)=0.035×1.08(14-20)=0.022kg 脫氮所需要的容積:

V 2=

脫氮水力停留時間t 2:

QN r 30000⨯21. 18

==10315 m3 q dn X v 0. 022⨯2800

t 2 =

氧化溝總體積V 及停留時間t:

V 2

=8.25 h Q

V=V1+V2=10247+10315= 20562m3

t=V/Q=16.45 h

校核污泥負荷N =

QS 025000⨯0. 16

==0.083[kgBOD 5/(kgMLVSS ∙d )] XV 2. 8⨯17135

(3)氧化溝尺寸:取氧化溝有效水深為5m ,超高為1m ,氧化溝深6m 。

V

=20562/5=4112.4m 2 h

單溝寬10m ,中間隔牆寬0.25m 。則彎道部分的面積為:

2⨯10+0. 2523π()

3⨯10+3⨯0. 252A 1=+() π⨯10=965.63m

22

直線段部分的面積:

氧化溝面積為A=

A 2=A -A 1 =4112.4-965.63=3146.77 m2

單溝直線段長度:

L=

A 23146. 77

==78.67m ,取79m 。 4⨯104⨯b

進水管和出水管:污泥迴流比R=63.4%,進出水管的流量為:Q 1=(1+R ) Q =1.634×

30000m /d=0.568 m /s,管道流速為v =1.0m/s。

3

3

則管道過水斷面:

A=

管徑d=

Q 0. 568==0.568m 2 v 1

4A

π

=0.850m, 取管徑850mm 。

校核管道流速:

v=

(4)需氧量

Q

=0.94m A

實際需氧量:

AOR=D1-D 2-D 3+D4-D 5

去除BOD 5需氧量:

D 1=a "Q (S 0-S ) +b "VX =7754.03(kg/d) (其中a "=0.52,b "=0.12)

剩餘污泥中BOD 5需氧量:

D 2=1. 42⨯∆X 1=1131.64(kg/d)

剩餘污泥中NH 3-N 耗氧量:

D 3=4. 6⨯0. 124⨯∆X =454.57(kg/d) (0.124為污泥含氮率)

去除NH 3-N 的需氧量:

D 4=4.6×(TKN-出水NH 3-N )×Q/1000=3450(kg/d)

脫氮產氧量:

D 5=2.86×脫氮量=1514.37(kg/d)

AOR= D1-D 2-D 3+D4-D 5=8103.45(kg/d)

考慮安全系數1. 2,則AOR=8103.45×1. 2=11344.83(kg/d) 去除每1kgBOD 5需氧量=

AOR

Q (S 0-S )

11344. 83

25000⨯(0. 16-0. 00641)

=

=2.95(kgO 2/kgBOD5)

標准狀態下需氧量SOR

SOR=

AOR ∙C S (20)

α(βρC S (T ) -C ) ⨯1. 024

(T -20)

(C S (20)20℃時氧的飽和度,取9.17mg/L;T=25℃;C S(T)25℃時氧的飽和度,取 8.38mg/L;C 溶解氧濃度,取2 mg/L;α=0.85;β=0.95;ρ=0.909)

SOR=

11344. 83⨯9. 17

=20764.89(kg/d) (25-20)

0. 85⨯(0. 95⨯0. 909⨯8. 38-2) ⨯1. 024

∆SOR

=5.41(kgO 2/kgBOD5)

Q (S 0-S )

去除每1kgBOD 5需氧量=

曝氣設備的選擇:設兩台倒傘形表面曝氣機,參數如下: 葉輪直徑:4000mm ;葉輪轉速:28R/min;浸沒深度:1m ; 電機功率:210KW ;充氧量:≥2.1kgO 2/(kW·h)。

4.1.1.7二沉池的設計與計算

其計算簡圖如圖4-5所示

4.1.1.7.1設計參數

Q max =652 L/s=2347.2 m 3/h;

氧化溝中懸浮固體濃度 X =4000 mg/L;

二沉池底流生物固體濃度 X r =10000 mg/L;

污泥迴流比 R=63.4%。

4.1.1.7.2 設計計算

(1) 沉澱部分水面面積 F 根據生物處理段的特性,選取二沉池表面負荷q=0.9m3 /(m2·h), 設兩座二次沉澱池 n =2.

F =Q max 2347. 22==1304(m) nq 2⨯0. 9

(2)池子的直徑 D

D =4F

π=4⨯1304

π=40. 76(m),取D =40m 。

(3)校核固體負荷G

24⨯(1+R ) QX 24⨯(1+0. 634)⨯30000⨯4000G == F 1304

=141.18 [kg/(m2·d)] (符合要求)

(4) 沉澱部分的有效水深h 2 設沉澱時間為2.5h 。

h 2=qt =0.9×2.5=2.25 (m)

(5) 污泥區的容積V

V =2T (1+R ) QX 2⨯2⨯(1+0. 634) ⨯30000⨯4000 =24⨯(X +X r ) 24⨯(10000+4000)

=1945.2 (m3)

(6)污泥區高度h 4

污泥斗高度。設池底的徑向坡度為0.05,污泥斗底部直徑D 2=1.6m,上部直徑D 1=4.0m,傾角為60°,則:

"= h 4D 1-D 24. 0-1. 6⨯tg 60°=2.1(m) ⨯tg 60°=22

11

V 1=2)πh 1"⨯(D 12+D 1D 2+D 2

12=13.72 (m3)

圓錐體高度

""=h 4D -D 140-4⨯0. 05=0.9(m) ⨯0. 05=22

V 2=

=

豎直段污泥部分的高度 ""πh 412⨯(D 2+DD 1+D 12) ⨯(402+40⨯4+42) =418.25(m3) π⨯0. 912

"""=h 4V -V 1-V 21945. 2-13. 72-418. 25==1.16(m) 1304F

"+h 4""+h 4"""=2.1+0.9+1.16=4.16(m) 污泥區的高度h 4=h 4

沉澱池的總高度H 設超高h 1=0.3m,緩沖層高度h 3=0.5m。

則 H =h 1+h 2+h 3+h 4=0.3+2.25+0.5+4.16=7.21m

取H =7.2 m

4.1.1.8接觸池的設計與計算

採用隔板式接觸反應池。其計算簡圖如圖4-5所示。

水力停留時間:t=30min

12

平均水深:h =2.4m。

隔板間隔:b=1.5m。

池底坡度:3%

排泥管直徑:DN=200mm。

4.1.1.8.2設計計算

接觸池容積:

V =Qt =0.652×30×60=1174 m 3

水流速度:

v =Q 0. 652==0. 18 m/s hb 2. 4⨯1. 5

表面積:

Q 1174==489. 2 m2 h 2. 4

廊道總寬度:隔板數採用10個,則廊道總寬度為B=11×b=11×1.5=16.5m。 接觸池長度:

F 489. 2L ===29.6m取30m 。 B 16. 5

水頭損失,取0.4m 。 F =

13

㈡ 求一份污水處理的混凝沉澱池的設計和計算說明

您好朋友,關於污水處理的混凝悶棚沉澱池一般採用機械化混凝沉澱方式,具有處理效率高、處理效果好等優點。

下面是一份設計和計算說明:1. 混凝沉澱池設計參數(1)水流量:根據實際需要確定。(2)總容積:根據水流量及停留時間計算得出。(3)單位容積產污量:由實測數據得出。(4)投加葯劑量:按照葯劑廠家提供的使用說明進行決定。2. 混凝沉澱池計算公式(1)初始水質指數SSi = 實際投加的SS濃度 x 1000 ÷ 總容積(2)最終水質指數SSf = (初始水質指數 - SS去除率) ÷ (1 - SS去除率)(3)單位容積去除污染物量Q = 單位容積產生污染物量 - 單位容積余留污染物量其中,SS為懸浮物濃度。3. 設備配置和操作說明(1)設備配置:混凝沉澱池包括進水口、出水口、配葯桶、加葯泵、調節器等設備。(2)操作說明:① 確定處理水的流量和污染物質量,計算出混凝沉澱池的總容積。② 通過進水口將污水引仔老入混凝沉澱池中,並在進水口處添加葯劑進行混合。③ 經過一段時間後,待污物沉澱到底部,清除上層清水。④ 根據需要反復進行第3步操作,直至達到處理效果。以上是混凝沉澱池的基本設計和操作說明,具體參數應根據實際情況進行調整。

混凝沉澱池設計中,常用的攪拌機轉速、流速、流量和停留時間等參數計算公式如下:

1. 攪拌機轉速:通常根據污水中固體顆粒物的大小和濃度來確定,較大的顆粒物需要較強的攪拌力才能將其懸浮在水中。一般來說,攪拌機轉速可根據下面的公式進行初步估算:
n = (P/V)0.33
其中,n為攪拌機轉速,單位為rpm;P為攪拌功率,單位為W;V為混凝池容積,單位為m³。

2. 流速和流量:可以根據處理要求和混凝池的尺寸確定。一般來說,設計時應保證廢水在混凝池內停留的時間足夠長,並且廢水流速不宜過快。常用的公式包括:

Q = AVC
其中,Q為廢水流量,單位為m³/h;A為混凝池截面積,單位為m²;V為廢水在混凝池內停留時間,單位為h;C為廢水污染物濃度,單位為mg/L。

3. 停留時間:通常根據混凝池的尺寸和處理要求進行確定。一般情況下,停留時間應滿足污水中懸浮物和顆粒物沉降的時間,並保證葯劑充分反應。常用的公式包括:

V = Q × t
其中,V為混凝池容積,單位為m³;Q為廢水流量,單位為m³/h;螞戚則t為停留時間,單位為h。

需要注意的是,這些公式只是初步估算或計算混凝沉澱池中某一參數值的方法,在實際設計中需要結合具體情況進行綜合考慮和調整。如果您需要深入了解具體設計方案,請咨詢專業的工程師或企業進行咨詢。

感謝您的信任,以上是我的回復,希望可以幫助到您,有用的話還請記得點贊關注哦,祝您生活愉快~️

㈢ 污水處理控制排泥量各種計算公式

1剩餘污泥量計算方法
在活性污泥工藝中,為維持生物系統的穩定,每天需不斷有剩餘污泥排出。它們主要由兩部分構成,一是由降解有機物BOD所產生的污泥增殖,二是進水中不可降解及惰性懸浮固體的沉積。因此,剩餘干污泥量可以用式(1)計算:
ΔX=(Y1+Kdθc)Q(BODi-BODo)+fPQ(SSi-SSo)(1)
式中ΔX———系統每日產生的剩餘污泥量,kgMLSS/d;
Y———污泥增殖率,即微生物每代謝1kgBOD所合成的MLVSSkg數;
Kd———污泥自身氧化率,d-1;
θc———污泥齡(生物固體平均停留時間),d;
Y1+Kdθc———污泥凈產率系數,又稱表觀產率(Yobs);
Q———污水流量,m3/d;
BODi,BODo———進、出水中有機物BOD濃度,kgBOD/m3;
fP———不可生物降解和惰性部分佔SSi的百分數;
SSi,SSo———進、出水中懸浮固體SS濃度,kgSS/m3。
德國排水技術協會(ATV)制訂的城市污水設計規范中給出了剩餘污泥量的計算表達式[1]。此式與式(1)本質相同,只是更加細致,考慮了活性污泥代謝過程中的惰性殘余物(約占污泥代謝量的10%左右)及溫度修正。綜合污泥產率系數YBOD(以BOD計,包含不可降解及惰性SS沉積項)寫作:
YBOD=0 6×(1+SSiBODi)-(1-fb)×0 6×0 08×θc×FT1+0 08×θc×FT(2)
FT=1 702(T-15)(3)
式中fb———微生物內源呼吸形成的不可降解部分,取值0 1;
FT———溫度修正系數。
比較(1),(2)兩式,可知在ATV標准中動力學參數Y,Kd分別取值0.6和0.08d-1,進水中不可降解及惰性懸浮固體(fP部分)占總進水SS的60%。由於剩餘污泥中揮發性部分所佔比例與曝氣池中MLVSS與MLSS的比值大體相當,因此剩餘干污泥量也可以表示成下式:
ΔX=YobsQ(BODi-BODo)f(4)
式中f=MLVSSMLSS;其他符號意義同前。
式(4)與式(1)是一致的,均需確定Yobs。

㈣ 污水處理中MLSS如何計算

污泥齡=1/aF-b,其中a、b可以取值,分別為污泥的增值系數和自生氧化率,F為污泥負荷。

MLSS,混合液污泥濃度,它表示的是在曝氣池單位容積混合液內所含有的活性污泥固體物的總重量(mg/L)。由於測定方法比較簡便易行,此項指標應用較為普遍混合液懸浮固體濃度MLSS是活性污泥處理系統重要的設計運行參數。

MLSS太高則說明生化池中的活性污泥過剩,超出生化處理的需求,在反應池後面的沉澱池中進行固液分離時過剩的污泥會影響出水水質,所以MLSS不能太高。

MLSS太低,說明生化池中的污泥負荷不夠,對於污水中的污染物的處理強度就會差了些,出水水質中的各項標准也會不達標,所以MLSS不能太低。而一般設計時不用純MLSS的值去衡量,而是MLVSS/MLSS的值。

(4)污水調試技術計算擴展閱讀:

混合液懸浮固體中的有機物量稱為混合液體揮發性懸浮固體以MLVSS(mg/l)表示,對一定的廢水而言,MLVSS與MLSS有一定的比值,例如生活污水的比值為0.7左右。

混合液懸浮固體濃度,也稱混合液污泥濃度,是計量曝氣池中活性污泥數量的指標。MLSS是具有活性的微生物(Ma)、微生物自身氧化的殘留物(Me)、吸附在污泥上不能被生物降解的有機物(Mi)和無機物(Mii)四者的總量。

MLSS:單位容積混合液內含活性污泥固體物質的總量(mg/L),MLVSS指混合液揮發性懸浮固體。生活污水一般MLVSS/MLSS=0.7。測MLSS需要定量濾紙(不能用定性的)、電子分析天平、烘箱、乾燥器等。

取100ml混合液用濾紙過濾,待烘箱中溫度升到103-105之間的設定值後,將濾干後的濾紙放入烘箱烘2小時,取出置於乾燥器中放置半小操作時。稱量後減去濾紙重量,並且測濾紙的重量也要採用上述同樣的步驟。該實驗必須嚴格按照上述操作,否則會入偏差。

㈤ 污水管道利用水力計算圖進行水力計算的方法有哪些

污水管道水力計算的方法(圖表法):
根據所選管材,使用相應粗糙系數(n)的水力回計算圖答表;
根據設計流量(Q),初步確定管徑(D);
使用相應管徑(D)的水力計算圖表進行水力計算;
設定1個未知參數(I,v,h/D),求定另外2個:
坡度(I)控製法――盡量採用最小設計坡度,減小埋深;
流速(v)控製法――流速逐段增大,參照上段流速;
充滿度(h/D)控製法――盡量採用最大允許充滿度,以降低工程造價

㈥ 生活污水處理廠調試的時候污泥投加量的計算

生活,食品類,容易處理的污水,好氧池建議投加城市生活污水處理廠的脫水污泥(內容10%的含固率)10%-15%,絕干污泥投加量在1-1.5kg/每噸水。工業類可考慮投加類似污水處理行業的活性污泥,絕干污泥投加量在1-1.5kg/每噸水。若沒有條件,也可投加城市生活污水處理廠的脫水污泥,絕干污泥投加量建議在2-2.5kg/每噸水。

㈦ 好氧池污泥調試時需要投加多少量污泥如何計算

一、採用干污泥(壓濾機壓出污泥)接種法
保證生化池中的污泥濃度在3000mg/L左右,即3Kg/m3,由於干污泥的含水率一般在75%-80%左右,也就是含泥量約為20%。因此至少應向曝氣池內投加干污泥的量為3÷20%=15Kg/m3,即100m3的池子中應投加干污泥為15kg/m³×100m³=1500kg左右。優選為沒有加絮凝劑的污泥。
主要優點:投加數量較少,運輸方便。缺點:一般加有絮凝劑,不利於培養。
二、採用現有活性污泥培養
採用吸污車,到現有污水處理廠的污泥池去抽泥水混合物,一般抽吸的泥水混合物量為調試項目池子容積的60%左右,如池子容積100m³,則抽吸60m³左右。當池子進水達到100%容積後,污泥濃度約為3000mg/L。
優點:無添加葯劑,馴化更為快速。 缺點:體積較大,來回運輸成本較大。
三、採用濃縮污泥培養
按整個生化池總容積5-10%,一般按5%投加(即投完污泥後,污泥靜止後占污水的5%,此為靠自然沉澱的濃縮污泥,含水量接近100%)。
例如:生化池容積100m3,
濃縮污泥投加量為:
100×5%=5m3(濃縮污泥)

㈧ 城市污水處理廠的系統調試與設計


城市污水處理廠的系統調試與設計是非常重要的,設計的每個細節都會影響最後的使用,每個環節的處理都很關鍵。中達咨詢就城市污水處理廠的系統調試與設計和大家說明一下。
目前我國已經建設了大量的城鎮污水處理廠,其中較多城鎮污水處理廠採用A2/O工藝,通過對豹澥污水處理廠的設計、施工以及調試全過程參與,提出合理化建議和改進措施,為設計、施工監管、調試提供一些經驗,也為城鎮污水處理廠的良好運營創造條件。對設計、施工、調試及運營提供四位一體的思路具有較重要的參考價值和啟示意義。
1 工程概況
豹澥污水處理廠一期工程建設規模為7×104m3/d,遠期規模為22×104m3/d。污水處理廠廠址位於光谷七路與高新三路交匯處東北側,總控制用地面積為18ha(270畝),其中一期工程用地5.9公頃(88.5畝)。污水處理廠出水達到《城鎮污水處理廠污染物排放標准》(GB18918-2002)一級A標准,並經專用尾水出江管道排往長江。
2 設計進出水水質及工藝流程
2.1設計進出水水質
該污水處理廠服務區域的規劃定位為高新技術產業開發區,主要入駐企業以光電子信息產業、生物工程與新醫葯為主。污水處理廠出水水質達到《城鎮污水處理廠污染物排放標准》(GB 18918--2002)中的一級A標准。
2.2工藝流程
該污水處理廠採用設置選擇段的多點進水A2/O-微絮凝過濾工藝,工藝流程如圖所示
進水
3 各環節的銜接
3.1前處理部分
粗格柵及細格柵在來水渣量較小時,根據格柵前後的液位差啟停周期較長,但在格柵前面聚集有較多浮渣,因此在單機調試時,調整為根據時間間隔自動運行,時間間隔根據渣量情況進行調整。同時取消格柵前後的超聲波液位差計,可減少維護量和降低投資。
在初期污水量較小時,按照等水量配備提升泵。即使僅啟動一台提升泵,且將頻率調到低限,提升泵也僅能運行10分鍾左右就會降到低液位,造成頻繁啟停水泵,運行管理非常麻煩。對於初期水量較小的污水處理廠,設計盡量考慮大小泵進行匹配,必要時同時考慮進行變頻調節。從調試時發現,水量較小時,在集水井內非常易於沉積泥砂,且污水處理廠的集水井的泥砂非常難以清理。設計時應考慮在提升泵出口設置沖洗旁路和引用曝氣沉砂池風機的風管到集水井,對集水井定期進行沖洗,將泥砂提升到沉砂池進行處理。同時沉砂池至少為兩系列,在事故時,也易於在不停機的條件下進行檢修清砂。
根據《城鎮給水排水技術規范》要求,進水應進行水質監測。水質監測的自動取樣儀的取樣口設於細格柵之前,隨著運行時間的延長,取樣管的吸口經常會被大的雜質堵塞,影響自動取樣儀正常運行。經細格柵攔截後的污水中大顆渣大大減少,因此,在設計時,應考慮將自動取樣儀取樣點設於細格柵之後。
在調試曝氣沉砂池設備時,主要檢查除砂機的運行平穩性。在設備沿軌道運行過程中,會出現軌道跳培卜躍的現象,經過分析認為,每條軌道一般由幾段組成,兩條軌道的幾段不易平行,造成除砂機行進時跑偏,軌道輪在自行調整情況下,出現抖動現象。在《城市污水處理廠工程質量驗收規范》對兩軌中心距、兩軌頂面高差、軌道接頭錯位進行了安裝誤差要求,但對每一根軌道配鎮穗的直線特性沒有規定,因此應在設計的安裝圖中增加相關部分的安裝誤差要求。在發現該現象後,可以通過調整每條軌道的直線特性而得以解決。如果設計採用將軌道與埋件直接連接的方式,則無法進行下一步的處理;因此建議設計應要求設備軌道採用壓板的連接方式,方便設備調試進行調整。
在調試過程中,粗、細格柵的柵渣都非常易於掉落到輸送設備之外,通過現場調整,發現格柵落渣區域大於輸送設備的寬度,無論如何調整,都不能保證將柵渣完全收集。增加一條柔性收集板,將格柵出渣口下沿與輸送設備銜接。但設備一般並不配帶該柔性收集板,因此建議設計時就要充分考慮。
在安裝和調試閘門及堰門類設備時,施工及調試人員易產生閘門、堰門不用檢查、調試的想法,經常忽略閘門及堰門的安裝和調試。造成閘門軌道旅運安裝的精度不能滿足要求,甚至左右兩條軌道偏差巨大,隨著閘門的提升,閘板甚至跳出軌道;或者在閘板啟閉過程中,閘板隨著軌道逐步傾斜,造成閘板卡在軌道內,增加開啟難度。閘門軌道槽在閘門安裝完畢後,導軌旁的密封不到位,漏水嚴重,影響閘門使用功能。而設計要求採用二次灌漿方式密封,因預留導軌兩側的空間偏小,無法良好處理。建議設計應在導軌兩側留足100~150mm的空間進行二次灌漿。
3.2生化處理部分
該工程採用多點配水改良A2/O生化處理工藝。生化池選擇區、厭氧段、缺氧段採用立式渦流攪拌機進行攪拌,好氧區採用無終端循環流池型,內設管式微孔曝氣器進行曝氣。分別在選擇區、厭氧段、缺氧段設置不銹鋼堰門,通過調節各區域堰門開度調整各處理單元進水量。
該工程的調節堰門長度有3.5m、2.5m、1.5m三種規格,材質均為SS304,採用手動啟閉機啟閉。安裝過程中,發現堰長3.5m的堰門,與池壁不能很好吻合。調查分析發現,與調節堰接觸的3.5m長的牆面存在不平整現象;預埋埋件時,該組埋件表面平整度未控制;同時供貨設備因長度較長,在生產及運輸過程中易產生邊形。以上幾方面原因造成安裝完成後,進行清水聯調時,幾台堰門根本無法形成有效的密封,進水量較小的情況下,進水都從堰門旁滲入生化池內。通過調整堰門的橡膠密封高度,重新對門框與埋件之間的空隙進行二次灌漿。處理後,堰門的滲漏大大減小,但仍不能滿足最大正向工作水頭時泄漏量≤1.25L/min·m,對運行控製造成影響。工藝設計對結構專業應有相關平整度、垂直度要求,則能很好的實現專業銜接。在實際操作過程中發現,寬度超過2m的堰門不易控制閘門的垂直度,垂直度調整好以後,啟閉幾次垂直度就會改變,造成閘板傾斜,啟閉不順暢。從現場運行情況看,在調整各堰門開度時,一般根據操作人員的經驗進行調整,實際控制誤較大。設計應在堰門板旁用醒目的標識漆標上精度為cm的水位刻度,可為操作人員帶來便利。同時在設計過程中應充分利用堰門500mm的可調高度,將進水堰門的寬度減小,減小利用水位刻度計算出水量誤差。採取該措施後,可降低由於堰門太長造成的設備變形的風險以及減小結構施工誤差對設備安裝的影響。
3.3二沉池
該污水處理廠採用周進周出的輻流式二沉池,在調試過程中極易出現出水不均勻現象,運行過程中出現厭氧污泥漂浮現象。除了在運行過程加強排泥措施外,施工和單機調試過程同樣要對下面進行關注。
(1)輻流式二沉池的圓度要密切關注,控制在規范要求的范圍內,否則太大的誤差,造成吸泥管與池周的間距變化太大,甚至需要切除部分排泥管。
(2)輻流式二沉池全池底面的水平誤差控制在5cm以內,基本能夠通過刮泥機調節到位,但超過該數值,達到10cm時,必然影響排泥管的坡度,造成排你不暢,最終造成運行時,產生厭氧現象。
(3)出水不均勻,主要是由於出水堰安裝精度不滿足要求。在現場調試式,採用先初調水平度,在滿水實驗時,將水位調控到出水水位,進行二次精調,現場調試表明,全池水平度精度可以控制在1mm以內,遠遠高於規范要求。
3.4結論
污水處理工程的成功運行,與設計、施工、調試及運行管理都有關系,只有在各個環節都要進行精細的工作,才能讓最終的運行管理更加方便。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

㈨ 污水處理工藝調試費如何計取

一、具體標准不知道,一般按照2%~4%
二、 根據實際情況:
1、電氣控制系統的復雜程度
控制系統越高級、在線儀表越多越貴。
2、工程工藝水質情況(有無專利技術、工業污水還是生活污水),
一般工業污水較生活污水貴;有專利技術的跟定貴,工藝越復雜、電器設備越多越貴。
3、是否包含菌種等情況的不同。
不同的污水菌種、需要的營養物質不同,價格也不同。
4、工程規模。
越大的工程比例越小
另外:施工單位兼職調試的一般價格比較低,相對配合等問題較少;缺點是施工中存在的問題容易被他們掩飾。
相對應的,設計單位或新找單位調試的一般價格較高,與施工單位的配合容易出現問題,協調起來比較麻煩,容易扯皮、調試周期相對較長。優點是施工單位施工的問題能更多的暴露出來。

對 比例的話是以直接取費(即直接投資土建、設備、安裝的總和)為基礎。

閱讀全文

與污水調試技術計算相關的資料

熱點內容
新疆除垢器批發 瀏覽:28
農村地下污水一般如何處理 瀏覽:667
純水加什麼祛斑最快 瀏覽:437
已知用j6經緯儀一測回測 瀏覽:602
反滲透膜費水 瀏覽:11
納濾實驗裝置 瀏覽:274
斯帝沃空氣凈化器什麼價格 瀏覽:161
山西金屬濾芯怎麼選 瀏覽:702
超濾膜濾芯使用後 瀏覽:476
重慶水垢過濾器 瀏覽:972
鮮時代凈水器濾芯怎麼換 瀏覽:710
基膜具有半透膜性質嗎 瀏覽:352
酸性電鍍廢水處理 瀏覽:173
凈化器油漬怎麼清洗 瀏覽:946
地下濾芯怎麼清洗 瀏覽:809
軟水機過濾後水是鹹的 瀏覽:726
電離子去汗管瘤疤掉後很紅 瀏覽:498
東風輕卡車空調濾芯怎麼拆 瀏覽:191
污水使魚生病英語怎麼說 瀏覽:45
超純水機水量下降怎麼辦 瀏覽:971