⑴ 廢水生物脫氮除磷什麼原理
廢水生物脫氮抄的基本原理就是在將有機氮轉化為氨態氮的基礎上,先利用好氧段經硝化作用,由硝化細菌和亞硝化細菌的協同作用,將氨氮通過硝化作用轉化為亞硝態氮、硝態氮,即,將 轉化為 和 。在缺氧條件下通過反硝化作用將硝氮轉化為氮氣,即,將 (經反亞硝化)和 (經反硝化)還原為氮氣,溢出水面釋放到大氣,參與自然界氮的循環。水中含氮物質大量減少,降低出水的潛在危險性,達到從廢水中脫氮的目的。
該過程可分為三步:
第一步是氨化作用,即水中的有機氮在氨化細菌的作用下轉化成氨氮。(在普通活性污泥法中,氨化作用進行得很快,無需採取特殊的措施)
第二步是硝化作用,即在供氧充足的條件下,水中的氨氮首先在亞硝酸菌的作用下被氧化成亞硝酸鹽,然後再在硝酸菌的作用下進一步氧化成硝酸鹽。
三步是反硝化作用,即在缺氧或厭氧的條件下,硝化產生的亞硝酸鹽和硝酸鹽在反硝化細菌的作用下被還原成氮氣。
⑵ 試述廢水生物脫氮除磷的原理 給出脫氮除磷的工藝流程及說明主要技術條件
同步脫復氮除磷工藝AAO
脫氮:氨氮制硝化成硝酸鹽氮,然後反硝化變成氮氣
除磷:聚磷菌在好氧條件下過量吸收磷,再通過排泥把磷排出系統
這玩意建議你最好看書去,因為還涉及到內迴流,外迴流,全部打出有不少內容的,包括網上也有很多這樣的基礎資料,去看看基本原理,在看看一些示意圖,很快就搞明白了
這個算是基礎知識,我們說的基本上也是書上的那些東西,還是看書去吧
⑶ 脫氮除磷工藝的原理
氨氮通過好來氧亞硝化、自硝化作用生成亞硝酸根、硝酸根,亞硝酸根、硝酸根通過缺氧反硝化生產氮氣,從水中逸出。
除磷菌在厭氧條件下釋放磷,再在好氧條件下過度吸磷,通過排泥除磷。
拓展資料:
生物脫氮機理
生物脫氮理論認為生物脫氮主要包括硝化和反硝化2個生化過程,並由有機氮氨化、硝化、反硝化及微生物的同化作用來完成。
氨化作用即水中的有機氮化合物在氨化細菌分解作用下轉化為氨氮。一般氨化過程與微生物去除有機物同時進行,氨化作用進行得很快,有機物去除結束時,氨化過程也已完成,故無需採取特殊的措施。
硝化作用即在供氧充足的條件下,水中的氨氮首先在亞硝化細菌的作用下被氧化成亞硝酸氮,然後再在硝化細菌的作用下進一步氧化成硝酸氮。由於亞硝化細菌和硝化細菌的生長速率低,所以要求較長的污泥齡。
反硝化作用是由反硝化細菌完成的生物化學過程。在缺氧條件下,反硝化細菌將硝化產生的亞硝酸氮和硝酸氮還原成氣態氮(N2)或N2O、NO。由於反硝化細菌是兼性厭氧菌,只有在缺氧或厭氧條件下才能進行反硝化,因此需要為其創造一個缺氧或厭氧的環境(好氧池的混合液迴流到缺氧池)。
⑷ 污,廢水為什麼要脫氮除磷
污水中富含大量的N、P元素等元素,這些化學微量元素都是藻類繁殖所需要的,藻類的大量繁殖會引起湖水的水華與海水的赤潮;另外,藻類的大量繁殖也會使得維持水質的其他微生物的數量下降。
⑸ 污、廢水為什麼要脫氮除磷敘述污、廢水脫氮、除磷的原理。
你好,很高興為你解答。。
氮、磷是營養元素,工業廢水和生活污水中的氮、磷大專量進入水體屬後,水生生物
特別是藻類將大量繁殖,大量死亡的水生生物被微生物分解,分解過程中消耗大
量的溶解氧,水中的溶解氧濃度急劇下降,從而影響了魚類等水生生物的生存。
城市污水廠的活性污泥法脫氮除磷的原理是:利用微生物分解有機氮,再轉化為
硝酸鹽,之後反硝化成氮氣得以去除;除磷則是利用聚磷菌放磷後,更大量的吸
收磷,使磷富集在污泥中,通過排放剩餘污泥去除磷。
⑹ 污水生物處理過程中為何脫氮除磷之間存在矛盾在實際中如何解決
矛盾就是兩種菌的適宜生長條件不同。解決可以採用序列式間歇活性污泥法(SBR)及其改良方法來處理。具體說明如下:Sequencing Batch Reactor Activated Sludge Process)的簡稱,是一種按間歇曝氣方式來運行的活性污泥污水處理技術,又稱序批式活性污泥法。與傳統污水處理工藝不同,SBR技術採用時間分割的操作方式替代空間分割的操作方式,非穩定生化反應替代穩態生化反應,靜置理想沉澱替代傳統的動態沉澱。它的主要特徵是在運行上的有序和間歇操作,SBR技術的核心是SBR反應池,該池集均化、初沉、生物降解、二沉等功能於一池,無污泥迴流系統。正是SBR工藝這些特殊性使其具有以下優點: 1、 理想的推流過程使生化反應推動力增大,效率提高,池內厭氧、好氧處於交替狀態,凈化效果好。 2、 運行效果穩定,污水在理想的靜止狀態下沉澱,需要時間短、效率高,出水水質好。 3、 耐沖擊負荷,池內有滯留的處理水,對污水有稀釋、緩沖作用,有效抵抗水量和有機污物的沖用,有效抵抗水量和有機污物的沖擊。 4、 工藝過程中的各工序可根據水質、水量進行調整,運行靈活。 5、 處理設備少,構造簡單,便於操作和維護管理。 6、 反應池內存在DO、BOD5濃度梯度,有效控制活性污泥膨脹。 7、 SBR法系統本身也適合於組合式構造方法,利於廢水處理廠的擴建和改造。 8、 脫氮除磷,適當控制運行交替,具有良好的脫氮除磷效果。 9、 工藝流程簡單、造價低。主體設備只有一個序批式間歇反應器,無二沉池、污泥迴流系統,調節池、初沉池也可省略,布置緊湊、佔地面積省。
⑺ 在生活污水處理,化工污水處理過程中,如何脫氮除磷
眾所復周知,氮和磷是生物制的重要營養源,那為什麼在生活污水處理和化工污水處理過程中,進行脫氮除磷呢?又需要用什麼方法來進行脫氮除磷?
氮和磷是生物的重要營養源,這是沒錯,但是如果排放的生活污水或化工污水中的氮、磷含量過高,沒經過處理的污水排放到天然水體中去,直接導致天然水體中的氮和磷含量升高,水體中藍藻、綠藻大量繁殖,水體缺氧並產生毒素,使水質惡化,對水生生物和人體健康產生很大的危害。赤潮就是由於水中氮和磷含量過高而導致的水體富營養化現象。那在生活污水處理過程和化工污水處理過程中,要如何去除氮和磷呢?
一:A2O工藝
A2O工藝也被稱作活性污泥法。在該工藝流程內,BOD5、SS和以各種形式存在的氮和磷將一一被去除。A2O生物脫氮除磷系統的活性污泥中,菌群主要由硝化菌和反硝化菌、聚磷菌組成。在好氧段,硝化細菌
將入流中的氨氮及有機氮氨化成的氨氮,通過生物硝化作用,轉化成硝酸鹽;在缺氧段,反硝化細菌將內迴流帶入的硝酸鹽通過生物反硝化作用,轉化成氮氣逸入到大氣中,從而達到脫氮的目的;在厭氧段,聚
磷菌釋放磷,並吸收低級脂肪酸等易降解的有機物;而在好氧段,聚磷菌超量吸收磷,並通過剩餘污泥的排放,將磷除去。
⑻ 生物脫氮除磷處理化學工業污水有什麼要求嗎
SICOLAB整理採取生物脫氮除磷的污水應符合下列規定:
1 生物脫氮除磷時,系統中有毒害和抑制性物質的允許濃度宜通過試驗或按有關資料確定;
2 生物脫氮除磷時,污水BOD5與總氮之比宜大於4,BOD5與總磷之比宜大於17;
3 進水BOD5不能滿足脫氮除磷要求時,應外加碳源;
4 好氧段(池)剩餘鹼度宜大於70mg/L(以CaCO3計)。
二、採用缺氧/好氧(ANO)工藝脫氮時,反應池容積可採用下列方法計算:
1 採用污泥負荷法,好氧段(池)容積可按公式(3-1)計算,容積應滿足按BOD5負荷和總氮負荷計算的結果,缺氧段(池)容積可按好氧段(池)容積的1/3~1/4取值。
2 採用硝化反硝化動力學法計算:
1)好氧段(池)容積可按下列公式計算:
式中:Vn——缺氧段(池)容積(m³);
N0——生物反應系統進水總氮濃度(mg/L);
Ne——生物反應系統出水總氮濃度(mg/L);
Kde——脫氮速率{kg[N]/(kg[MLSS]·d)};
Kde(20)——20℃的脫氮速率,無數據時可取0.03{kg[N]/(kg[MLSS]·d)}~0.06{kg[N]/(kg[MLSS]·d)};
X——生物反應池內混合液懸浮固體平均濃度(g[MLSS]/L);
△Xv——排出生物反應系統的揮發性懸浮固體量(kg[VSS]/d)。
三、缺氧/好氧工藝主要設計參數宜根據試驗或相似污水運行數據確定,無數據時可按下列數據取值:
1 BOD5污泥負荷宜取0.05kg[BOD5]/(kg[MLSS]·d)~0.15kg[BOD5]/(kg[MLSS]·d);
2 總氮污泥負荷不宜大於0.05kg[TN]/(kg[MLSS]·d);
3 混合液懸浮固體平均濃度宜取2.5g[MLSS]/L~4.5g[MLSS]/L;
4 污泥齡宜取11d~23d;
5 污泥迴流比宜取50%~100%;
6 混合液迴流比宜取200%~400%;
7 污泥產率宜取0.3kg[VSS]/kg[BOD5]~0.6kg[VSS]/kg[BOD5]。
四、採用厭氧/缺氧/好氧工藝脫氮除磷時,反應池好氧段(池)、缺氧段(池)的容積可按本規范第2條的規定計算。厭氧段(池)的容積可按水力停留時間計算,水力停留時間宜為1h~2h。
五、厭氧/缺氧/好氧工藝主要設計參數宜根據試驗或相似污水運行數據確定,無數據時宜按下列數據取值:
1 BOD5污泥負荷宜取0.1kg[BOD5]/(kg[MLSS]·d)~0.2kg[BOD5]/(kg[MLSS]·d);
2 混合液懸浮固體平均濃度宜取2.5[MLSS]/L~4.5g[MLSS]/L;
3 污泥齡宜取10d~20d;
4 污泥迴流比宜取20%~100%;
5 混合液迴流比宜大於或等於200%;
6 污泥產率宜取0.3kg[VSS]/kg[BOD5]~0.6kg[VSS]/kg[BOD5]。
六、厭氧/缺氧/好氧工藝脫氮除磷時,可根據進水水質和處理要求,經技術經濟分析比較後,選擇各種改進型的工藝。
七、生物除磷的剩餘污泥宜採用機械濃縮。
⑼ 試述廢水生物脫氮除磷的原理
廢水生物脫氮的基本原理就是在將有機氮轉化為氨態氮的基礎上,先利用專好氧段經硝化作用,由硝屬化細菌和亞硝化細菌的協同作用,將氨氮通過硝化作用轉化為亞硝態氮、硝態氮,即,將 轉化為 和 。在缺氧條件下通過反硝化作用將硝氮轉化為氮氣,即,將 (經反亞硝化)和 (經反硝化)還原為氮氣,溢出水面釋放到大氣,參與自然界氮的循環。水中含氮物質大量減少,降低出水的潛在危險性,達到從廢水中脫氮的目的。
該過程可分為三步:
第一步是氨化作用,即水中的有機氮在氨化細菌的作用下轉化成氨氮。(在普通活性污泥法中,氨化作用進行得很快,無需採取特殊的措施)
第二步是硝化作用,即在供氧充足的條件下,水中的氨氮首先在亞硝酸菌的作用下被氧化成亞硝酸鹽,然後再在硝酸菌的作用下進一步氧化成硝酸鹽。
三步是反硝化作用,即在缺氧或厭氧的條件下,硝化產生的亞硝酸鹽和硝酸鹽在反硝化細菌的作用下被還原成氮氣。