❶ 萃取與蒸餾相比,有什麼優點
很明顯的,節省能源嘛
其實這兩個最好別放一起比較,因為萃取是分離兩個不互溶物質,而蒸餾是分離兩個互溶物質
❷ 求化工原理知識點提要
一、流體力學及其輸送
1.單元操作:物理化學變化的單個操作過程,如過濾、蒸餾、萃取。
2.四個基本概念:物料衡算、能量衡算、平衡關系、過程速率。
3.牛頓粘性定律:F=±τA=±μA/dy,(F:剪應力;A:面積;μ:粘度;/dy:速度梯度)。
4.兩種流動形態:層流和湍流。流動形態的判據雷諾數Re=ρ/μ;層流-2000-過渡-4000-湍流。
5.連續性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。
6.流體阻力=沿程阻力+局部阻力;范寧公式:沿程壓降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl
u2/2dg(λ:摩擦系數);層流時λ=64/Re,湍流時λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系數,情況不同計算方法不同)
7.流量計:變壓頭流量計(測速管、孔板流量計、文丘里流量計);變截面流量計。
8.離心泵主要參數:流量、壓頭、效率、軸功率;工作點(提供與所需水頭一致);安裝高度(氣蝕現象,氣蝕餘量);泵的型號(泵口直徑和揚程);氣體輸送機械:通風機、鼓風機、壓縮機、真空泵。
二、非均相機械分離
1.顆粒的沉降:層流沉降速度Vt=(ρp-ρ)gdp2/18μ,(ρp-ρ:顆粒與流體密度差,μ:流體粘度);重力沉降(沉降室,H/v=L/u,多層;增稠器,以得到稠漿為目的的沉澱);離心沉降(旋風分離器)。
2.過濾:深層過濾和濾餅過濾(常用,助濾劑增加濾餅剛性和空隙率);分類:壓濾、離心過濾,間歇、連續;濾速的康采尼方程:u=(Δp/Lμ)ε3/5a2(1-ε)2,(ε:濾餅空隙率;a:顆粒比表面積;L:層厚)。
三、傳熱
1.傳熱方式:熱傳導(傅立葉定律)、對流傳熱(牛頓冷卻定律)、輻射傳熱(四次方定律);熱交換方式:間壁式傳熱、混合式傳熱、蓄熱體傳熱(對蓄熱體的周期性加熱、冷卻)。
2.傅立葉定律:dQ= -λdA ,(Q:熱傳導速率;A:等溫面積;λ:比例系數; :溫度梯度);
λ與溫度的關系:λ=λ0(1+at),(a:溫度系數)。
3.不同情況下的熱傳導:單層平壁:Q=(t1-t2)/[b/(CmA)]=溫差/熱阻,(b:壁厚;Cm=(λ1-λ2)/2);
多層平壁:Q=(t1-tn+1)/ [bi /(λiA)];單層圓筒:Q=(t1-t2)/[b/(λAm)],(A:圓筒側面積,C=
(A2-A1)/ln(A2/A1)); 多層圓筒:Q=2πL(t1-t n+1)/ [1/λi [ln(ri+1/ri) ]。
4.對流傳熱類型:強制對流傳熱(外加機械能)、自然對流傳熱、(溫差導致)、蒸汽冷凝傳熱(冷壁)、液體沸騰傳熱(熱壁),前兩者無相變,後兩者有相變;牛頓冷卻定律:dQ=hdAΔt,(Δt>0;h:傳熱系數)。
5.吸收率A+反射率R+透射率D=1;黑體A=1,鏡體R=1,透熱體D=1,灰體A+R=1; 總輻射能E=Eλdλ,(Eλ:單色輻射能;λ:波長);
四次方定律:E=C(T/100)4=εC0(T/100)4,(C:灰體輻射常數;C0:黑體輻射常數;ε=C/C0:發射率或黑度);
兩物體輻射傳熱:Q1-2=C1-2φA[(T1/100)4-(T2/100)4],(φ:角系數;A:輻射面積;C1-2=1/[(1/C1)+(1/C2)-(1/C0)])
6.總傳熱速率方程:dQ=KmdA,(dQ:微元傳熱速率;Km:總傳熱系數;A:傳熱面積);
1/K=1/h1+bA1/λAm+A1/h2A2,(h1,h2:熱、冷流體表面傳熱系數)。
7.換熱器:夾套換熱器、蛇管式換熱器、套管式換熱器、列管式換熱器。
四、蒸餾
1.蒸餾分類:操作方式:連續蒸餾、間歇蒸餾;對分離的要求:簡單蒸餾、平衡蒸餾(閃蒸)、精餾、特殊精餾;壓力:常壓蒸餾、加壓蒸餾、減壓蒸餾;組分:雙組分蒸餾和多組分蒸餾(精餾),常用精餾塔。
2.雙組分溶液氣液相平衡:液態泡點方程:xA=[p-pB(t)]/[pA(t)-pB(t)],(xA:液態組分A的摩爾分數;p
(t):壓強關於溫度的函數); 氣態露點方程:yA=pA/p=[pA(t)/p]×[p-pB(t)]/[pA(t)-pB(t)];
平衡常數KA=yA/xA,理想溶液:KA=p°A/p,即組分飽和蒸氣壓和總壓之比;
揮發度:υA=pA/xA,相對揮發度:αAB=υA/υB,最終可導出氣液平衡方程:y=αx/[1+(a-1)x]; 氣液平衡相圖:p-x圖(等溫)
、t-x(y)圖(等壓)、x-y圖。
3.平衡蒸餾:qn(F),xF加熱至泡點以上tF,減壓氣化,溫度達到平衡溫度te,兩相平衡qn(D),yD和qn(W),xW;
物料衡算:yD=qxW/(q-1)-xF/(q-1),(液化率:q=qn(W)/qn(F));
熱量衡算:tF=te+(1-q)γ/Cp,m,(Cp,m:原液的摩爾定壓熱容;γ:原液的摩爾氣化潛熱);平衡關系:yD=αxW/[1+(α-1)xW]。
4.簡單蒸餾:持續加熱至釜液組成和餾出液組成達到規定時停止; 關系式:ln[n(F)/n(W)]=
{ln(xF/xW)-αln[(1-xF)/(1-xW)]}/(α-1); 總物料衡算:n(F)=n(W)+n(D);易揮發組分衡算:n(F)xF
=n(W)xW+n(D)xD; 推出:xD= [n(F)xF-n(W)xW]/[n(F)-n(W)]。
5.精餾:多次部分氣化部分冷凝(連續、間歇),泡點不同採取不同的壓力操作,塔板數從上至下記;
塔頂易揮發組分回收率:ηD=qn(D)xD/qn(F)xF×100%,釜中不易揮發組分回收率:ηW=qn(W)(1-xW)/[qn(F)(1-xF)]×100%;
精餾段總物料衡算:qn(V)=qn(D)+qn(L);精餾段易揮發組分衡算:qn(V)yn+1=qn(D)xD+qn(L)xn;(V:各層上升蒸汽量;D:塔頂餾出液量;L:各板下降的液量;yn+1:第n+1塊板上升的蒸汽中易揮發組分的摩爾分數;xn:第n塊板下降的液體中易揮發組分的摩爾分數),精餾段操作線方程:yn+1=Rxn/(R+1)
+xD/(R+1),(迴流比R= qn(L)/qn(D));
提餾段段總物料衡算:qn(L』)=qn(V』)+qn(W);提餾段易揮發組分衡算:qn(L』)x』m=qn(V』)y』m+1 +qn(W)xW
;(W:釜液量),提餾段操作線方程:y』m+1= qn(L』)x』m/qn(V』)-qn(W)xW/qn(V』);
總的物料衡算:qn(F)+qn(V』)+qn(L)=qn(V)+qn(L』),乘上各焓值Hx即為熱量衡算,qn(V)=qn(V』)+(1-q)qn(F),(精餾進料熱狀態參數q=(HV-HF)/(HV-HL),即單位原料液變為飽和蒸汽所需要的熱量與單位原料液潛熱之比);
進料方程:y=qx/(q-1)-xF/(q-1);理論塔板的計算逐板法和圖解法,迴流比R增大理論塔板數減小,解析法:全迴流理論塔板數Nmin={lg[xD(1-xw)/[xw(1-xD)]]}/lgam-1,(am:全塔平均揮發度);
最小迴流比Rmin=(xD-yq)/(yq-xq),(xq,yq:進料時),R實=(1.1-2.0) Rmin; 全塔效率ET為理論塔板數與實際塔板數之比;
間歇精餾:分批精餾,一次進料待釜液達到指定組成後,放出殘液,再次加料,用於分離量少而純度要求高的物料,每批精餾氣化物質的量n(V )=
(R+1)n(D),所需時間τ=n(V)/qn(V); 特殊精餾:恆沸精餾(加第三組分,形成新的低恆沸物,增大相對揮發度)
、萃取精餾(加第三組分,增大相對揮發度)、加鹽萃取精餾、分子蒸餾(針對高分子量、高沸點、高粘度、熱穩定性極差的有機物)。
五、吸收
1.吸收劑的要求:對溶質的溶解度大,對其他成分溶解度小、易於再生、不易揮發、粘度低、無腐蝕性、無毒不易燃、價低,吸收率η=(mA除/mA進)×100%≈[
(y1-y2)/y1]×100%,(y1,y
2:進塔和出塔混合氣中A的摩爾分數)。
3.稀溶液中亨利定律:c*A=HpA,(c*A:溶解度;H:溶解度系數;pA:氣相分壓);p*A=ExA,(xA:液相中溶質摩爾分數;E:亨利系數);y*=mx,(平衡常數m=E/p);E=ρs/HMs,(ρs,Ms:純溶劑密度和相對分子質量)。
4.費克定律:jA=-DABdcA/dz,(jA:擴散速率;DAB:組分A在組分B中的擴散系數;dcA/dz:組分A在擴散方向z上的濃度梯度);
等分子擴散速率:NA= jA=D(pA,1-pA,2)/RTz;單向擴散:NA=D(pA,1-pA,2)p/RTz
pB,m,(p/pB,m:漂流因子,pB,m=
(pB,2-pB,1)/ln(pB,2/pB,1),即對數平均值);同理,NA=D(cA,1-cA,2)c/zcB,m。
5.吸收塔操作線方程:qn(L)/qn(V)=(y1-y2)/(x1-x2),(qn(V):二元混合氣摩爾流量;qn(L):液相摩爾流量;x,y:任意一截面液氣相摩爾流量);
最小液氣比[qn(L)/qn(V)]min=(y1-y2)/(x*1-x2),qn(L)/qn(V)= (1.1-2.0) [qn(L)/qn(V)]min;
低濃度時填料塔高度h=qn(V) [dy/(y-y*)]/KyaS=qn(L)
[dx/(x*-x)]/KxaS=NOGHOG=NOLHOL,(K:傳質系數;S:塔截面積;a:單位體積填料有效接觸面積;NOG=
[dy/(y-y*)]:氣相總傳質單元數;HOG =qn(V)/KyaS:氣相總傳質單元高度);
相平衡線為直線時:NOG=ln[(1-S』)(y1-mx2)/(y2-mx2)+S』]/(1-S』),NOL=ln[(1-A)(y1-mx2)/(y2-mx2)+A]/(1-A),(吸收因數:A=1/S』=
qm(V)/mqm(V))。
6.填料塔:液體上進下出,氣體下進上出,其中設有液體在分布器,可使其均勻分布於填料表面,塔頂可按轉除末器。
六、乾燥
1.絕對濕度δ=0.622pV/(p-pV),(pV:水蒸汽分壓);相對濕度φ=
pV/pS,(pS:水蒸汽飽和分壓);濕焓I=Ig+δIv,(Ig:絕干空氣的焓;Iv:水蒸汽的焓)。
2.物料的干基濕含量X=m水/m絕干,是基濕含量ω=m水/m總×100%,ω=X/(1+X);物料分類:非吸濕毛細孔物料、吸濕多孔物料和膠體無孔物料;物料與水分:總水分、平衡水分、自由水分、非結合水分、結合水分。
3.乾燥過程物料衡算:qm,c(X1-X2)=qm,L(δ2-δ1)=qm,W,(qm,c:絕對乾料的質量流量;qm,L:絕干空氣質量流量;qm,W:乾料蒸發出水分的質量流量),即濕物料減少水分等於干空氣中增加的水分;
熱量衡算:q=qD+qP=qm,L(I2-I0)+qm,c(I』2-I』1)+qL,(qD:單位時間乾燥器熱量;qP:單位時間預熱氣熱量;qL:單位時間熱損失;I2:出乾燥器的空氣的焓;I0:進預熱器的空氣的焓;I』2,I』1:進出乾燥器物料的焓),qD=qm,L(I1-I0)
=qm,L(1.01+1.88δ0) (t1-t0),qD=qm,L(I2-I1)+qm,c(I』2-I』1)+qL;
乾燥器熱效率:η=qd/qP×100%,(qd=qm,L(1.01+1.88δ0) (t1-t2))。
4.乾燥速率U=h(t-tW)/rtw,(h:對流表面傳熱系數;t:恆定乾燥條件下空氣平均溫度;tW:初始狀態空氣濕球溫度;r:飽和蒸汽冷凝潛熱);
恆速乾燥階段時間:τ1=qm,c(X1-Xc)/UcS,(Xc:臨界濕含量;S:乾燥面積),降速乾燥階段時間:τ2=qm,c(Xc-X*)ln[(Xc-X*)/(
X2-X*)]/UcS。
5.乾燥器分類:廂式乾燥器、隧道乾燥器、轉筒乾燥器、帶式乾燥器、轉鼓乾燥器、噴霧乾燥、流化床乾燥器、氣流乾燥器、微波高頻乾燥。
七、新型分離技術
1.超臨界萃取:以超臨界流體作萃取劑(密度接近於液體,而粘度接近於氣體,擴散系數位於兩者之間),其具有很強的選擇性和溶解能力,傳質速率大;流程可分為:等溫法、等壓法和吸附吸收法。
2.膜分離技術:微濾、超濾、納濾、反滲透、透析、電滲析、氣膜膜分離、滲透氣化(溶質發生相變化,再透過側以氣相狀態存在)。
❸ 化工原理:精餾部分問題.
化工原理:精餾部分問題.
懸賞分:0 - 離問題結束還有 14 天 3 小時
題目如下:
1. 精餾?
2. y—x相圖中,相平衡曲線上各點的溫度是否相同?
3. 在汽液相平衡圖上,平衡線離對角線越遠/越近,表示該溶液的分離程度?
4. 連續精餾操作時,操作壓力對分離的影響?對物系的相對揮發度的影響?
5. 某雙組分物系的相對揮發度為2.5,若液相濃度xA=0.3(摩爾分率),則與之平衡的汽相濃度yA?
6. 連續精餾操作中有哪些必不可少的裝置?
7. 理論板?
8. 精餾塔中,若塔板上氣液兩相接觸越充分,則塔板分離能力越高,則滿足一定分離要求需要的實際/理論塔板數越少?
9. 總板效率?
10. 恆摩爾流?
11. 對酒精——水系統用普通精餾方法進行分離,只要塔板數足夠,是否可以得到純度為0.98(摩爾分率)以上的純酒精?
12. 某常壓精餾塔,塔頂設全凝器,現測得其塔頂/塔底溫度升高/降低,則塔頂/塔底產品中易揮發組分的含量將?
13. 在精餾過程中,當xD、xW、xF、q和塔頂產品量一定時,只增大/減小迴流比,則所需理論塔板數?操作費用將?
14. 連續操作中上的精餾塔,如採用的迴流比小於/大於原迴流比,則 ? ?
15. 某連續精餾塔,精餾段操作線方程為y=0.7x+0.2,則xD?,R?
16. 某連續穩定精餾塔操作過程,進料狀況為泡點,已知精餾段操作線方程式為y=0.8x+0.2,提餾段操作線方程為y=1.8x-0.03,則料液組成xF?
17. 精餾塔進料可能有5種不同的熱狀況,當進料為氣液混合物且氣液物質的量之比為3: 1時,則進料熱狀況q值為?
18. 各種進料狀態的名稱及其對應的q 值范圍;在相同分離任務下,進料狀態參數q對所需理論板數的影響。
19. 迴流比對精餾費用的影響?
20. 為完成某雙組分混合液的分離任務,某精餾塔的實際塔板數為20塊實際,總板效率為50%,則理論塔板數為?塊(包括塔釜)。
21. 用圖解法計算精餾所需的理論塔板數的步驟並作示意圖?
22. 板式塔的不正常操作有?
23. 用一精餾塔分離二元理想混合物,塔頂為全凝器冷凝,泡點溫度下迴流,原料液中含輕組分0.3(摩爾分數,下同),操作迴流比取最小迴流比的1.3倍,所得塔頂產品組成為0.90,釜液組成為0.02,料液的處理量為150 ,料液的平均相對揮發度為2,若進料時蒸氣量佔一半,試求: (1)提餾段上升蒸氣量;(2)自塔頂第2層板上升的蒸氣組成。
24. 在一常壓連續操作的精餾塔中,分離雙組分理想混合液。原料液量為1500kmol/h,xF = 0.5,xD = 0.8,xw = 0.03,R = 2Rmin。飽和液體進料,塔頂採用全凝器冷卻迴流,塔釜為間接蒸汽加熱。物系的平均相對揮發度 =3,試求:(1)塔頂及塔釜產品量;(2)寫出精餾段和提餾段操作線方程式。
(主字母後面為角標,因為問問無法識別.所以希望理解.)
❹ 多組分氣液平衡的計算問題
汽液相平衡,是指溶液與其上方蒸汽達到平衡時氣液兩相間各組分組成的關系。
理想溶液的汽液相平衡服從拉烏爾(Raoult)定律。
因此對含有A、B組分的理想溶液可以得出:
PA=PAoxA
(6-1a)
PB=PBoxB=
PBo(1-xA)
(6-1b)
式中:
PA,
PB
——溶液上方A和B兩組分的平衡分壓,
Pa;
PAo,PBo——同溫度下,純組分A和B的飽和蒸汽壓,
Pa;
xA,xB——混合液組分A和B的摩爾分率。
理想物系氣相服從道爾頓分壓定律,既總壓等於各組分分壓之和。
對雙組分物系:
P=PA+PB
(6-2)
式中:
P——氣相總壓,Pa;
PA和PB
—A,B組分在氣相的分壓,Pa。
根據拉烏爾定律和道爾頓分壓定律,可得泡點方程:
o
A
oBAPPppx
(6-4)式
(6-4)稱為泡點方程,該方程描述平衡物系的溫度與液相組成的關系。
可得露點方程式:
o
BoAo
B
oAAppppppy
6-5
式(6-5)稱為露點方程式,該方程描述平衡物系的溫度與氣相組成的關系。
在總壓一定的條件下,對於理想溶液,只要溶液的飽和溫度已知,根據A,B組分的蒸氣壓數據,查出飽和蒸汽壓PA0,
PB0,
則可以採用式(6-4)的泡點方程確定液相組成xA,採用式(6-5)的露點方程確定與液相呈平衡的氣相組成yA
❺ 雙組分溶液的氣液平衡是什麼對精餾有何作用
汽液相平衡,是指溶液與其上方蒸汽達到平衡時氣液兩相間各組分組成的關系。
理想溶液的汽液相平衡服從拉烏爾(Raoult)定律。
因此對含有A、B組分的理想溶液可以得出:
PA=PAoxA
(6-1a)
PB=PBoxB= PBo(1-xA)
(6-1b)
式中: PA, PB ——溶液上方A和B兩組分的平衡分壓,
Pa; PAo,PBo——同溫度下,純組分A和B的飽和蒸汽壓,
Pa;
xA,xB——混合液組分A和B的摩爾分率。
理想物系氣相服從道爾頓分壓定律,既總壓等於各組分分壓之和。
對雙組分物系:
P=PA+PB
(6-2)
式中:
P——氣相總壓,Pa;
PA和PB —A,B組分在氣相的分壓,Pa。
根據拉烏爾定律和道爾頓分壓定律,可得泡點方程:
o A oBAPPppx
(6-4)式
(6-4)稱為泡點方程,該方程描述平衡物系的溫度與液相組成的關系。
可得露點方程式:
o BoAo B oAAppppppy
6-5 式(6-5)稱為露點方程式,該方程描述平衡物系的溫度與氣相組成的關系。
在總壓一定的條件下,對於理想溶液,只要溶液的飽和溫度已知,根據A,B組分的蒸氣壓數據,查出飽和蒸汽壓PA0, PB0, 則可以採用式(6-4)的泡點方程確定液相組成xA,採用式(6-5)的露點方程確定與液相呈平衡的氣相組成yA
❻ 化學試劑的化學試劑的蒸餾和精餾
在化學分析、儀器分析、無機制備、有機合成以及其他的科學實驗工作中經常會遇到所用的化學試劑純度不夠,或買不到所需純度 的化學試劑,這就需要我們在實驗室自己對現有的化學試劑進行純化,以便得到所需純度的化學試劑。下面阿波羅試劑小編將蒸餾和精餾的方法加以簡單介紹。
蒸餾和精餾
蒸餾和精餾是一種使用廣泛的純化方法,根據液體混合物中液體和蒸汽之間混合組分的分配差別進行純化,是純化揮發性和半揮發性化學試劑的第一選擇。
一、蒸餾原理
蒸餾的主要目的是從含有雜質的化學試劑中分離出揮發性和半揮發性的雜質或將易揮發和半揮發的主體蒸發出來,將不揮發和 難揮發的雜質留下。一種物質在不同溫度下的飽和蒸汽壓變化是蒸餾分離的基礎。大體說來,如果液體混合物中兩種組分的蒸汽壓具有較大差別,就可以富集蒸汽相 中更多的揮發性和半揮發性的組分。兩相-液相和蒸氣相-可以分別地被回收,揮發性和半揮發性的組分富集在氣相中而不揮發性組分被富集在液相中。
除了烴類混合物和少數其它例子之外,Raoult定律和Dalton定律可用於理想混合物體系,混合物溶液常常不遵循 理想的蒸汽相-液相行為。應用這兩個定律可以得到一個二元體系的兩種組分的比揮發性(aAB): aAB = (YA/YB)/ (XA/XB) = P0A/ P0B 其中,YA和YB分別是平衡時氣相中組分A和B的摩爾分數,XA和XB分別是平衡時液相中組分A和B的摩爾分數,P0A和 P0B分別是平衡時組分A和B的蒸汽壓,均服從Raouilt定律。隨著aAB增加,富集程度也增加。
二、簡單蒸餾
最簡單的蒸餾裝置,如圖-1所示。當一個液體樣品被加熱並轉變成蒸汽時,其中有一部分被冷凝而回到原來的蒸餾瓶中,而 其餘的被冷凝並轉入收集容器中,前者叫迴流液,後者叫流出液。由於蒸餾是連續進行,逸出的和保存在液體中的組成在慢慢地改變。作為一種純化化學試劑的方法,簡單蒸餾只能分離具有較大的沸點差別的雜質,諸如沸點與主體差別大於50℃的雜質。若要除去沸點與主體差別小於50℃的雜質,則要採用下面介紹的精餾 方法。
簡單的常壓蒸餾裝置主要由帶有側管的蒸餾燒瓶、溫度計、冷凝器、收集器和加熱裝置等組成。安裝時,溫度計的水銀球應插 到較側管稍低的位置,蒸餾燒瓶的側管與冷凝器連接成卧式,冷凝器的下口與收集器連接(圖-1)。使用蒸餾裝置時,根據被蒸餾的化學試的沸點選擇加熱裝置: 被蒸餾液體的沸點在80℃以下時,用熱水浴加熱;液體沸點在 100℃以上時,在石棉網上用直火或者用油浴加熱;液體溫度在200℃以上時,用金屬浴加熱。
蒸餾沸點在150℃以上的液體時,可使用空氣冷凝器。為了使蒸餾順利進行,在液體裝入燒瓶後和加熱之前,必須在燒瓶內 加入沸石。因為燒瓶的內表面很光滑,容易發生過熱而突然沸騰,致使蒸餾不能順利進行。當添加新的沸石時,必須等燒瓶內的液體冷卻到室溫以後才可加入,否則 有發生急劇沸騰的危險。沸石只能使用一次,當液體冷卻之後,原來加入的沸石即失去效果,所以繼續蒸餾時,須加入新的沸石。在常壓蒸餾中,具有多孔、不易 碎、與蒸餾物質不發生化學反應的物質,均可用作沸石。常用的沸石是切成1~2毫米的素燒陶土或碎的瓷片。
蒸餾裝置安裝完畢,就可以開始加熱了。當蒸餾瓶中的物質開始沸騰時,溫度急劇上升。當溫度上升到被蒸餾物質沸點上下 1℃ 時,將加熱器的加熱強度調節到每秒鍾流出一滴的程度。此時,加熱浴的溫度應當保持在比蒸餾瓶中物質的沸點高20℃左右。蒸餾沸點較高的物質時,當蒸汽未達 到側管之前即被外氣冷卻而迴流,使其無法蒸餾出來。此時可使用微小火焰均勻加熱側管的下面,但要避免加熱過度,致使溫度計不表示正確的沸點,也可對蒸餾瓶 不加熱部分進行適當的保溫。在蒸餾操作中,應當注意以下幾點:
(1) 控制好加熱溫度。如果採用加熱浴,加熱浴的溫度應當比蒸餾液體的沸點高出若干度,否則難以將被蒸餾物蒸餾出來。加熱浴溫度比蒸餾液體沸點高出的越多,蒸餾 速度越快。但是,加熱浴的溫度也不能過高,否則會導致蒸餾瓶和冷凝器上部的蒸汽壓超過大氣壓,有可能產生事故,特別是在蒸餾低沸點物質時尤其越多注意。一 般地,加熱浴的溫度不能比蒸餾物質的沸點高出30℃。
(2) 蒸餾高沸點物質時,由於易被冷凝,往往蒸汽未到達蒸餾燒瓶的側管處即已經被冷凝而滴回蒸餾瓶中。因此,應選用短頸蒸餾瓶或者採取保溫措施,保證蒸餾順利進行。
(3) 蒸餾之前,必須了解被蒸餾的化學試劑及其雜質的沸點和飽和蒸汽壓,以決定何時(即在什麼溫度時)收集純化學試劑。
(4) 蒸餾燒瓶應當採用圓底燒瓶。
沸點在40-150℃的化學試劑可採用常壓的簡單蒸餾。對於沸點在150℃以上的化學試劑,或沸點雖在150℃以下,但熱不穩定、易熱分解的化學試劑,可以採用減壓蒸餾和水蒸汽蒸餾,下面分別加以簡單介紹。
1.減壓蒸餾的簡單裝置,整個系統由克氏(Claisen)蒸餾燒瓶、冷凝管、收集器、抽氣(真空泵)裝置、介面等部分組成。安裝減壓蒸餾裝置時,應當注意裝置是否密封,瓶塞必須選用品質良好的、比燒瓶的口徑稍大的塞子。瓶塞的材料選擇應當根據液體樣品蒸汽的性質來 決定。如果蒸汽對橡皮塞不會造成侵蝕時,使用橡皮塞容易保持密封。使用品質良好的磨砂器具時,也易於保持密封。裝置安裝完畢後,在開始蒸餾之前,必須對減 壓蒸餾裝置進行密封檢查。檢查方法是通過系統的壓力測量值的變化確認裝置的密封,如果壓力值沒有變化,說明裝置不漏氣,然後才能進行減壓蒸餾操作。 在減壓蒸餾時,可在蒸餾燒瓶內插入毛細管,以防止暴沸現象的發生。毛細管的上端是密封的,下端是開口的。檢查並確定蒸餾裝置密閉不漏氣後,將欲純化的 化學試 劑加入燒瓶中,加入量為燒瓶容量的一半,然後將體系抽成減壓狀態,並開始加熱。燒瓶浸入加熱浴的深度,務必使瓶內被蒸餾物質的液面低於加熱浴的液面。特別 是在蒸餾高沸點物質時,燒瓶應當盡量浸深一些。減壓蒸餾時,常常由於存在低沸點溶劑而產生泡沫,需要在開始蒸餾時在低真空度條件下將這些低沸點溶劑蒸餾除 去,然後再徐徐提高真空度。真空度的高低取決於裝置內液體樣品的蒸汽壓。餾出之前的冷卻效果必須良好,否則難以提高系統的真空度。
壓力與沸點的關系,可近似地由下式推導出:logP=A+(B/T)
式中P為蒸汽壓,T為絕對溫度,A、B為常數。在實際操作中,可參看有關的壓力沸點圖。 當蒸餾成分在希望的沸點被蒸餾完畢時,或者蒸餾過程需要中斷時,應當停止加熱,移開加熱浴,待冷卻後,緩緩解除系統真空,讓空氣進入裝置內以恢復常壓後關閉真空泵。
水蒸汽蒸餾是分離和純化樣品中有機物的常用方法,特別是在樣品中存在大量的樹脂狀雜質時。被處理的樣品組成應當具備以下條件:不溶或者幾乎不溶於水、在沸騰期間與水長時間共存不會發生化學變化、在100 ℃左右條件下必須具有大於10mmHg的蒸汽壓。
水蒸汽蒸餾也是另一種用於對熱靈敏的樣品制備和純化的技術。它也可以用於熱傳遞不好的液體樣品,局部過熱就會直接引起 加熱。完成蒸汽蒸餾可以通過連續地將蒸汽流過容器中樣品混合物。有時用戶加水直接進入燒瓶以進行同樣的目的。蒸汽攜帶著氣相中揮發性大的組分並且在蒸汽混 合物中這種揮發材料的濃縮與它們在蒸汽混合物中的蒸汽壓相關。
這種技術非常溫和,在蒸餾過程中被蒸餾的材料根本不會加熱到比蒸汽的溫度還高。在過程結束時,蒸汽和分離材料被冷凝。通常,它們是不混溶的並且可形成兩相而被分離。有時分析化學家必須使用附加的樣品制備技術,諸如液-液萃取以完全分離多水層和有機層。
2.水蒸汽蒸餾的簡單裝置,A是水蒸汽發生器,玻璃管B為液面計,可以看出發生內水面的高度。通常盛水量為容 器容積的75%為宜,如果太滿,沸騰時水將沖至燒瓶。安全玻管C幾乎插到發生器A的底部。當容器內氣壓太大時,水可以沿著玻管上升,以調節內壓。如果系統 發生堵塞,水便會從管的上口噴出,此時應當檢查園底燒瓶內的蒸汽導管下口是否已被堵塞。蒸餾部分通常使用500ml以上的長頸園底燒瓶。為了防止瓶中液體 因跳濺而沖入冷凝管內,故將燒瓶的位置向發生器的方向傾斜45度。瓶內液體樣品不宜超過其容積的1/3。蒸汽導入管E的末端應彎曲,使它垂直地正對瓶底中 央並且伸到接近瓶底。蒸汽導出管 F(彎角約30度)內徑最好比管E大一些,一端插入雙孔木塞,露出約5mm,另一端與冷凝管連接。餾液通過接液管進入接受器H。接受器外圍可用冷水浴冷卻。
在水蒸汽發生器與長頸園底燒瓶之間應裝上一個T形管,在T形管下端連一個彈簧夾G,以便及時除去冷凝下來堵塞水滴。
進行水蒸汽蒸餾時,先將樣品溶液置於D中。加熱水蒸汽發生器直至接近沸騰後才將G加緊,使水蒸汽均勻地進入園底燒瓶。 為了使蒸汽不致在D中冷凝而積聚過多,必要時可在D下置一石棉網,使用小火加熱。必須控制加熱速度使蒸汽能夠全部在冷凝管中冷凝下來。如果隨水蒸汽揮發的 物質具有較高的熔點,在冷凝後易於析出固體,應當調小冷凝水的流速,使它冷凝後仍保持液態。假如已有固體析出,並且接近堵塞時,可暫時停止冷卻水的流通, 甚至需要將冷卻水暫時放去,以使物質熔融後隨水流入接受器中。必須注意,當冷凝管夾套中要重新通入冷卻水時,需要小心並且緩慢地流進,以免冷凝管因驟冷而 破裂。萬一冷凝管已經被堵塞,應立即停止蒸餾,並且設法疏通。諸如使用玻棒將堵塞的物質捅出來或在冷凝管夾套中罐以熱水使之熔出。
在蒸餾需要中斷或者蒸餾完畢時,一定要先打開彈簧夾G使通大氣,然後停止加熱,否則D中的液體將會倒吸到A中。在蒸餾 過程中,如果發現安全管C中的水位迅速升高,則表示系統中發生了堵塞,此時應當立刻打開彈簧夾G,然後再移去熱源。待排除了堵塞後再繼續進行水蒸汽蒸餾。
三.精餾
精餾是用分餾柱進行的分餾,在精餾過程中,被精餾的化學試劑在蒸餾瓶中沸騰後,蒸汽從園底燒瓶蒸發進入分餾柱,在分餾 柱中部分冷凝成液體。此液體中由於低沸點成分的含量較多,因此其沸點也就比蒸餾瓶中的液體溫度低。當蒸餾瓶中的另一部分蒸汽上升至分餾柱中時,便和這些已 經冷凝的液體進行熱交換,使它重新沸騰,而上升的蒸汽本身則部分地被冷凝,因此,又產生了一次新的液體-蒸汽平衡,結果在蒸汽中的低沸點成分又有所增加。 這一新的蒸汽在分餾柱內上升時,又被冷凝成液體,然後再與另一部分上升的蒸汽進行熱交換而沸騰。由於上升的蒸汽不斷地在分餾柱內冷凝和蒸發,而每一次的冷 凝和蒸發都使蒸汽中低沸點的成分不斷提高。因此,蒸汽在分餾柱內的上升過程中,類似於經過反復多次的簡單蒸餾,使蒸汽中低沸點的成分逐步提高。由此可見, 在分餾過程中分餾柱是關鍵的裝置,如果選擇適當的分餾柱就可以在分餾柱的頂部出來的蒸汽經冷凝後所得到的液體可能是純的低沸點成分或者是低沸點佔主要成分 的流出物。
分餾柱的分餾能力和效率,分別用理論塔板值和理論塔板等效高度(HETP)來表示。一個理論塔板值相當於一次 簡單的蒸餾。具有同樣分餾能力的分餾柱,其長度不一定相等。例如:甲、乙兩個分餾柱,它們的理論塔板值都是20,甲的高度為60厘米,乙的高度為20厘 米。顯然,兩者的理論塔板等效高度是不同的。因為理論塔板等效高度為:
HETP=分餾柱高度/理論塔板數
所以,甲分餾柱的理論塔板等效高度為3厘米,而乙分餾柱的理論塔板等效高度為1厘米。通過這個例子可以看出,分餾柱的理論塔板等效高度越低,其單位長度的分餾效率越高。
在進行精餾操作時,主要根據被精餾的化學試劑中主體與雜質的沸點差別及其沸點的高低范圍選擇分餾柱。如果兩組分的沸點 差在100℃以上時,可以不使用分餾柱;如果沸點差在25℃左右時,可選擇普通的分餾柱;如果沸點差在10℃左右時,需要使用精細的分餾柱,諸如,微格羅 分餾柱等。精餾過程使用的加熱源必須穩定,以保證加熱溫度穩定。只有嚴格控制和恆定的加熱,才能保持所需要的迴流比值。如果加熱過快,會產生液泛現象,分 餾效率也太差。如果加熱太慢,分餾柱就只能起到迴流冷凝的作用,根本蒸餾不出來任何東西。此外,在精餾時,迴流物和餾出物需要一個適當的比例,即迴流比要 適當,其值大體上與分餾柱的理論塔板值相等,這樣,才能使精餾過程正常進行。
四.蒸餾和精餾的實際應用
蒸餾和精餾主要用於液體、或是加熱可成為液體的化學試劑,特別是用於有機化學試劑的純化。在蒸餾或精餾之前,有時可加入某些化學試劑,與欲純化的化學試劑中的雜質發生化學反應,生成沸點更高(或更低)的物質,在蒸餾或精餾是更容易除去。
在蒸餾或精餾時,往往是除去最初餾出的餾分和最後剩下的餾分,兩頭除去的越多,得到的化學試劑純度就越高,但產率越低。
❼ 雙組分理想溶液的氣液相平衡遵循什麼規律
雙組分溶液的氣液平衡是什麼?對精餾有何作用
汽液相平衡,是指溶液與其上方蒸汽達到平衡時氣液兩相間各組分組成的關系.
理想溶液的汽液相平衡服從拉烏爾(Raoult)定律.
因此對含有A、B組分的理想溶液可以得出:
PA=PAoxA
(6-1a)
PB=PBoxB= PBo(1-xA)
(6-1b)
式中:PA,PB ——溶液上方A和B兩組分的平衡分壓,
Pa; PAo,PBo——同溫度下,純組分A和B的飽和蒸汽壓,
Pa;
xA,xB——混合液組分A和B的摩爾分率.
理想物系氣相服從道爾頓分壓定律,既總壓等於各組分分壓之和.
對雙組分物系:
P=PA+PB
(6-2)
式中:
P——氣相總壓,Pa;
PA和PB —A,B組分在氣相的分壓,Pa.
根據拉烏爾定律和道爾頓分壓定律,可得泡點方程:
o A oBAPPppx
(6-4)式
(6-4)稱為泡點方程,該方程描述平衡物系的溫度與液相組成的關系.
可得露點方程式:
o BoAo B oAAppppppy
6-5 式(6-5)稱為露點方程式,該方程描述平衡物系的溫度與氣相組成的關系.
在總壓一定的條件下,對於理想溶液,只要溶液的飽和溫度已知,根據A,B組分的蒸氣壓數據,查出飽和蒸汽壓PA0,PB0,則可以採用式(6-4)的泡點方程確定液相組成xA,採用式(6-5)的露點方程確定與液相呈平衡的氣相組成yA
-------------------
氣液相平衡以及相平衡常數的物理意義是什麼?
相就是指在系統中具有相同的物理性質和化學性質的均勻部分,不同相之間往往有一個相界面把不同的相分開,例如,液相和固相,液相和氣相之間。在一定的溫度和壓力下,如果物料系統中存存兩個或兩個以卜的相.物料在各相的相Xi量以及物料中各組分在各相中的濃度不隨時間變化,我們稱此狀態叫相平衡。在蒸餾過程中,當蒸氣未被引出前與液體處於某一相同的溫度和壓力下,並且相互密切接觸,同時氣相和液相的相對量以及組分在兩相中的濃度分布都不再變化,稱之為達到了相平衡(氣一液相平衡)。
相平衡時系統內溫度、壓力和組成都是一定的,一個系統中氣液相達到平衡狀態有兩個條件:①液相中各組分的蒸汽分壓必須等於氣相中同組分的分壓;各組分在單位時間內汽化的分子數和冷凝的分子數就相等;②液相的溫度必須等於氣相的溫度,否則兩相間會發生熱交換,當任一相的溫度升高或降低時,勢必引起各組分量的變化。這就說明在一定溫度下,氣液兩相達到相平衡狀態時,氣液兩相中的同一組分的摩爾分數比衡定。相平衡方程如下式:
yA=kAXA式中yA-組分在氣相中的摩爾分率;XA-組分在液相中的摩爾分率;kA-組分的平衡常數。
氣液兩相平衡時,兩相溫度相等,此溫度對氣相來說,代表露點溫度;對液相來說,代表泡點溫度。
氣液平衡是兩相傳質的極限狀態。氣液兩相不平衡到平衡的原理,是氣化和冷凝、吸收和解吸過程的基礎。例如,蒸餾的最基本過程就是氣液兩相充分接觸,通過兩相組分濃度差和溫度差進行傳質傳熱,使系統趨近於動平衡,這樣經過塔板多級接觸,就能達到混合物組分的最大限度分離。
氣液相平衡常數K是指氣液兩相達到平衡時,在系統的溫度、壓力條件下,系統中某一組分i在氣相中的摩爾分率Yi與液相中的摩爾分率戈,的比值。即
Kt=Yi/X,
相平衡常數是石油蒸餾過程相平衡計算時最重要的參數,對於壓力低於0.3MPa的理想溶液,相平衡常數可以用下式計算:
Kt=Pi/PK,=P;/P
式中P?-i組分在系統溫度下的飽和蒸氣壓,Pa;
P-系統壓力,Pa。
對於石油或石油餾分,可用實沸點蒸餾的方法切割成為沸程在10~30℃的若干個窄餾分、把每個窄餾分看成為一個組分——假組分,藉助於多元系統氣液相平衡計算的方法、進行石油蒸餾過程中的氣液相平衡的計算。
❽ 考研復試時「化工綜合」是指哪幾門課啊
不同學校不一樣吧,這里的是北京化工大學的化工綜合課程,包括三部分:《化工原理》《反應工程》《化工熱力學》
第一部分《化工原理》考試大綱
一.適用的招生專業 化學工程與技術:化學工藝、化學工程、工業催化。
二.考試的基本要求
1.掌握的內容
流體的密度和粘度的定義、單位及影響因素,壓力的定義、表示法及單位換算;流體靜力學方程、連續性方程、柏努利方程及其應用;流動型態及其判據,雷諾准數的物理意義及計算;流體在管內流動的機械能損失計算;簡單管路的計算;離心泵的工作原理、性能參數、特性曲線,泵的工作點及流量調節,泵的安裝及使用等。
非均相混合物的重力沉降與離心沉降基本計算公式;過濾的機理和基本方程式。
熱傳導、熱對流、熱輻射的傳熱特點;傳導傳熱基本方程式及在平壁和圓筒壁定態熱傳導過程中的應用;對流傳熱基本原理與對流傳熱系數,流體在圓形直管內強制湍流時對流傳熱系數關聯式及其應用;總傳熱過程的計算;管式換熱器的結構和傳熱計算。
相組成的表示法及換算;氣體在液體中溶解度,亨利定律各種表達式及相互間的關系;相平衡的應用;分子擴散、菲克定律及其在等分子反向擴散和單向擴散的應用;對流傳質概念;雙膜理論要點;吸收的物料衡算、操作線方程及圖示方法;最小液氣比概念及吸收劑用量的確定;填料層高度的計算,傳質單元高度與傳質單元數的定義、物理意義,傳質單元數的計算(平推動力法和吸收因數法);吸收塔的設計計算。
雙組分理想物系的氣液相平衡關系及相圖表示;精餾原理及精餾過程分析;雙組分連續精餾塔的計算(包括物料衡算、操作線方程、q線方程、進料熱狀況參數q的計算、迴流比確定、求算理論板層數等);板式塔的結構及氣液流動方式、板式塔非理想流動及不正常操作現象、全塔效率和單板效率、塔高及塔徑計算。
濕空氣的性質及計算;濕空氣的焓濕圖及應用;乾燥過程的物料衡算和熱量衡算;恆速乾燥階段與降速乾燥階段的特點;物料中所含水分的性質。
液液萃取過程;三角形相圖及性質。
柏努利演示實驗;雷諾演示實驗;流體阻力實驗;離心泵性能實驗;精餾實驗;吸收(解吸)實驗。
2.熟悉的內容
層流與湍流的特徵;復雜管路計算要點;測速管、孔板流量計及轉子流量計的工作原理、基本結構與計算;往復泵的工作原理及正位移特性;離心通風機的性能參數、特性曲線。
沉降區域的劃分;降塵室生產能力的計算。
有相變對流傳熱過程及影響因素;復雜流動的平均溫度差求算;列管式換熱器的設計要點;傳熱過程強化措施。
各種形式的傳質速率方程、傳質系數和傳質推動力的對應關系;各種傳質系數間的關系;氣膜控制與液膜控制;吸收劑的選擇;吸收塔的操作型分析;解吸的特點及計算。
理論板層數簡捷計演算法;精餾裝置的熱量衡算;平衡蒸餾、簡單蒸餾的特點及計算;塔板的主要類型、塔板負荷性能圖的特點及作用。
空氣通過乾燥器時的狀態變化;臨界含水量的含義及影響因素;恆速乾燥階段乾燥時間的計算方法;乾燥過程的強化。
物料衡算與杠桿定律。
3.了解的內容
層流內層與邊界層;其它化工用泵的工作原理及特性;往復壓縮機的工作原理。
降塵室、沉降槽、離心沉降、過濾等設備的構造、原理及選擇; 非均相混合物分離過程的強化。
常用換熱器類型、結構及工作原理;熱輻射基本概念及計算;對流與輻射聯合傳熱。
分子擴散系數及影響因素;塔高計算基本方程的推導。
其它精餾方式的特點;精餾過程的強化及展望。
各種乾燥器的結構及工作原理;乾燥器的設計要點。
部分互溶物系的相平衡;分配系數與選擇性系數;單級萃取;多級錯流萃取;多級逆流萃取;萃取設備。
三.考試的方法和考試時間
考試為閉卷筆試,可以使用無字典和編程功能的電子計算器;考試時間為1.5小時。
四.考試的主要內容與要求
1、流體流動概述與流體靜力學
流體流動及輸送問題;流體流動的考察方法;定態流動與非定態流動;流體流動的作用力;牛頓粘性定律;流體的物性;壓強特性及表示方法;靜力學方程及應用;液柱壓差計。
2、流體流動的守恆原理
流量與流速的定義;流體流動的質量守恆;流體流動的機械能守恆;柏努利方程及應用;動量守恆原理及應用。
3、流體流動的內部結構與阻力計算
雷諾實驗;兩種流動型態及判據;層流與湍流的特徵;管流剪應力分布和速度分布;邊界層概念;邊界層分離現象;直管阻力;層流阻力;摩擦系數;湍流阻力——因次分析法;當量的概念(當量直徑,當量長度);局部阻力;流動總阻力計算。
4、管路計算與流量測量
簡單管路計算:管路設計型計算特點及方法、管路操作型計算特點及方法;復雜管路的特點及計算方法;流動阻力對管內流動的影響;孔板流量計、文丘里流量計及轉子流量計的測量原理和計算方法。
5、離心泵
流體輸送機械分類;管路特性方程;帶泵管路的分析方法——過程分解法;離心泵工作原理與主要部件;氣縛現象;理論壓頭及分析;性能參數與特性曲線;工作點和流量調節;泵組合操作及選擇原則;安裝高度與汽蝕現象;離心泵操作與選型。
6、其它類型泵與氣體輸送機械
正位移泵工作原理與結構、性能參數與流量調節(往復泵、旋轉泵等);旋渦泵的結構、工作原理及流量調節;氣體輸送機械分類;離心式通風機工作原理;性能參數與計算;羅茨鼓風機、真空泵、離心壓縮機與往復壓縮機。
7、液體攪拌
攪拌的目的及方法;機械攪拌裝置的基本構件;常用攪拌器的類型及特點;攪拌器的功能;均相液體的混合機理;非均相物系的混合機理;常見攪拌器的性能;強化湍動的措施。
8、流體通過顆粒層的流動
非均相分離概論;顆粒床層的特性;流體通過顆粒層的壓降——數學模型法;過濾原理與設備;過濾速率、推動力和阻力的概念——過濾速率工程處理方法;過濾基本方程及應用;過濾常數;恆壓過濾與恆速過濾;板框過濾機性能分析與計算;加壓葉濾機性能分析與計算;回轉真空過濾機性能分析與計算;加快過濾速率的途徑。
9、顆粒的沉降與流態化
沉降原理;流體對顆粒運動的阻力;球形顆粒的曳力系數與斯托克斯定律;自由沉降過程;重力沉降速度;重力沉降設備(降塵室性能分析);離心沉降速度;離心沉降設備(旋風分離器性能分析);固體流態化概念;散式流態化與聚式流態化;流化曲線與流化床特徵;起始流化速度與帶出速度;流化床操作及其強化。
10、.傳熱概述與熱傳導
傳熱過程在化工生產中的應用;傳熱的基本方式;工業換熱過程;傳熱速率;傅立葉定律;導熱系數及影響因素;一維定態熱傳導計算(單層與多層平壁、單層與多層圓筒壁)。
11. 對流傳熱
對流傳熱過程分析;牛頓冷卻定律;對流傳熱系數及其影響因素;無相變對流傳熱系數經驗關聯式的建立;准數方程與准數的物理意義;管內強制對流傳熱、管外強制對流傳熱、自然對流傳熱、蒸汽冷凝傳熱、液體沸騰傳熱。
12. 熱輻射
物體的輻射能力;斯蒂芬-波爾茲曼定律;克希霍夫定律;兩灰體間的輻射傳熱。
13. 傳熱過程的計算
間壁換熱過程;熱量衡算式及總傳熱速率方程;總傳熱系數計算、熱阻及傳熱平均溫度差——傳熱速率的工程處理方法;污垢熱阻;壁溫的計算;傳熱設計型問題的參數選擇和計算方法;傳熱操作型問題的分析和計算方法(傳熱效率及傳熱單元數)。
14. 換熱器
間壁式換熱器類型、結構及應用;列管式換熱器的設計與選用;換熱器的強化及其它類型。
15.氣體吸收概述與氣液相平衡
吸收依據;吸收目的;吸收過程的工業實施;吸收與解吸的特徵;吸收過程的分類;吸收劑的選擇;吸收過程的經濟性;氣體在液體中的溶解度;亨利定律;溫度、壓力對相平衡的影響;相平衡與吸收過程的關系。
16.擴散與單相傳質
分子擴散與費克定律;氣相和液相中的分子擴散(等摩爾反向擴散、單相擴散);擴散系數及其影響因素;渦流擴散與對流傳質;相內傳質速率方程與傳質分系數。
17.相際傳質
雙膜理論;相際傳質速率方程與總傳質系數;傳質推動力與傳質系數的關系——傳質速率的工程處理方法;吸收過程傳質阻力分析及控制質阻。
18.低濃度氣體吸收(解吸)的計算
低濃度氣體吸收的假定;物料衡算與操作線方程;傳質速率與填料層高度的計算;傳質單元數與傳質單元高度——過程分解法;傳質單元數的計算;吸收塔的設計型計算(吸收過程設計中參數的選擇;最小液氣比;塔內返混的影響);吸收塔的操作型計算(計算方法及吸收過程的強化);吸收與解吸過程的對比分析;板式吸收塔計算。
19.液體蒸餾概述與二元物系的氣液相平衡
蒸餾依據;蒸餾目的;蒸餾過程的工業實施;蒸餾操作的經濟性;理想溶液的氣液相平衡;拉烏爾定律、相圖及相平衡曲線;泡點及露點的計算;相對揮發度;非理想溶液的氣液平衡。
20.平衡蒸餾與簡單蒸餾
平衡蒸餾;簡單蒸餾;平衡蒸餾與簡單蒸餾的比較。
21.精餾
精餾原理;全塔物料衡算;恆摩爾流假定;理論板及板效率;加料板過程分析;精餾段與提餾段操作方程。
22.雙組分精餾的設計型計算和操作型計算
理論塔板的逐板計演算法及圖解法;迴流比影響及選擇;全迴流及最少理論板數;最小迴流比;進料熱狀況影響及選擇;雙組分精餾過程的其它類型;實際塔板與全塔效率;填料精餾塔計算;操作參數對精餾過程的影響;精餾塔的溫度分布與靈敏板。
23.間歇精餾與特殊精餾
間歇精餾的特點;恆迴流比操作與恆餾出液組成操作;恆沸精餾的原理及應用;萃取精餾的原理及應用;恆沸精餾與萃取精餾的比較。
24.氣液傳質設備
氣液傳質過程對塔設備的一般要求;塔設備類型及特點;板式塔的設計意圖;板式塔的結構;板上氣液接觸狀態;塔板水力學性能和不正常操作現象;塔板負荷性能圖;板式塔的效率;評價板式塔的性能指標;常見塔板型式及特點;篩板塔工藝計算內容;填料塔結構;填料種類及特性;氣液兩相在填料塔內的流動;填料塔壓降與空塔氣速的關系;最小噴淋密度;填料塔工藝計算方法;填料塔內的傳質。
25. 液液萃取
液液萃取過程;三角形相圖及性質;物料衡算與杠桿定律;部分互溶物系的相平衡;分配系數與選擇性系數;單級萃取;多級錯流萃取;多級逆流萃取;萃取設備。
26.固體乾燥概述與乾燥靜力學
物料的去濕方法;乾燥過程的分類;乾燥操作的經濟性;濕空氣的性質及計算;空氣的濕度圖及應用;濕空氣狀態的變化過程;水分在氣固兩相間的平衡(結合水分與非結合水分,平衡水分與自由水分)
27. 乾燥速率與乾燥過程的計算
恆定乾燥條件下的乾燥速率;乾燥曲線與乾燥速率曲線;乾燥機理;間歇乾燥過程的計算;連續乾燥過程的特點;連續乾燥過程的物料衡算、熱量衡算及乾燥器的熱效率。
28.乾燥設備
工業常用的乾燥器;乾燥器的性能要求與選型原則。
29.實驗。
(1)柏努利演示實驗
實測靜止和流動的流體中各項壓頭及其相互轉換;驗證流體靜力學原理和柏努利方程;實測流體流動壓頭變化及相應壓頭損失,確定兩者相互之間關系。
(2).雷諾演示實驗
觀測雷諾數與流體流動類型關系;觀察層流中流體質點的速度分布。
(3)流體阻力實驗
掌握流體流動阻力測定方法,測定直管摩擦阻力系數及局部阻力系數;驗證層流區摩擦阻力系數與雷諾數和管子相對粗糙度關系。
(4)離心泵性能實驗
測定離心泵性能曲線並確定最佳工作范圍;測定孔板流量計的孔流系數。
(5)強制對流傳熱膜系數的測定實驗
通過實驗確定傳熱膜系數准數關聯式中的系數和指數;分析影響傳熱膜系數的因素;了解強化傳熱的途徑。
(6)精餾實驗
掌握精餾塔的操作方法與調節方法;測定全迴流全塔效率及單板效率。
(7)吸收(解吸)實驗
觀察填料塔流體力學狀態,測定壓降與氣速的關系曲線;測定總傳質系數,分析其影響因素。
五.試卷結構
試卷滿分50分,解答題和計算題。
六.主要參考書
陳敏恆等編.化工原理(上、下冊)(第三版).北京:化學工業出版社,2006。
第二部分《反應工程》考試大綱
一.適用的招生專業
化學工程與技術:化學工藝、化學工程、工業催化。
二.考試的基本要求
要求考生掌握化學反應工程的基本原理,理想反應器的基本計算,非理想反應器的基本概念,具備利用化學反應工程的基本知識分析和解決工程實際問題的能力。
1.掌握均相化學反應動力學的基本概念和建立動力學方程的方法。
2.掌握理想反應器的形式、特點和基本計算。
3.掌握簡單級數反應、連串反應、平行反應、可逆反應及自催化反應的特性及不同反應器型式與反應轉化率、選擇性及收率的關系。
4.掌握非理想流動反應器的基本概念及表述方法,停留時間分布的概念及停留時間分布參數的意義和測定。了解非理想流動模型的形式及處理問題的方法。
5.掌握氣固相催化反應本徵動力學的概念及動力學模型的建立方法。
6.掌握氣固相催化反應宏觀動力學的內容,有效因子的概念及基本計算。
7.掌握氣固相催化固定床反應器的模型化方法。
三.考試的方法和考試時間
考試為閉卷筆試,可以使用無字典和編程功能的電子計算器;考試時間為45分鍾。
四.考試的主要內容與要求
1.均相化學反應動力學
等溫條件下簡單級數反應、連串反應、平行反應、可逆反應及自催化反應的計算。
2.均相理想反應器
了解返混的概念,理想反應器的形式與操作方式及特點。
簡單級數反應、連串反應、平行反應、可逆反應及自催化反應在理想反應器中進行時,反應時間、反應器體積、轉化率、收率、選擇性的計算。
3.非理想流動反應器
非理想流動的基本概念,停留時間分布及非理想流動模型的簡單計算。
4.氣固相催化反應動力學
催化劑表面吸附、反應的基本概念,本徵動力學、宏觀動力學建立的方法,催化劑有效因子的計算方法。
5.氣固相催化固定床反應器
固定床反應器的模型化方法,簡單的模型推導,模型參數的意義。
五.試卷結構
試卷滿分25分,全部為解答題。
六.主要參考書
郭鍇,唐小恆,周緒美,化學反應工程.北京:化學工業出版社,2000
第三部分《化工熱力學》考試大綱
一.適用的招生專業
化學工程與技術:化學工藝、化學工程、工業催化。
二.考試的基本要求
要求考生系統地理解化工熱力學的知識結構,掌握基本定義和基本概念,掌握熱力學性質數據的獲取方法(查閱文獻、建立數學模型、利用實驗數據等)與評價方法;以及掌握熱力學原理的應用方法(針對化工生產中的相平衡和化學平衡問題、能量轉換與利用問題,進行過程條件或系統特性的分析與計算)。具體包括:
掌握截項virial方程、立方型方程、普遍化關聯式的使用;
熟悉狀態方程的基本選擇方法;
掌握飽和液體體積的計算方法;
掌握剩餘性質的計算,單組分流體的焓變與熵變的計算;
掌握水蒸汽表、熱力學性質圖的使用;
掌握偏摩爾性質及其與混合物性質關系的分析與計算;
掌握多組分流體的焓變與熵變的計算;
掌握系統能量平衡方程的表述方法;
掌握氣體壓縮過程與膨脹過程在T-S圖和lnp-H圖上的分析與計算;
熟悉簡單蒸汽動力循環在T-S 圖和lnp-H圖上的分析與計算;
掌握氣體純組分逸度的計算,液體純組分逸度的計算,多組分體系中的組分逸度的計算;
熟悉溶解度參數模型、van larr模型、Margulars模型和Wilson模型的使用(包括模型參數的獲取);
熟悉活度系數模型的基本選擇方法;
掌握 損失的概念以及能量質量不守衡定理;
熟悉 的計算;
熟悉系統 平衡方程的表述方法以及 分析的基本方法;
掌握VLE關系的基本模型及及選用;
掌握互溶系VLE平衡問題的計算;
熟悉平衡組成的反應進度表示方法;
掌握化學平衡關系的基本模型及選用;
掌握均相氣相反應計算方法。
三.考試的方法和考試時間
開卷筆試。僅允許帶一冊化工熱力學教科書,但不可攜帶其他任何文字材料。可以使用電子計算器。
考試時間為45分鍾。
四.考試的主要內容與要求
1. 流體的pVT關系
理解氣體的非理想性,掌握狀態方程的基本選擇方法;
掌握截項virial方程、立方型方程、普遍化關聯式的使用;
熟悉狀態方程的混合規則(基本類型)與交互作用參數的使用(簡化原則與獲得方法),熟悉混合物pVT 關系的原則求解方法;
熟悉狀態方程的基本選擇方法;
掌握飽和液體體積的計算方法;
理解學習流體的pVT關系的應用意義。
2. 流體的熱力學性質:焓和熵
了解單組分流體的熱力學基本關系;
熟悉Bridgeman表的使用;
熟悉蒸汽壓方程,掌握蒸汽壓的計算;
掌握剩餘性質的計算,單組分流體的焓變與熵變的計算;
掌握水蒸汽表、熱力學性質圖的使用;
了解多組分流體的熱力學基本關系;
理解多組分流體的非理想性,掌握混合物與溶液的概念區別;
掌握理想混合物的概念,熟悉混合性質的基本關系;
掌握偏摩爾性質及其與混合物性質關系的分析與計算;
掌握多組分流體的焓變與熵變的計算。
3. 能量利用過程與循環
掌握系統能量平衡方程的表述方法;
掌握氣體壓縮過程與膨脹過程在T-S圖和lnp-H圖上的分析與計算;
熟悉簡單蒸汽動力循環(Rankine cycle)在T-S 圖和lnp-H圖上的分析與計算;
熟悉簡單蒸汽壓縮製冷循環在T-S 圖和lnp-H圖上的分析與計算;
了解熱泵的概念與基本原理;
了解深度冷凍與液化的基本原理。
4. 流體的熱力學性質:逸度與活度
了解多組分流體熱力學性質標准態的規定;
掌握氣體純組分逸度的計算,液體純組分逸度的計算,多組分體系中的組分逸度的計算;
了解超額性質及其與活度系數的關系;
了解用活度計算混合焓;
熟悉溶解度參數模型、van larr模型、Margulars模型和Wilson模型的使用(包括模型參數的獲取);
熟悉活度系數模型的基本選擇方法;
了解其它常用的活度系數模型。
5. 過程熱力學分析
掌握熵產生、 損失的概念、以及能量質量不守衡定理;
掌握函數的概念,熟悉環境基準態的概念,以及物質標准 的計算;
掌握熱量 的計算;
熟悉穩定流動體系 函數的原則求解方法;
熟悉系統 平衡方程的表述方法;
熟悉 效率與 損失率;
熟悉 分析的基本方法。
6. 流體相平衡
熟悉二元體系VLE與LLE相圖
掌握VLE關系的基本模型及選用;
了解VLE數據的熱力學一致性檢驗方法;
了解LLE關系的基本模型及選用;
掌握互溶系VLE平衡問題的計算;
熟悉共沸現象的判別方法。
7. 化學平衡
熟悉平衡組成的反應進度表示方法;
熟悉反應體系的獨立反應數的確定方法;
掌握化學平衡關系的基本模型及選用;
掌握均相氣相反應計算方法;
了解液體混合物反應、溶液反應和非均相反應平衡的計算方法。
五.試卷結構
試卷滿分25分。試題形式為解答題、計算題等。
六.主要參考書
鄭丹星.流體與過程熱力學.北京:化學工業出版社,2005
❾ 當迴流比 r<rmin 時,精餾塔是否還能進行操作如何確定精餾塔的操作迴流比
進料狀況一般是泡點進料,此時需要塔板最少。
迴流比一般取1.2-2倍最小回內流比。最小迴流比取容決於物系,理想物系則是精餾段操作線和平衡線相交時計算。非理想物系根據情況,一般是操作線(精餾段或提留段)與平衡線相切時得到最小迴流比。
適用間歇式及連續式操作的常規精餾以及萃取精餾.恆沸精餾等殊精餾過程。特別適用高凝.高沸精餾。好的電磁線圈和結構部件、加上好的設計方案和製造工藝,使得好的迴流比控制器比一般的更加方便耐用、控制精準。
(9)對雙組份理想物系蒸餾擴展閱讀:
從雙組分精餾的圖解法計算(見精餾)可知:增大迴流比可減少分離所需的理論板數。但迴流比的增大,必要求塔釜產生的蒸氣量相應增加。迴流比增大的上限是全迴流即進入冷凝器的蒸氣在冷凝後全部返回塔中。在全迴流條件下,分離所需的理論板數最少。
當迴流比減小至某一數值時,理論上為達到指定分離要求所需板數趨於無窮大,這是迴流比的下限,稱為最小迴流比[cdhmin]。當操作迴流比下降到小於最小迴流比時,就不能達到規定的分離要求。最小迴流比不僅取決於分離要求,還與料液的相對揮發度和料液組成以及進料的熱狀態有關。
❿ 為什麼蒸餾時最好控制餾出液的速度為1~2滴為宜
因為在蒸餾的時候,是利用溫度氣化被分離的物質,達到分離的目的。一般講餾分的滴液是每秒1-2滴為宜,這個數據是經過很多化學工作者實驗當中積累出來的經驗數據。
如果蒸餾速度快了,溫度一定會高於某種餾分的沸點,其它的餾分因為溫度上升也會被蒸出,達不到最佳的分離效果。
利用混合液體或液-固體系中各組分沸點不同,使低沸點組分蒸發,再冷凝以分離整個組分的單元操作過程,是蒸發和冷凝兩種單元操作的聯合。與其它的分離手段,如萃取、過濾結晶等相比,它的優點在於不需使用系統組分以外的其它溶劑,從而保證不會引入新的雜質。
(10)對雙組份理想物系蒸餾擴展閱讀:
液體的分子由於分子運動有從表面溢出的傾向。這種傾向隨著溫度的升高而增大。如果把液體置於密閉的真空體系中,液體分子繼續不斷地溢出而在液面上部形成蒸氣,最後使得分子由液體逸出的速度與分子由蒸氣中回到液體的速度相等,蒸氣保持一定的壓力。
將液體加熱至沸騰,使液體變為蒸氣,然後使蒸氣冷卻再凝結為液體,這兩個過程的聯合操作稱為蒸餾。很明顯,蒸餾可將易揮發和不易揮發的物質分離開來,也可將沸點不同的液體混合物分離開來。但液體混合物各組分的沸點必須相差很大(至少30℃以上)才能得到較好的分離效果。