Ⅰ 請介紹一下脫色樹脂以及用途
脫色樹脂一般復是大孔離子制交換樹脂,由於種類和用途都很多,被廣泛應用在食品 醫葯行業如:中草葯有效成分脫色、氨基酸和生物鹼類物質的脫色、糖液脫色、果酸脫色。不同的樹脂應用在不同領域和行業,具體情況可以咨詢你生產廠家或供應商。
Ⅱ 用三氯化鐵處理工業污水的方法
三氯化鐵在環保污水處理中用作凈化絮凝劑;在飲用水處理中用作凈水劑;電子行業中用作線路板蝕刻劑;輕工行業用作不銹鋼製品的腐蝕;有機合成中用作二氯乙烷的催化劑;印染工業中用作靛藍染料的氧化劑和印染媒染劑;染料工業用作中間體原料;在醫葯制葯中用作催化的原料;在建築混凝土中滲入其溶液後能增加建築物強度、抗腐蝕性和防止滲水;三氯化鐵是生產甜菊糖的主要原料,在生產不溶性硫磺中作催化劑,也被大量用於電視機陰罩的生產。
產品特性
液體三氯化鐵是固體三氯化鐵的良好替代品,是城市污水及工業廢水處理的高效廉價絮凝劑,具有顯著的沉澱重金屬及硫化物、脫色、脫臭、除油、殺菌、除磷、降低出水 COD 及 BOD 等功效。與其它廢水處理絮凝劑相比具有如下特點:
1 、與固體三氯化鐵相比相同的濃度價格低 40% 以上,可完全替代固體三氯化鐵;
2 、本身為水溶液省去了固體絮凝劑配製溶液的繁瑣操作及溶解不完全的問題;
3 、可取代液體或固體硫酸鋁、聚合氯化鋁、聚合硫酸鐵等絮凝劑,處理成本與其相比可降低 30% 以上;
4 、絮凝性能優良,沉降速度高於鋁鹽系列絮凝劑如硫酸鋁、聚合氯化鋁等,且形成的礬花密實、沉降快、能減少跑礬花現象,使濾池反沖洗次數減少。
5 、處理後產生的污泥量少,可大大節省污泥處理費用;
6 、適應水體 pH 值范圍廣,在 pH 值 4 ~ 12 的寬范圍內均可使用,最佳使用 pH 值范圍 6~10 。
Ⅲ 陶瓷膜過濾
剛好不忙,剛好看到你的問題,讓我來回答你吧,不謝也別忘採納給分就行~~~
1, 按陶瓷膜過濾精度一般分為中孔膜(2nm<孔徑<50nm)、微孔膜(孔徑<2nm),這個區間屬具有專業技術門
檻的高端陶瓷膜膜。而精度50nm以上屬於大孔徑膜,技術門檻偏低,所以精度50nm-1200nm區間的通常又被劃分為低端陶瓷膜。
2, 目前2nm~50nm區間的國內已經很成熟,且可滿足大多數工業生產需求,成為主流區間。所以在實際應用中陶
瓷膜精度最高是2nm,再高就處於研究階段並未投入實際大生產應用。
3,關於陶瓷納濾膜應用領域就很廣了!也就是需要按行業劃分比較復雜,南京是國內最早做陶瓷膜的技術核心發源地,包括北京頗爾公司這方面也不錯,在植物提取、醫葯食品、石油化工、環保工程中很多領域都有成熟應用,像南京博濾工業公司採用「5nm陶瓷納濾膜技術「成功應用於洋姜菊粉提取領域中以提高企業生產效率,這種5nm陶瓷膜就很好地解決大孔徑陶瓷膜所帶來的」孔道污堵「問題,實現了系統連續穩定生產。可以說5納米陶瓷膜的成功應用在」植提「業內成為一項精品標桿項目,膜分離取代傳統生產工藝,也是未來必然趨勢。除了菊粉提取,林可黴素鹼化液純化、甜菊糖生產中的甜菊葉水提液脫色及純化、L-色氨酸脫色、苦蕎黃酮提取、右旋糖酐鐵脫鹽除雜、化纖工業鹼液回用、催化劑回收、納米粉體洗滌、有機溶劑脫水(達99.5%)等領域都已廣泛應用。這些都屬於陶瓷膜典型應用領域。如果你經常走訪大規模製造業,會發現太多行業領域都有膜分離的工藝足跡
Ⅳ 陶瓷膜過濾器都能應用在哪些領域
如果具體化應用,在項目中陶瓷膜過濾器應用已包括但不限於以下:
1,催化劑回收。解決了傳統工藝難以避免的催化劑浪費或進入下游工序影響產品品質問題。
2,納米粉體洗滌。如銀粉洗滌後電導率達到良好預期20μs以下,且運行穩定,可大大提高傳統人工生產效率。
3,高純溶劑脫水。如乙腈脫水可以達到99.5%,目前已是成熟穩定應用。還有醇類,醚類,酮類,酯類等。
4,用於油水分離。如煤化工油水分離領域,可以離水中的乳化油和超細催化劑顆粒,對於乳化油脫除率可以達到90%以上,而催化劑脫除率更是高達99%,都已經是成熟應用。
5,化纖工業鹼液回用。如化纖工業廢鹼液(半纖維素含量35-55g/L,NaOH含量180-220g/L),經陶瓷膜綜合工藝處理可回用也解決環保排放問題。
6,植物提取領域應用。如洋姜菊粉提取、藍莓花青素提取、紫薯花青素提取、苦蕎黃酮提取、甜菊葉中的甜菊糖提取、甘蔗青汁脫水純化(原糖、白糖)、羅漢果提取、葛根提取等。
7、生物醫葯發酵行業。林可黴素鹼化液純化、L-色氨酸脫色處理、右旋糖酐鐵脫鹽除雜以及蘇氨酸項目應用等。同時在現代抗生素工業生產中,還可替代傳統精製技術如吸附、沉澱、溶媒萃取、離子交換等。
8、氯鹼行業應用。在氯鹼行業鹽水精製工藝過程中,陶瓷膜應用有著傳統精製及過濾技術難以達到的優勢。還可以用於鹵水真空制鹽,所產的固體鹽品質高於澄清工藝產品,作為高品質食用鹽或氯鹼鹽使用。
9、新能源太陽能行業金剛線切割液的硅粉回收。這也是一項新的應用。回收了硅粉,為光伏企業帶來投資收益,同時還極大輔助解決了環保排放問題。
10、調味品保健酒、食品行業。如飲料行業、醬油、保健酒過濾澄清,以及骨湯澄清、濃縮等工藝應用。陶瓷膜超濾設備可直接處理醬油、食醋等調味品生產的原液,取代傳統多步過濾過程。
總之各類物料體系、涉及到的分離、濃縮、提取等生產工藝中都會用到陶瓷膜工藝,已經應用的應該只是一小部分,所以說陶瓷膜分離以後是大趨勢,取代傳統!
目前成熟度微孔陶瓷膜可以做到最高2nm孔徑,多用於研究院物料實驗如精細化除雜何濃縮。而2-50nm陶瓷納濾膜技術如眾所熟知的南京博濾工業可提供5nm膜管及成套膜分離設備已達到高穩定水平,成熟應用於工業生產和植物提取領域。以上全部,但建議樓主多查詢文獻資料,並結合走訪現場應用多做深入了解學習。
Ⅳ 甜菊糖的提取工藝
甜菊糖甙的提取是通過將甜葉菊干葉浸泡在水中,過濾將液體與葉、莖分離,進一步利用水或食品級酒精等進行提純——完全傳統的植物提取方法。從而得到一種可日常食用但不會影響血糖水平的純天然而且極甜的増甜劑——甜葉菊甙。
傳統的甜菊糖甙提取工藝如下:
這類工藝最大的缺點:1、生產時間長,生產中添加了大量有毒性的防腐劑(否則物料就會變質,部分甜菊糖會損耗掉);2、添加絮凝劑,絮凝下來的懸浮雜質及活性炭脫色吸收了部分的產品,甜菊糖收率降低;3、採用板框壓濾除掉絮凝劑等懸浮雜質,生產環境很差,生產環境很難達到食品添加劑生產要求;4、生產中離子交換和大孔樹脂的大量使用,耗費掉大量的水資源和化工原料資源,同時大量樹脂洗脫有毒的廢水很難用生化處理,給企業帶來沉重的經濟負擔和環保壓力。
上述機構包括:食品添加劑聯合專家委員會(JECFA),法國AN-SES(國家食品、環境及勞動衛生署),澳洲紐西蘭食品及標准管理局(FSANZ),美國食品和葯物管理局(FDA)和最近的歐洲食品安全局(EFSA)。
臨床前和臨床研究表明,甜葉菊提取物的使用,對於包括糖尿病患者,兒童和孕婦,以及副作用或過敏原因不明的人在內的一般人群,都是安全的。
Ⅵ 1、食品添加劑的品種很多,請列舉三種調味劑。2、污水處理中有哪些主要的化學方法
抗氧化劑
1.抗氧化劑的作用機理 抗氧化劑的作用機理是比較復雜的,存在著多種可能性。如有的抗氧化劑是由於本身極易被氧化,首先與氧反應,從而保護了食品。如VE。有的抗氧化劑可以放出氫離子將油脂在自動氧化過程中所產生的過氧化物分解破壞,使其不能形成醛或酮的產物如硫代二丙酸二月桂酯等。有些抗氧化劑可能與其所產生的過氧化物結合,形成氫過氧化物,使油脂氧化過程中斷,從而阻止氧化過程的進行,而本身則形成抗氧化劑自由基,但抗氧化劑自由基可形成穩定的二聚體,或與過氧化自由基ROO-。結合形成穩定的化合物。如BHA、BHT、TBHQ、PG、茶多酚等。 2.幾種常用的脂溶性抗氧化劑 (1)BHA:丁基羥基茴香醚。因為加熱後效果保持性好,在保存食品上有效,它是目前國際上廣泛使用的抗氧化劑之一,也是中國常用的抗氧化劑之一。和其它抗氧化劑有協同作用,並與增效劑如檸檬酸等使用,其抗氧化效果更為顯著。一般認為BHA毒性很小,較為安全。 (2)BHT:二丁基羥基甲苯。與其它抗氧化劑相比,穩定性較高,耐熱性好,在普通烹調溫度下影響不大,抗氧化效果也好,用於長期保存的食品與焙烤食品很有效。是目前國際上特別是在水產加工方面廣泛應用的廉價抗氧化劑。一般與BHA並用,並以檸檬酸或其他有機酸為增效劑。相對BHA來說,毒性稍高一些。 (3)PG:沒食子酸丙酯。對熱比較穩定。PG對豬油的抗氧化作用較BHA和BHT強些,毒性較低。 (4)TBHQ:特丁基對苯二酚。是較新的一類酚類抗氧化劑,其抗氧化效果較好。
漂白劑
這類物質均能產生二氧化硫(SO2),二氧化硫遇水則形成亞硫酸(H2SO3)。除具有漂白作用外,還具有防腐作用。此外,由於亞硫酸的強還原性,能消耗果蔬組織中的氧,抑制氧化酶的活性,可防止果蔬中的維生素C的氧化破壞。 亞硫酸鹽在人體內可被代謝成為硫酸鹽,通過解毒過程從尿中排出。亞硫酸鹽這類化合物不適用於動物性食品,以免產生不愉快的氣味。亞硫酸鹽對維生素B1有破壞作用,故B1含量較多的食品如肉類、穀物、乳製品及堅果類食品也不適合。因其能導致過敏反應而在美國等國家的使用受到嚴格限制。
著色劑
又稱色素,是使食品著色後提高其感官性狀的一類物質。食用色素按其性質和來源,可分為食用天然色素和食用合成色素兩大類。 1.食用合成色素,屬於人工合成色素。食用合成色素的特點:色彩鮮艷、性質穩定、著色力強、牢固度大、可取得任意色彩,加上成本低廉,使用方便。但合成色素大多數對人體有害。合成色素的毒性有的為本身的化學性能對人體有直接毒性;有的或在代謝過程中產生有害物質;在生產過程還可能被砷、鉛或其它有害化合物污染。 在中國目前允許使用的合成色素有莧菜紅、胭脂紅、赤鮮紅(櫻桃紅)、新紅、誘惑紅、檸檬黃、日落黃、亮藍、靛藍和它們各自的鋁色淀。以及合成的β-胡蘿卜素、葉綠素銅鈉和二氧化鈦。 2.食用天然色素,食用天然色素主要是由動植物組織中提取的色素,然而天然色素成分較為復雜,經過純化後的天然色素,其作用也有可能和原來的不同。而且在精製的過程中,其化學結構也可能發生變化;此外在加工的過程中,還有被污染的可能,故不能認為天然色素就一定是純凈無害的。 合成食用色素同其它食品添加劑一樣,為達到安全使用的目的,需進行嚴格的毒理學評價。包括①化學結構、理化性質、純度、在食品中的存在形式以及降解過程和降解產物;②隨同食品被機體吸收後,在組織器官內的瀦留分布、代謝轉變和及排泄狀況;③本身及其代謝產物在機體內引起的生物學變化,亦及對機體可能造成的毒害及其機理。包括急性毒性、慢性毒性、對生育繁殖的影響、胚胎毒性、致畸性、致突變性、致癌性、致敏性等。
護色劑
護色劑又稱發色劑。在食品的加工過程中,為了改善或保護食品的色澤,除了使用色素直接對食品進行著色外,有時還需要添加適量的護色劑,使製品呈現良好的色澤。 1.護色劑的發色原理和其他作用: ①護色作用,為使肉製品呈鮮艷的紅色,在加工過程中多添加硝酸鹽(鈉或鉀)或亞硝酸鹽。硝酸鹽在細菌硝酸鹽還原酶的作用下,還原成亞硝酸鹽。亞硝酸鹽在酸性條件下會生成亞硝酸。在常溫下,也可分解產生亞硝基(NO),此時生成的亞硝基會很快的與肌紅蛋白反應生成,穩定的、鮮艷的、亮紅色的亞硝化肌紅蛋白。故使肉可保持穩定的鮮艷。②抑菌作用:亞硝酸鹽在肉製品中,對抑制微生物的增殖有一定的作用。 2.護色劑的應用 亞硝酸鹽是添加劑中急性毒性較強的物質之一,是一種劇毒葯,可使正常的血紅蛋白變成高鐵血紅蛋白,失去攜帶氧的能力,導致組織缺氧。其次亞硝酸鹽為亞硝基化合物的前體物,其致癌性引起了國際性的注意,因此各方面要求把硝酸鹽和亞硝酸鹽的添加量,在保證護色含食品添加劑的飲料
的情況下,限制在最低水平。 抗壞血酸與亞硝酸鹽有高度親和力,在體內能防止亞硝化作用,從而幾乎能完全抑制亞硝基化合物的生成。所以在肉類腌制時添加適量的抗壞血酸,有可能防止生成致癌物質。 雖然硝酸鹽和亞硝酸鹽的使用受到了很大限制,但至今國內外仍在繼續使用。其原因是亞硝酸鹽對保持腌制肉製品的色、香、味有特殊作用,迄今未發現理想的替代物質。更重要的原因是亞硝酸鹽對肉毒梭狀芽孢桿菌的抑製作用。但對使用的食品及其使用量和殘留量有嚴格要求。
酶制劑
酶制劑指從生物(包括動物、植物、微生物)中提取具有生物催化能力酶特性的物質。主要用於加速食品加工過程和提高食品產品質量。 中國允許使用的酶制劑有:木瓜蛋白酶——來自未成熟的木瓜的膠乳中提取;以及由米麴黴、枯草芽孢桿菌等所製得的蛋白酶;α-澱粉酶——多來自枯草桿菌;糖化型澱粉酶——中國用於生產本酶制劑的菌種有黑麴黴、根酶、紅曲酶、擬內孢酶;由黑麴黴、米麴黴、黃麴黴生產的果膠酶等。
增味劑
是指為補充、增強、改進食品中的原有口味或滋味的物質。有的稱為鮮味劑或品味劑。 中國目前允許使用的增味劑有谷氨酸鈉、-鳥苷酸二鈉和5』-肌苷酸二鈉5』-呈味核甘酸二鈉、琥珀酸二鈉和L-丙氨酸。 谷氨酸鈉為含有一分子結晶水的L-谷氨酸一鈉。易溶於水,在150℃時失去結晶水,210℃時發生吡咯烷酮化,生成焦谷氨酸,270℃左右時則分解。對光穩定,在鹼性條件下加熱發生消旋作用,呈味力降低。在PH為5以下的酸性條件下加熱時易可發生吡咯烷酮化,變成焦谷氨酸,呈味力降低。在中性時加熱則很少發生變化。 谷氨酸屬於低毒物質。在一般用量條件下不存在毒性問題,而核甘酸系列的增味劑均廣泛的存在於各種食品中。不需要特殊規定。 近年來,有開發了許多肉類提取物、酵母抽提物、水解動物蛋白和水解植物蛋白等。
防腐劑
是指能抑制食品中微生物的繁殖,防止食品腐敗變質,延長食品保存期的物質。防腐劑一般分為酸型防腐劑、酯型防腐劑和生物防腐劑。 一、酸型防腐劑 常用的有苯甲酸、山梨酸和丙酸(及其鹽類)。這類防腐劑的抑菌效果主要取決於它們未解離的酸分子,其效力隨PH 而定,酸性越大,效果越好,在鹼性環境中幾乎無效。 1.苯甲酸及其鈉鹽:苯甲酸又名安息香酸。由於其在水中溶解度低,故多使用其鈉鹽。成本低廉。 苯甲酸進入機體後,大部分在9~15小時內與甘氨酸化合成馬尿酸而從尿中排出,剩餘部分與葡萄糖醛酸結合而解毒。但由於苯甲酸鈉有一定的毒性,目前已逐步被山梨酸鈉替代。 2.山梨酸及其鹽類:又名花楸酸。由於在水中的溶解度有限,故常使用其鉀鹽。山梨酸是一種不飽和脂肪酸,可參與機體的正常代謝過程,並被同化產生二氧化碳和水,故山梨酸可看成是食品的成分,按照目前的資料可以認為對人體是無害的。 3.丙酸及其鹽類:抑菌作用較弱,使用量較高。常用於麵包糕點類,價格也較低廉。 丙酸及其鹽類,其毒性低,可認為是食品的正常成分,也是人體內代謝的正常中間產物。 4.脫氫醋酸(dehydroacetic acid)及其鈉鹽:為廣譜防腐劑,特別是對黴菌和酵母的抑菌能力較強,為苯甲酸鈉的2~10倍。該品能迅速被人體吸收,並分布於血液和許多組織中。但有抑制體內多種氧化酶的作用,其安全性受到懷疑,故已逐步被山梨酸所取代,其ADI值尚未規定。 二、酯型防腐劑 包括對羥基苯甲酸酯類(有甲、乙、丙、異丙、丁、異丁、庚等)。成本較高。對黴菌、酵母與細菌有廣泛的抗菌作用。對黴菌和酵母的作用較強,但對細菌特別是革蘭氏陰性桿菌及乳酸菌的作用較差。作用機理為抑制微生物細胞呼吸酶和電子傳遞酶系的活性,以及破壞微生物的細胞膜結構。其抑菌的能力隨烷基鏈的增長而增強;溶解度隨酯基碳鏈長度的增加而下降,但毒性則相反。但對羥基苯甲酸乙酯和丙酯復配使用可增加其溶解度,且有增效作用。在胃腸道內能迅速完全吸收,並水解成對羥基苯甲酸而從尿中排出,不在體內蓄積。中國目前僅限於應用丙酯和乙酯。 三、生物型防腐劑 主要是乳酸鏈球菌素。乳酸鏈球菌素是乳酸鏈球菌屬微生物的代謝產物,可用乳酸鏈球菌發酵提取而得。乳酸鏈球菌素的優點是在人體的消化道內可為蛋白水解酶所降解,因含食品添加劑的糖果
而不以原有的形式被吸收入體內,是一種比較安全的防腐劑。,不會向抗生素那樣改變腸道正常菌群,以及引起常用其它抗生素的耐葯性,更不會與其它抗生素出現交叉抗性。 其它防腐劑包括雙乙酸鈉,既是一種防腐劑,也是一種螯合劑。對谷類和豆製品有防止黴菌繁殖的作用。仲丁胺,該品不應添加於加工食品中,只在水果、蔬菜儲存期防腐使用。市售的保鮮劑如克霉靈、保果靈等均是以仲丁胺為有效成分的制劑。二氧化碳,二氧化碳分壓的增高,影響需氧微生物對氧的利用,能終止各種微生物呼吸代謝,如高食品中存在著大量二氧化碳可改變食品表面的PH,而使微生物失去生存的必要條件。但二氧化碳只能抑制微生物生長,而不能殺死微生物。
甜味劑
是指賦予食品甜味的食品添加劑。按來源可分為:(1)天然甜味劑,又分為糖醇類和非糖類。其中①糖醇類有:木糖醇、山梨糖醇、甘露糖醇、乳糖醇、麥芽糖醇、異麥芽糖醇、赤鮮糖醇;②非糖類包括:甜菊糖甙、甘草、奇異果素、羅漢果素、索馬甜。(2)人工合成甜味劑其中磺胺類有:糖精、環己基氨基磺酸鈉、乙醯磺胺酸鉀。二肽類有:天門冬醯苯丙酸甲酯(又阿斯巴甜)、1-a-天冬氨醯-N-(2,2,4,4-四甲基-3-硫化三亞甲基)-D-丙氨醯胺(又稱阿力甜)。蔗糖的衍生物有:三氯蔗糖、異麥芽酮糖醇(又稱帕拉金糖)、新糖(果糖低聚糖)。
其他
此外,按營養價值可分為營養性和非營養性甜味劑,如蔗糖、葡萄糖、果糖等也是天然甜味劑。由於這些糖類除賦予食品以甜味外,還是重要的營養素,供給人體以熱能,通常被視做食品原料,一般不作為食品添加劑加以控制。 1.糖精 學名為鄰-磺醯苯甲醯,是世界各國廣泛使用的一種人工合成甜味劑,價格低廉,甜度大,其甜度相當於蔗糖的300~500倍,由於糖精在水中的溶解度低,故中國添加劑標准中規定使用其鈉鹽(糖精鈉),量大時呈現苦味。一般認為糖精納在體內不被分解,不被利用,大部分從尿排出而不損害腎功能。不改變體內酶系統的活性。全世界廣泛使用糖精數十年,尚未發現對人體的毒害作用。 2.環己基胺基磺酸鈉(甜蜜素)1958年在美國被列為「一般認為是安全物質」而廣泛使用,但在70年代曾報道該品對動物有致癌作用,1982年的FAO/WHO報告證明無致癌性。美國FDA長期實驗於1984年宣布無致癌性。但美國國家科學研究委員會和國家科學院仍認為有促癌和可能致癌作用。故在美國至今仍屬於禁用於食品的物質。 3.天門冬醯苯丙氨酸甲酯(阿斯巴甜)其甜度蔗糖的100~200倍,味感接近於蔗糖。是一種二肽衍生物,食用後在體內分解成相應的氨基酸。中國規定可用於罐頭食品外的其他食品,其用量按生產需要適量使用。 此外也發現了許多含有天門冬氨酸的二肽衍生物,如阿力甜,亦屬於氨含食品添加劑的糖果
基酸甜味劑,屬於天然原料合成,甜度高。 4.乙醯磺胺酸鉀 該品對光、熱(225℃)均穩定,甜感持續時間長,味感由於糖精鈉,吸收後迅速從尿中排除,不在體內蓄積,與天門冬氨醯甲酯1:1合用,有明顯的增效作用。 5.糖醇類甜味劑 糖醇類甜味劑屬於一類天然甜味劑,其甜味與蔗糖近似,多系低熱能的甜味劑。品種很多,如山梨醇、木糖醇、甘露醇和麥芽糖醇等,有的存在於天然食品中,多數的通過將相應的糖氫化所得。而其前體物則來自天然食品。由於糖醇類甜味劑升血糖指數低,也不產酸,故多用做糖尿病、肥胖病患者的甜味劑和具有防止齲齒的作用。該類物質多數具有一定的吸水性,對改善脫水食品復水性、控制結晶、降低水分活性均有一定的作用。但由於糖醇的吸收率較低,尤其是木糖醇,在大量食用時有一定的導致腹瀉的能力。 6.甜葉菊甙 為甜葉菊中含的一種強甜味成分,是一種含二萜烯的糖苷。甜度約為蔗糖的300倍。但甜葉菊甙的口感差,有甘草味,濃度高時有苦味,因此往往與蔗糖、果糖、葡萄糖等混用,並與檸檬酸、蘋果酸等合用以減弱苦為或通過果糖基轉移酶或α-葡萄糖基轉移酶使之改變結構而矯正其缺點。國外曾對其作過大量的毒性實驗,均未顯示毒性作用。而在食用時間較長的國家,如巴拉圭對該品已有100年食用史,日本也使用達15年以上,均未見不良副作用報道。