『壹』 請提供至少十項廢水質量指標全稱生物處理過程中脫氮的主要步驟是什麼
污水生物脫氮除磷的基本原理
1.生物脫氮
廢水中存在著有機氮、NH3-N、NxO--N等形式的氮,而其中以NH3-N和有機氮為主要形式。生物脫氮是在微生物的作用下,將慎毀有機氮和NH3-N轉化為N2和NxO氣體的過程。進行生物脫氮可分為氨化-硝化-反硝化三個步驟。由於氨化反應速度很快,在一般廢水處理設施中均能完成,故生物脫氮的關鍵在於硝化和反硝化。
1.1. 氨化作用
氨化作用是指將有機氮化合物轉化為NH3-N的過程,也稱為礦化作用。參與氨化作用的細菌稱為氨化細菌。
在好氧條件下,主要有兩種降解方式,一是氧化酶催化下的氧化脫氨。 另一是某些好氧菌,在水解酶的催化作用下能水解脫氮反應
在厭氧或缺氧的條件下,厭氧微生物和兼性厭氧微生物對有機氮化合物進行還原脫氨、水解脫氨和脫水脫氨三種途徑的氨化反應。
RCH(NH2)COOH→RCH2COOH+NH1
CH3CH(NH2)COOH→CH3CH(OH)COOH+NH3
CH2(OH)CH(NH2)COOH→CH3COCOOH+NH3
1.2. 硝化作用
硝化作用是指將NH3-N氧化為NxO--N的生物化學反應,這個過程由亞硝酸菌和硝酸菌共同完成,包括亞硝化反應和硝化反應兩個步驟。
亞硝酸菌和硝酸菌統稱為硝化菌。發生硝化反應時細菌分別從氧化NH3-N和N2O--N的過程中獲得能量,碳源來自無機碳化合物,如CO2-3、HCO-、CO2等。 硝化過程的三個重要特徵:
⑴NH3的生物氧化需要大量的氧,大約每去除1g的NH3-N需要4.2gO2; ⑵硝化過程明御細胞產率非常低,難以維持較高物質濃度,特別是在低溫的冬季; ⑶硝化過程中產生大量的質子寬槐備(H+),為了使反應能順利進行,需要大量的鹼中和,理論上大約為每氧化需要鹼度5.57g(以NaCO3計)。
『貳』 在廢水生物處理過程中,主要運轉范圍應在()
①
細菌:抄細菌——襲包括了真細菌(eubacteria)和古細菌(archaebacteria);——是廢水生物處理工程中最主要的微生物;根據需氧情況不同:好氧細菌、兼性細菌和厭氧細菌;根據能源碳源利用情況的不同:光合細菌——光能自養菌、光能異養菌;非光合細菌——化能自養菌、化能異養菌;根據生長溫度的不同:低溫菌(-10ºC~15
ºC)、中溫菌(15
ºC
~45
ºC)和高溫菌(>45
ºC)
②
真菌:真菌的三個主要特點:1)能在低溫和低pH值的條件生長;2)在生長過程中對氮的要求較低(是一般細菌的1/2);3)能降解纖維素。真菌在廢水處理中的應用:1)處理某些特殊工業廢水;2)固體廢棄物的堆肥處理
③
原生動物、後生動物:原生動物主要以細菌為食;其種屬和數量隨處理出水的水質而變化,可作為指示生物。後生動物以原生動物為食;也可作為指示生物。
『叄』 在廢水生物處理過程中,原生動物及微型後生動物的作用有哪幾種
去除水中的有害物質。
北京中天恆遠提示,「水處理」就是通過物理、化學、生物的手段,去除水中一些對生產、生活不需要的有害物質的過程。是為了適用於特定的用途而對水進行的沉降、過濾、混凝、絮凝,以及緩蝕、阻垢等水質調理的過程。由於社會生產、生活與水密切相關。
『肆』 污廢水生物處理中變異現象有哪幾方面
一、水體污染是指水體因某種物質的介入,超過了水體的自凈能力,導致其物理、化學、生物等方面特徵的改變,從而影響到水的利用價值,危害人體健康或破壞生態環境,造成水質惡化的現象。
二、自然界中的水體污染,從不同的角度可以劃分為各種污染類別。
1、從污染源劃分,可分為點污染源和面污染源。環境污染物的來源稱為污染源。點污染是指污染物質從集中的地點(如工業廢水及生活污水的排放口門)排入水體。它的特點是排污經常,其變化規律服從工業生產廢水和城市生活污水的排放規律,它的量可以直接測定或者定量化,其影響可以直接評價。而面污染則是指污染物質來源於集水面積的地面上(或地下),如農田施用化肥和農葯,灌排後常含有農葯和化肥的成分,城市、礦山在雨季,雨水沖刷地面污物形成的地面徑流等。面源污染的排放是以擴散方式進行的,時斷時續,並與氣象因素有聯系。
2、從污染的性質劃分,可分為物理性污染、化學性污染和生物性污染。物理性污染是指水的渾濁度、溫度和水的顏色發生改變,水面的漂浮油膜、泡沫以及水中含有的放射性物質增加等;化學性污染包括有機化合物和無機化合物的污染,如水中溶解氧減少,溶解鹽類增加,水的硬度變大,酸鹼度發生變化或水中含有某種有毒化學物質等;生物性污染是指水體中進入了細菌和污水微生物等。
三、造成原因
1、造成水體污染的因素是多方面的:向水體排放未經妥善處理的城市污水和工業廢水;施用化肥、農葯及城市地面的污染物被水沖刷而進入水體;隨大氣擴散的有毒物質通過重力沉降或降水過程而進入水體等。
2、污染水體的物質成分極為復雜,概括起來主要包括:無機無毒物、無機有毒物、有機無毒物、有機有毒物、石油類污染物、病原微生物、寄生蟲、放射性污染物、熱污染等。
無機無毒物如:砂、土等顆粒狀的污染物,一般和有機顆粒性污染物混合在一起,統稱為懸浮物(SS)或懸浮固體,使水變渾濁。
四、防治措施
1、調整產業結構和布局
從安徽巢湖取的藍藻水樣(左)與飲用水對比中國產業結構和布局狀況與中國水資源的空間分布很不匹配。中國的主要農業灌溉區和需水工業大多集中於北方,而中國水資源分布卻是南多北少,導致中國北方水環境嚴重惡化,因此,調整中國產業結構和布局勢在必行。具體來說,一是在北方地區加速發展高新技術產業、第三產業,盡量少建或不建能耗高、污染重的產業;二是加強對老企業的改造和管理,降低其能耗和污染;三是採取「分散集團「的產業布局原則。
2、建立水資源保護區
為從整體上解決中國水環境惡化的問題,必須有計劃地建立不同類型和不同級別的水資源保護區,並採取有效措施加以保護,主要包括:A、流域水資源保護區;B、山區和平原水資源保護區;C、大型水利工程水資源保護區;D、重點城市水資源保護區。將各區內水資源的分配、水費、排污費的收取、治污資金的籌集有效地統一起來,就能夠實現從局部到整體治理步驟的實現,從而解決中國水環境問題。
3、染源管理
國家權力機關為了處理社會發展和水體污染的關系,保護和改善水環境質量,依據法律和有關環境保護標准對水體污染源排入水體的污染物的種類、特性、濃度、排放總量,以及排放時間、地點和密集程度等進行限制、監督,並對污染源的規劃和布局、廢水治理措施和處理程度等進行指導和協調。
『伍』 工業污水處理生化過程中為什麼需要經常補充廢水中的營養物
在工業污水處理中,廢水的生物化學處理是廢水處理系統中最重要的過程之一,簡稱生化處理。生化處理是利用微生物的生命活動過程將廢水中的可溶性的有機物及部分不溶性的有機物有效地去除,使水得到凈化。事實上,我們對生化處理並不是很陌生的,天然的水體中存在著一條食物鏈,即大魚吃小魚,小魚吃蝦米,蝦米吃小蟲,小蟲吃微生物,微生物吃污水,如果沒有這條食物鏈,自然界就要亂套了。
在天然的河流中,有著大量的、依靠有機物生活的微生物,它們日日夜夜地將人們排入河流中的有機物(如工業廢水、農葯化肥、糞便等等有機物質)氧化或還原,最終轉化為無機物質,如果沒有微生物的存在,我們周圍的河流,少則幾個月,多則一、二年,就會成為臭河了,只是由於微生物太微小太分散,以致人們的肉眼看不見罷了。
而廢水的生化處理工程則是在人工條件下對這一過程的強化。人們將無以計數的微生物全部集中在一個池子內,創造一個非常適合微生物繁殖、生長的環境(如溫度、pH值、氧氣、氮磷等營養物質),使微生物大量增殖,以提高其分解有機物的速度和效率。然後再往池內泵入廢水,使廢水中的有機物質在微生物的生命活動過程中得到氧化降解,使廢水得到凈化和處理。與其他處理方法相比,生化法具有能耗低、不加葯、處理效果好、處理費用低等特點。
武漢格林環保在污水處理方面有著不錯的工藝和經驗,可以多了解一下。
『陸』 比較廢水厭氧生物處理與廢水好氧生物處理的原理,特點及適用條件
好氧生物處理
好氧生物處理是在有游離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。
過程:有機物被微生物攝取後,通過代謝活動,約有三分之一被分解、穩定,並提供其生理活動所需的能量;約有三分之二被轉化,合成為新的原生質(細胞質),即進行微生物自身生長繁殖。後者就是廢水生物處理中的活性污泥或生物膜的增長部分,通常稱其剩餘活性污泥或生物膜,又稱生物污泥。在廢水生物處理過程中,生物污泥經固—液分離後,需進行進一步處理和處置。
優點:好氧生物處理的反應速度較快,所需的反應時間較短,故處理構築物容積較小。且處理過程中散發的臭氣較少。所以,目前對中、低濃度的有機廢水,或者說BOD濃度小於500mg/L的有機廢水,基本上採用好氧生物處理法。
在廢水處理工程中,好氧生物處理法有活性污泥法和生物膜法兩大類。
厭氧生物處理是在沒有游離氧存在的條件下,兼性細菌與厭氧細菌降解和穩定有機物的生物處理方法。在厭氧生物處理過程中,復雜的有機化合物被降解、轉化為簡單的化合物,同時釋放能量。在這個過程中,有機物的轉化分為三部分進行:部分轉化為CH4,這是一種可燃氣體,可回收利用;還有部分被分解為 CO2、H20、NH3、H2S等無機物,並為細胞合成提供能量;少量有機物被轉化、合成為新的原生質的組成部分。由於僅少量有機物用於合成,故相對於好氧生物處理法,其污泥增長率小得多。
廢水厭氧生物處理
廢水厭氧生物處理過程不需另加氧源,故運行費用低。此外,它還具有剩餘污泥量少,可回收能量(CH4)等優點。其主要缺點是反應速度較慢,反應時間較長,處理構築物容積大等。但通過對新型構築物的研究開發,其容積可縮小。此外,為維持較高的反應速度,需維持較高的反應溫度,就要消耗能源。
對於有機污泥和高濃度有機廢水(一般B005≥2 000mg/L)可採用厭氧生物處理法。
『柒』 廢水生物處理中,ph一般在什麼范圍內不需要進行調節
廢水生物處理過程中的pH控制(以確定進行酸鹼投加),關鍵看深度生化後的pH值,而不是原水值。一般認為的6~10是自進水的,是傳統經驗。例如,當原水中大量含有機酸和一定量的無機鹼時,兩者相抵會導致廢水呈現中性左右,當這些有機酸被生化降解後,pH值會自動上升,當達到抑制生化的限值時,生化過程會停滯並自動維持平衡,如果想進一步深度處理,生化池就需要加酸(無機酸)。這類問題可以到像環保通之類的平台問問看看,主要是關於水處理方面的,希望對您有幫助。
『捌』 廢水生物處理方法有哪些
主要藉助微生物的分解作用把污水中有機物轉化為簡單的無機物,使污水得到凈化.
1.按對版氧氣需求情況可分為厭權氧生物處理和好氧生物處理兩大類.厭氧生物處理系利用厭氧微生物把有機物轉化為有機酸,甲烷菌再把有機酸分解為甲烷、二氧化碳和氫等,如厭氧塘、化糞池、污泥的厭氣消化和厭氧生物反應器等.好氧生物處理系採用機械曝氣或自然曝氣(如藻類光合作用產氧等)為污水中好氧微生物提供活動能源,促進好氧微生物的分解活動,使污水得到凈化,如活性污泥、生物濾池、生物轉盤、污水灌溉、氧化塘的功能.
2,.按微生物的懸浮狀態分為活性污泥法和生物膜法.活性污泥法微生物懸浮在污水中,如氧化溝,a2o,傳統活性污泥法,sbr等等.生物膜法微生物附著在載體上,如生物轉盤法,生物流化床等等.
『玖』 污水處理生化處理過程中,生物硝化過程的主要影響因素有哪些
在污水復生化處理過程中,影制響微生物活性的因素可分為基質類和環境類兩大類:
一、基質類包括營養物質,如以碳元素為主的有機化合物即碳源物質、氮源、磷源等營養物質、以及鐵、鋅、錳等微量元素;另外,還包括一些有毒有害化學物質如酚類、苯類等化合物、也包括一些重金屬離子如銅、鎘、鉛離子等。
二、環境類影響因素
(1)溫度。
(2)PH值。活性污泥系統微生物最適宜的PH值范圍是6.5-8.5,酸性或鹼性過強的環境均不利於微生物的生存和生長,嚴重時會使污泥絮體遭到破壞,菌膠團解體,處理效果急劇惡化。
(3)溶解氧。
『拾』 廢水厭氧生物處理的原理
在厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子有機物的厭氧過程的敘述,有助於我們了解這一過程的基本內容。
高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
(1)水解階段
水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在第一階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/L);
ρo———非溶解性底物的初始濃度(g/L);
Kh——水解常數(d^-1);
T——停留時間(d)
(2)發酵(或酸化)階段
發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
在這一階段,上述小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。
在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,並進一步引起酸化末端產物組成的改變。
(3)產乙酸階段
在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
其某些反應式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL
(4)甲烷階段
這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫氣等轉化為甲烷的過程有兩種生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3。
最主要的產甲烷過程反應有:
CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL
在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。
需要指出的是:一些書把厭氧消化過程分為三個階段,把第一、第二階段合成為一個階段,稱為水解酸化階段。在這里我們則認為分為四個階段能更清楚反應厭氧消化過程。
上述四個階段的反應速度依廢水的性質而異,在含纖維素、半纖維素、果膠和脂類等污染物為主的廢水中,水解易成為速度限制步驟;簡單的糖類、澱粉、氨基酸和一般蛋白質均能被微生物迅速分解,對含這類有機物的廢水,產甲烷易成為限速階段。雖然厭氧消化過程可分為以上四個過程,但是在厭氧反應器中,四個階段是同時進行的,並保持某種程度的動態平衡。該平衡一旦被pH值、溫度、有機負荷等外加因素所破壞,則首先將使產甲烷階段受到抑制,其結果會導致低級脂肪酸的積存和厭氧進程的異常變化,甚至導致整個消化過程停滯。