1. 水利工程水文地质问题探讨
在水利工程的建设中,地下水作为岩土体的组成部分会对建设场地的地基岩土体造成直接的影响,还会影响工程场地和建筑物基础的耐久性和稳定性。目前我国的病险水库所产生的主要原因之一,就是前期对水文地质的勘探工作没有到位,因此做好水文地质的勘探工作,对水利工程的建设有着重要的意义。
水利工程中水文地质概论
能够对水利工程造成影响的水文地质因素有地下水的类型、地下含水层、隔水层的分布、组合情况、地下水水位的变化幅度、岩层和土层的渗透性、承压含水层的特征等。为了提高水利工程的建设质量,应该在工程建设之初加强对工程该地水文地质等问题的研究。不仅要对和工程有关的水文地质问题进行查明,对地下水可能对工程建设产生的影响及作用进行评价,还应该及时提出预防及治理的措施和建议。以消除水文地质环境对水利工程建设的危害。
地下水引发的水利工程的危害
潜水位上升造成的危害
水库的修建、附近地区湖泊、河流、水库的水位升高、灌溉工程施工、工业废水的排放和地下管道的渗漏等情况都可能造成潜水位的上升。潜水位上升对建筑施工的安全有着严重的影响,可能造成的危害有:建筑地基软化,使建筑物发生较大幅度的沉降变形;使地基发生隆起或者侧向的位移,引起建筑物失稳;引发砂土地质的液化,造成流砂、管涌;引发地下室浸水;引起土壤的盐碱化,增强对建筑物的腐蚀等。
地下水位下降造成的危害
地下水位降低的现象,其大多数原因是人为的因素,比如对地下水进行大量的抽取、采矿活动中形成矿床疏干或者上游筑坝、对水库下游地下水进行劫夺等等。地下水的水位下降经常诱发地面的沉降、塌陷、地震等地埋尺质灾害,还会引发地下水质恶化、水源枯竭等现象,在特殊的地区还可能形成海水的倒灌或者沙漠化,对工程建筑、岩土体等的稳庆誉定性和人员的生命财产安全造弯差高成很大的威胁。
地下水位升降造成的危害
地下水位发生升降和波动其主要的原因有气候的变化、月球的引力变化、湖泊、河流、水库等的水位变化、气压变化以及潮汐作用等。地下水位反复升降可能造成的危害有:对建筑工程材料造成腐蚀破坏、使得木制品更容易腐烂、引起岩土的不均匀变形、使得某些含盐底层发生溶解作用,对建筑物产生位移效果等。
水利工程常见的水文地质条件
水文
地区的水文条件一般包括地下水的类型,比如潜水、上层滞水、层压水等;该地岩层的水理特性,包括给水性、透水性、溶水性等;地下隔水层和含水层的厚度、深度、组合关系以及空间分布的状况和规律等;地下水形态特征如水位、水温、水质的变化规律等;地下水的运动特征如流向、流量、流速、和周围水系的补给关系等;地下水的水质,包括其化学性质、物理性质和评价标准等。
水文条件关系到水利工程建设中坝基是否稳定、水库是否漏水、地下水资源是否可靠等问题,是水利工程建设中重要的影响因素。
土石的类型和性质
土和岩石在水利工程建设中作为建筑物的建筑材料、地基、建筑介质等,对建筑物有着重要的影响,土石的性质和类型关系到了建筑物的安全性和稳定性,并且对建筑物在经济上的可行性和对技术选择的合理性都有着影响。
地质结构
地质结构的因素包括了岩体结构和地质构造两个方面,地质构造按照构造形态能够分为褶皱构造、倾斜构造和断裂构造三种构造类型。岩体的结构指的是尚未固结程岩石的第四级土层结构,其中包括了各种成因的土层其岩相变化、成层特征、空间分布规律等特征。地质结构对水利工程建设中施工位置的决定、施工建筑材料的选择、施工的方法等有着重要的影响。
地形地貌
一般来说,地形指的是工程所在地的地表形态、山势的走向、高低、山脉中的水系、森林植被、自然景物、建筑物分布等因素的综合体现。而地貌则主要是指其地表形态的类型、成因、发育程度等等。
天然的建筑材料
在地质和水文勘察中,应该对工程建设地点附近的各类天然建筑材料出产地点进行查探,对其位置、分布、储量、材料质量、开采运输条件等因素进行查明,为工程的设计和施工工作提供便利的条件。
水利工程水文地质问题分析
坝基岩体的工程地质问题
水利工程其坝型的不同决定了其施工的工作特点也不同,因而对水文和地质条件的要求也就不同。因此在施工中除了应该了解不同坝型的各种施工特点之外,还应该了解各种坝型对地质的要求和在不同地质条件下的适应性。坝区岩体中存在的地质缺陷可能对工程产生的影响,主要是坝区泄露和坝基的稳定问题。
边坡的工程地质问题
边坡的常见变行破坏种类主要有滑坡、崩塌、蠕动变形和松弛张裂四种,另外还有如错落、倾倒和塌滑等过渡的破坏类型,泥石流也是一种较为常见的边坡变形破坏的类型。对边坡的稳定性造成影响的地质因素有岩土的性质和类型、地形地貌、岩体结构和地质构造、地下水文因素、风化、地震、人工挖掘活动等。
地下洞室围岩的稳定性
使洞室围岩发生变性破坏的主要因素有脆性破坏、层状拱曲和弯折、块体发生滑动、塌方、岩体发生塑性变形或膨胀等。施工中理想的建洞岩体应该具备地质构造相对简单、岩层较厚、节理组数少,间距大、没有能够对整个山体造成影响的断裂带、周围地形完整、无塌方、滑坡等近期发生过破坏的地形、受到地下水的影响较小、无岩溶情况或者岩溶发育较小、没有异常地热和有害气体等因素。
水库的工程地质问题
水利工程中水库一般分为两种,一种是地面水库,即在河流河面上筑坝拦水,所形成的人工湖泊。另一种是使用地下的蓄水构造来蓄水,经过人工控制而形成的地下水库。水库在蓄水之后一般会对周围的地质水文条件造成较大的影响,使周围的地质和气候环境发生很大的变化。另外库水升高对库岸造成浸润和冲蚀,地下水位升高浸没洼地等情况都会产生各种工程地质方面的问题,如水库渗漏、浸没、塌岸、淤积、水库诱发地震等。
软体基坑的地质问题
施工中软土基坑发生的地质问题主要有基坑降排水和土质边坡的稳定两个方面,在软土基坑的施工过程中,为了保证施工的安全、防止边坡发生破坏而采取的措施通常有边坡护面、基坑支护的设置、降低地下水位、对坡面的合理设置等等。基坑降排水方面的目的主要是增加边坡的稳定性、在粉砂或者细沙图层的边坡中防止管涌和流砂等情况的发生、防止下卧承压含水层的粘性土基坑底部发生隆起、使基坑的土体保持干燥、方便工程的施工。
四、结语:
在水利工程的施工中,水位地质方面的工作在建筑物基础持力层选择、设计、地质灾害防治等方面都起着重要的作用。在工程之初的地质勘探方面,我们要切实加强对水文地质方面的勘探工作,对其在工程建设中的积极影响进行进一步的加强,使其能够更好地为水利工程的建设而服务。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
2. 水库堤坝岩土工程勘察
一、深圳水利工程建设现状
深圳市自建市后,水利事业蓬勃发展,特别自1992年以来,新建扩建了一大批水利工程,引东江上游水入深、全市供水体系形成网络、兴建调蓄水库和战源和略储备水库、开展雨洪利用、整治河道提高河道防洪和景观功能等等,为深圳市的可持续发展提供了水资源保障。
深圳市常见的水利工程主要有:水库、枢纽建筑物、输水或泄水隧洞、堤防、泵站、水闸、渡槽和输排水管等。水库大坝依其材料不同可分为混凝土坝、砌石坝、堆石坝和土坝等。
截至2007年底,全市共有172座水库,其中在建的公明水库总库容1.5×108m3,为大(二)型水库,坝体总长4.6km,最大坝高54m;正在勘察拟建的清林径水库,总库容为1.8×108m3,总坝长1.8km,最大坝高44.2m;已建的东部供水水源工程,全长56.3km,其中7.2km为隧洞;已建供水网络干线工程,全长472km,其中80%为隧洞。
在建设和使用这些水利工程的过程中,曾遇到了大量的工程地质问题,它们大多与地表水、地下水有很大关系,这是水利工程地质专业的主要特点。由于有了水,岩土体饱和软化,抗剪强度降低,水头压力抬高,渗流作用加强;由于有了水,水工建筑物岩土设计计算变得复杂,运用工况多样化;由于有了水,岩土工程勘察需采用综合勘探方法,各类试验项目繁多,地质参数的取值和地质评价结论需要综合判断确定。对于水利工程,由于勘察水平不高而导致相关工程地质问题未查明,其后果是严重的,要么导致整个工程失败(如溃坝、决堤、水库无法蓄水);要么工程建成后问题很多,影响正常运行;或者由于相关地质参数和评价结论过于保守而导致大量的投资浪费。
因此,水利岩土工程勘察是一项复杂而重要的专业性较强的地质工作,在具体实施过程中,除了严格执行行业规程规范之外,地区性工作经验亦很重要,尤其在项目建议书、可行性研究阶段或者勘探工作量不足的一些中、小型工程显得尤为突出。
二、水利水电工程常见工程地质问题
根据深圳地区所处的地质背景和水文气象条件,修建水利工程后常见的工程地质问题有:
1.区域构造稳定性
深圳地区地震基本烈度为Ⅶ度,区域构造稳定性相对较好,各工程研究对象主要指活动性断裂对水工建筑物长期运行的影响。以深圳断裂带为代表,重点关注水库诱发地震、地应力集中、断裂构造的年位移量等。
2.水库库区渗漏
蓄水水库产生永久性的过量的渗漏,不仅影响水库的效益,同时还会因渗漏引起其他一些不良后果。罗屋田水库的岩溶渗漏是一典型例子,由于水库渗漏严重,水库始终无法正常蓄水。
3.库岸稳定性
水库蓄水后,库岸自然地质环境发生急剧变化,岩土体饱水及强度降低,库水涨落引起地下水位波动变化,波浪冲刷作用加剧变化等,使得原来处于平衡状态的岸坡发生破坏,达到新的平衡,其破坏形式包括:崩塌、滑坡、塌岸等。库岸失稳破坏的后果将直接危及滨岸地带居民及建筑物安全,淤塞库区,高位能的快速崩滑体还可以造成巨大涌浪埋哪,危及大坝及坝下游安全。
4.水库浸没
水库蓄水后,引起库岸周围一定范围内地下水水位抬升(壅高),当壅高后的地下水位接近或引出地面时,将可能导致农田沼泽化、土地盐碱化、建筑物地基饱和恶化等不良后果。深圳地区一般多为山区性水库,库容面积有限,水库浸没问题不严重。
5.坝区渗漏
坝区渗漏包括坝基渗漏和绕坝渗漏,分别产生于坝基和坝肩。坝基渗漏是现有水库大坝普遍的地质现象,渗透量过大将影响水库的效益,或者渗透水流作用危及坝体的安全。深圳地区常见的坝区渗漏方式有建基面渗漏(接触面渗漏)、浅层风化岩渗漏、断裂构造带渗漏、冲洪积砂砾层渗漏和岩脉带渗漏等。
6.坝基岩土体的压缩变形与承载力
不同类型的坝对坝基压缩变形与承载力要求不同,其共同点均要求建坝后不致产生过大的沉降变形和不均匀沉降变形,以免引起坝体开裂或剪切滑移而导致的破坏。对中低土石坝而言,深圳地区常见的高压缩地层主要包括人工松散填土、软黏土、淤泥和泥炭等。
7.坝基(肩)岩土体的抗滑稳定
对于土石坝而言,坝基如有抗剪强度低的软弱地层(如软黏土、淤泥雹液盯、松散填土等),则坝基不仅存在沉降变形问题,亦有沿软弱层滑动问题;对混凝土坝、砌石坝而言,根据滑动破坏面位置的不同,坝基岩体滑动分为表层滑动(通常指混凝土与岩石接触面)、浅层滑动和深层滑动(软弱结构面滑动);对于坝肩抗滑稳定主要体现陡地形状况下的结构面滑动问题。
8.水工隧洞围岩稳定与变形
地下隧洞开挖以后,洞壁围岩由于失去了原有的岩体的支撑而向洞内松张变形,如果变形超过围岩本身所承受的能力,围岩将产生破坏。围岩的变形破坏程度常取决于围岩应力状态、岩体结构及洞室断面形状等。竣工后的水工隧洞往往要承受内外水压力的长期作用。深圳地区隧洞浅埋段较多,断裂构造发育,岩性岩相多变,地下水位高,隧洞施工遇塌方、冒顶现象相对较多,施工后纵向与横向裂缝也时有所见。
9.隧洞涌水
隧洞涌水问题包括隧洞段涌水量预测、掌子面突水、突泥预测和地面沉降预测等,因其影响因素多,各项参数准确取值较难,隧洞涌水预测大多带有经验性质。尽管如此,隧洞涌水仍是一项重要而复杂的水文地质工作内容。以往的工程实例表明,隧洞涌水预测不可靠,施工措施不到位,往往会导致严重的人员伤亡、经济损失甚至一定范围的社会安定问题。
10.天然建筑材料
深圳地区水库一般适合建当地材料坝,以土石坝最多,黏性土料和坝壳料用量也最为庞大。例如公明水库大坝实际用量达1100×104m 3,勘察储量为其2~3倍。既要不破坏当地生态环境并尽量减少征地费用。又要寻找足够储量的、质量好的、开采方便的、运距近的料场,是水库工程建设期突出的工程地质问题,也是一大前期勘察难点。
11.深基坑支护
深圳地区地下式泵站较多,大多涉及深基坑问题,有的基坑深达30~40 m,这些泵站一般建在地势低洼处,软土层和砂砾层较厚,地下水丰富,地下水位普遍较高,工程地质水文地质条件复杂,基坑支护体系需要考虑隔水、浅层支护、深层支护、上下水工建筑物平面布置及基坑内方便输水隧洞施工等要素。
其他的一些工程地质问题,如隧洞施工岩爆问题,放射性污染问题,闸、坝建筑物的抗冲刷问题等等,因一般不常见这里不单独列出。
三、水库库区岩土工程勘察评价工作经验
限于自然条件,深圳地区拟建和已建水库规模有限,绝大部分为中、小型水库,坝高15~50m,水库周边区域以花岗岩类和砂页岩类为主,地形地貌多为低丘陵和台地,植被覆盖良好,岩体风化一般较深厚,断裂构造较发育,物理地质现象不发育,工程地质条件一般属于中等复杂。
水库库区岩土工程勘察与评价工作一般应注意:
1.勘察工作
勘察工作应以水文地质、测绘、调查访问、资料收集为主,勘探工作为辅。注意研究地形地貌特点,河床变迁历史,泉水露头情况,区域性自然边坡和人工边坡失稳现象,周边水库群常见的水库地质问题等。当基岩露头较好时,重点调查断层和裂隙发育特点;当基岩露头不好时,重点调查风化土和覆盖层的工程特性与分布状况。
2.勘察方法
针对水库渗漏问题,首先根据水文地质成果确定可能的渗漏形式,然后根据不同的渗漏形式采用适当的勘察方法。单薄分水岭渗漏一般较为常见,分水岭岸坡一般分布有一定厚度的残坡积土和全风化土,勘察工作以调查上部土层作为天然防渗铺盖的厚度、平面范围和渗透特性为重点,均衡布置浅钻孔或探坑,并进行注水和试坑渗水试验。对于下部基岩的渗透特征,需选择代表性位置布置勘探剖面,各勘探点进行分段压水、注水、抽水(提水)试验。对于断层或裂隙密集带渗漏问题,可先布置物探工作,再布置钻探与现场试验工作。此外有些水库发现也有风化岩中岩脉带渗漏问题,在花岗岩类地区应重视。从目前已建水库的运行情况来看,大多数水库渗漏问题并不严重,未超过水库设计渗漏量,这与深圳地区岩土层的弱透水性有关,也与库水深度较浅、断裂构造的密闭性较好等有关。但应注意的几点是:
1)库外未见有渗水溢出点并不代表水库没有渗漏,从有些水库常年观测资料来看,仍有相当一部分渗流量是通过潜流作用形成的。
2)强风化岩全段、弱风化岩上段部分试验段渗透系数较大,钻孔钻进中常有涌水或失水现象,但大部分试验段渗透系数为弱透水,将这两层视为相对隔水层或相对透水层时应慎重,需根据渗透系数大值的平面位置、埋深、上部地层渗透性、地下水的径流排泄方式以及水库防渗级别等综合确定。
3)峡谷区和台地区水库渗漏评价方法有区别。
4)水库渗漏除了定性评价外,还要尽量进行定量计算评价。
5)在可能渗漏部位布置水文地质长期观测孔,可有效判断水库渗漏情况。
6)龙岗岩溶地区水库渗漏问题很复杂,评价结论需特别慎重。
3.边坡勘察
深圳地区库岸坡度一般较平缓,库岸稳定问题常表现为浅层滑坡或滑塌,主要产生于残坡积层中,方量有限,一般为数十立方米至数百立方米,对水库运行安全不会有太大的影响。但有些供水水库在某些时段可能取水量很大,存在库水位骤降的情况,应注意大面积浅层边坡稳定问题。另外在深圳东部沿海地区所建水库存在高陡岩质边坡问题。边坡勘察工作仍以地质测绘为主,在初步确定有问题的地段才布置勘探工作量。边坡勘察与评价应注意的事项:
1)定性与定量评价互为补充,且有侧重点,对于小规模的对水库安全影响不大的边坡问题应以定性评价为主,反之,则以定量评价为主。
2)砂页岩地区常有浅层滑塌现象,坡积层偏厚,颗粒组成多为粗粒,易降水入渗和导水,也易浸水软化,岸坡较陡时常有边坡稳定问题。
3)计算边坡稳定性,应有正常运行、库水位骤降、地震作用等多个工况的组合计算。
4)对于环库公路的边坡问题,因其位于库水位以上,一般按公路勘察设计规范进行评价,但应注意高位能的不稳定体坍塌,可能产生大的涌浪问题。
5)对于库盆内开采建坝材料的水库,需有合理的开挖断面和坡度。
4.地下水勘察
现有水库正常蓄水位水边线周边大多为斜坡地形,库内无农田,少居民,少建筑物,鉴于广东地区的气候条件,一般不存在浸没现象。对于库外水位雍高引起的浸没问题,主要根据水库防渗条件,可能浸没区的水文地质条件和危害性质进行评估。地质勘察工作应重点置于库水沿单薄分水岭和断裂构造带径流排泄方式和渗流量评价,注意可能浸没区地形地貌特征和地下水位,是否有较低的排水条件差的洼地地形,必要时布置勘探剖面,并进行地下水雍高值和地下水临界深度的试验和计算。
5.判定标志
水库诱发地震的形成机理十分复杂,目前的判定方法往往根据工程实例进行类比,一般采用的判定标志有:
1)坝高大于100m,库容大于10×108m3。
2)库坝区存在构造断裂带,活动断裂呈张(扭)性或张(压)扭性。
3)库坝区为中、新生代断陷盆地或其边缘升降明显。
4)深部存在重力梯度异常或磁异常。
5)岩体深部张裂隙发育,透水性强。
6)库坝区有温泉。
7)库坝区历史上曾有地震发生。
深圳地区没有修建高坝大库的条件,区域地质地震条件表明,一般产生破坏性地震(M s>4.7级)的可能性不大,但不排除产生小震的可能。已有工程实例显示,有些中低坝水库也会产生诱发地震,因此一般对大、中型水库的诱发地震问题亦要进行评价。工作方法以搜集分析区域地质地震资料为主,适当布置一些专门性勘探工作(常采用地球物理勘探和深钻孔),必要时需委托地震研究单位在进行地震危险性评估的同时,对水库诱发地震问题进行专门论证。
四、堤坝勘察方法、经验与工程地质条件评价
深圳地区堤坝类型大多为土石坝,有少量混凝土坝和堆石坝。不论哪种坝型,坝体、坝基均存在稳定、变形、渗流三大问题。其中土石坝出现问题的最多,一般以坝体或坝基渗漏与不均匀沉降最为常见,个别堤坝也曾产生坝后坡严重滑坡,而渗透稳定问题多见于水闸。
因大坝产生破坏性质是灾难性的,因此水库工程勘察的重点在于坝址,前期勘察工作标准要求高,历时长。限于篇幅,这里仅介绍新建坝坝址的一些勘察方法与经验。
1)对于坝址区(含附属建筑物)勘察方法,水利水电工程地质勘察规范(GB50287-1999)和中、小型水利水电工程地质勘察规范(SL55-2005)各章节有明确规定,内容涵盖规划、可行性研究、初步设计和技施设计各个阶段,包括不同坝型、不同坝基以及不同建筑物。总体来讲,水利行业勘察规范比较简明宽泛,具体实施过程中需要地质人员充分发挥主观能动性,根据场地地质条件,灵活掌握规范精神,既要达到“查明”的精度,又不浪费勘探工作量,也不能死搬硬套规范。
2)在工作开展之前,需要编制勘察工作大纲,内容尽量详尽,必要时还可编制单项作业指导书。勘察工作大纲首先应根据前期勘察成果确定该工程可能存在的主要工程地质问题,或应重点查明的地质要素,然后围绕这些工程地质问题或地质要素布置适用的勘探工作,确定勘探工作的重点、要点、难点。
3)工作当中需根据实际地质条件变化,及时调整计划的工作方法和工作布置,这就要求地质人员随工程进度及时跟进分析,以免野外作业结束后才发现问题,导致关键地质问题未查明,需要进行补充勘察。
4)坝址常用的勘探方法有钻探、物探、坑探、现场试验和室内试验,其中关于岩土渗透试验的方法种类较多,精确度不一,如何较准确地确定各地层渗透系数并划分相对隔水层、相对透水层是技术人员的一大难点,这些参数的可靠性关系到工程安全,亦关系到大量的工程投资。例如公明水库坝基防渗工程,设与不设混凝土防渗墙相差工程投资达1.5亿元人民币。弱、微风化岩一般进行压水试验,按压水试验规范操作即可。强风化岩一般难于进行压水试验,深圳地区的经验是:当地下水较高时,选择抽水试验或提水试验;当地下水位较低时选择注水试验,并注意钻进中回水量的变化;当需要初步确定灌浆效果时,应设法进行压水试验,可将栓塞置于先期预设的混凝土孔壁即可,但成本较高。强透水的砂砾石层常用抽水试验。对于中-弱透水的残坡积土层、全风化岩(土),常根据注水、提水、试坑渗水、室内渗透试验成果综合确定渗透系数值,前3种方法的计算公式为近似性质,测值有一定误差,但可反映整个试验段的透水性,室内试验测值虽较准确,但反映某一点的渗透性,代表性具局限性。
5)评价地基的工程地质条件,除了有足够数量的试验数据支持外,尚需根据地区经验,岩心鉴别、地质测绘成果综合给出定性评价结论和定量地质参数。例如,对于花岗岩残积土或全风化岩(土),室内试验往往显示其为高压缩性土,对于土石坝需要进行大面积的坝基处理,而根据工程经验,该类土一般为黏土质砂砾,属中压缩性土,可不进行处理。再如,如何看待总体弱透水性地层中渗透试验渗透系数大值(i×10-4cm/s或i×10-3cm/s)问题,是关系到划分为相对透水层还是相对隔水层的大问题,仅凭试验数据是难以给出准确结论的,需要根据其上、下地层的渗透特征与分布情况,以及蓄水后地下水的渗透形式等因素综合判定。
五、天然建筑材料勘察方法与评价
深圳乃至华南地区土石坝建筑材料大多采用风化岩料,主要利用残积土、全风化岩和强风化岩,其中前二者一般作为黏性土料,后者作为坝壳料使用。工程实践表明,风化料易于压实,具有较高的压实度、抗剪强度和较低的渗透性,非常适合于修建中低坝。但风化料也有其缺点,由于岩性相变、地形起伏和地质构造等原因,风化料往往颗粒组成不均一,含水率等物理力学性质差异较大,压实控制指标选择较难,针对风化料的这些特点,前期勘察阶段应注意:
1)勘察方法宜选择钻孔、探坑(井)、洛阳铲,勘探密度除执行规程规范要求的以外,应切实结合地形地貌特征布置勘探点,坡顶、斜坡、坡脚和台地均应有足够的勘探点控制。选择每个微地貌代表性位置连续取原状样,主要测其含水率和粘粒含量等基本物理指标。选择每个微地貌代表性位置取击实样(结合未来立面开采的深度)进行击实和击实后试验,每个勘探点均应测静止地下水位。
2)室内试验类别应齐全,勿漏项。原状样主要测含水率、天然密度、土粒密度、塑液限、颗粒分析(至小于0.005mm);击实样主要测最大干密度、最优含水率、水溶盐含量、倍半氧化物含量、有机质含量、pH值、自由膨胀率和烧失量等;击实后试验控制压实度为0.96~0.98(与工程等级有关),试验项目有渗透系数(水平和垂直)、剪切试验(饱和与非饱和)、压缩固结试验(饱和与非饱和),剪切试验具体类别应根据设计计算工况具体确定,一般应进行三轴剪切试验,直剪试验可作为参考,新建坝应测不固结不排水剪、固结不排水剪、固结排水剪,同时测孔隙水压力系数。
3)根据风化料原岩变化情况和试验成果进行料场分区,主要依据颗分、塑性指数与压实特征进行划分。不同类型的风化料如果不分区,往往难以确定土坝控制指标,难以选择碾压设备和碾压参数,并使大坝处于不安全状态或渗漏量过大。
4)风化料地质参数应在充分统计分析的基础上慎重选择,对其质量评价根据大坝不同填筑部位的具体要求区别对待,一般分均质坝土料、防渗体土料和坝壳料3种类型。具体分析的项目有:含水率变化规律分析、粘粒含量变化规律分析、击实曲线特征分析(宽或窄级配)、渗透系数特征分析和剪切试验成果分析(不同类型剪切试验成果对比分析)等。针对料源的特征,提出建议开采的季节、开采设备、开采方式和碾压试验与上坝填筑的一些注意事项。根据已建水库的勘察资料,深圳地区上坝风化料原岩大部分为花岗岩和砂页岩,风化料的主要工程特性指标较好,但pH值往往偏低,倍半氧化物含量不能满足规程要求,经分析认为,对于深圳地区中低坝而言,这两个指标对工程影响不大,上坝料质量评价可不作为控制性指标。鉴于水库大坝的重要性,风化料室内击实和击实后试验宜选择两家以上试验单位进行平行试验。
5)料场储量计算应采用平均厚度法、平行断面法和三角形法,选择一种方法计算,取另一种方法校核。
六、水工隧洞勘察方法、经验与工程地质条件评价
1.前期勘察工作布置方法和原则
水工隧洞常用的勘察方法有卫星遥感、地质测绘、物探、钻探、水文地质试验、原位测试和室内试验等方法相互印证的综合勘探方法,勘察工作主要布置于浅埋段、过沟段、断层位置、岩层分界位置及洞口位置,具体做法为:
1)洞口位置布置纵向勘探剖面,重要洞口还布置横向勘探剖面。
2)埋深小于50 m洞段大体等间距布置勘探钻孔,兼顾沟谷负地形位置、正地形丘顶位置、断层位置、岩性界线位置、隧洞拐弯和交叉位置。
3)埋深大于50 m洞段有选择性布置勘探点,主要布置于深切沟谷、断裂构造、岩性分界和其他用途段:埋深大于100 m钻孔,当下部岩心完整段较长时可不要求钻孔打到洞身,这种钻孔常见于花岗岩地区。一般隧洞埋深大于100 m地段重型勘探工作量布置很少。
4)断裂构造位置、沟谷地段、傍山地段宜布置地震法和电法物探,一些重要钻孔进行声波测井,这些工作可大体给出不同深度、不同地貌单元各种波速值和物性参数,利于围岩分类和地质参数的提出。
5)水文地质工作方面,关注水位变化和钻进用水量变化,有选择地在富水孔段进行抽水(提水)试验,大部分钻孔在洞身附近进行压水(注水)试验。
6)重视轻型勘探工作,包括地质测绘、槽探等;重视收集资料和研究已有资料,特别关注区域地貌发展史和第四纪地质。这些工作花钱不多,但往往可得到事半功倍的效果,此外对跨城市区域隧洞,因原始地貌已遭破坏,应特别注意收集旧的地形图和地貌图。
7)其他方面,如地应力水平和放射性测试等,可先初判,根据初判结果确定是否进行野外测试工作。按《水利水电工程地质勘察规范》(GB50287-99)和《中小型水利水电工程地质勘察规范》(SL55-93)灵活运用。
8)对于长距离引调水工程,因其穿越地貌类型多,勘察工期紧,野外施工困难,不同的业主对勘察的工作的重视程度不一,有些业主对前期勘察工作经费投入不足,针对这些特点,在规范中应强调前期勘察工作抓关键地质问题,不要求每个工程段都达到查明精度。现在许多隧洞采用新奥法施工,边掘进施工边设计支护形式,充分利用围岩拱的作用,施工单位也多采用单价合同,但其前期条件是对关键性地质问题要查明,如大断层、地应力总体状态、放射性、膨胀岩、易溶岩、松散体、软弱岩、喀斯特化岩层等,此外施工过程中要有选择地进行超前预报。
2.关于围岩类别划分与评价
对于围岩类别的划分,不同部门不同规范有不同的划分方法,根据深圳地区工程经验,提出如下建议:
1)对于预测可研究勘察阶段或勘探资料不足的隧洞,应主要采用《工程岩体分级标准》(GB50218-1998),因该规范划分的方法既有定量指标,亦有定性指标,易于操作。
2)对于可研究-初设勘察阶段,各种勘察资料比较丰富,可分别采用《水利水电工程勘察规范》(GB50287-1999)、《工程岩体分级标准》(GB50218-1998)、地质力学分类法(RMR法)、Q系统分类法进行分类,综合判定围岩类别;所依据的地质要素不同,所以分类结果有差别。对于涉外工程,岩体分类最好用后两种方法;对于国内工程,采用前两种方法较好,对于土洞,按《土工试验规程》(SL237-1999)分类法。
3)对于施工地质阶段,围岩划分最适宜用《水利水电工程勘察规范》(GB50287-1999),此阶段地下水状态、结构面状态、主要结构面产状均比较清楚,岩体强度和完整性状态可取样试验和波速测试进行确定,工作性质较简便。
4)目前的水利水电工程勘察规范围岩分类采用五级制,这样的分法在围岩状态较差时,不利于支护形式的确定。例如,同为V类围岩,有些自稳时间较长,有些自稳时间很短,有些用普通钢拱架支护,有些要用加强的钢拱架支护,甚至还有其他的加强措施。因此,建议在Ⅲ类、Ⅳ类和V类围岩中增加细分的内容,可定根据工程需要具体确定,初拟各类围岩分两级,分别为Ⅲ-1、Ⅲ-2、Ⅳ-1、Ⅳ-2、V小V -2。深圳地区中小型水工隧洞围岩类别与主要物理力学参数见表2-3-40。
表2-3-40 中小型隧洞(直径<5m)围岩主要物理力学参数
3. 谈谈水利工程中工程地质和水文地质研究
谈谈水利工程中工程地质和水文地质研究
地下水对水利工程建设的稳定性及耐用性有着重大影响,因为地下水是岩土体的核心组成部分,会对水利工程基坝质量的好坏造成影响。
摘要: 工程地质与水文地质两者有着紧密的联系,在水利工程中,二者相辅相成,地下水是水利工程建设的基础环境,同时也对建筑地及周围的岩土体性质有重大影响,岩土体中最重要的构成部分便是地下水,对建设物稳定性与耐用性带来一定影响,为了对水文地质进行一定程度的加强,为了对工程调查的质量带来提高,在进行水利工程地质勘察时,需要对建设地及其周围岩土体的性质进行严格勘察,此外,还要对地下水进行勘察,以此为基础,对预防与治理提出相关意见,并提前准备好设计规划与工程开展所需要的资料,从而对工程的危害进行减少。文章对常见工程地质与水文地质等问题进行了研究与分析。
关键词:水利工程;水文地质;工程地质;地质勘察
0引言
地下水对水利工程建设的稳定性及耐用性有着重大影响,因为地下水是岩土体的核心组成部分,会对水利工程基坝质量的好坏造成影响。不管建设什么项目,必须要进行观察、实验、探索,还需要经过详细调查该地区水文面积、水文地质条件、地下水的形成、运动的特点与水质量、数量是否变化等。但是,在实际勘察中,对一些水文条件较为错综复杂的山地,若笑余是忽略了工程勘察,对工程地地质情况不了解,在工程规划中也没有在意水文条件对工程的影响,往往会造成一些不必要的工程问题的发生。并且,人们很少注意到这些,知识简单的通过报告进行了解与评价。所以,为了对工程质量带来提高,必须要加强对水文地质的研究。
1水利工程中对水文地质的评价
在进行工程勘察时对水文地质的评价需要注意以下3点:1)重视地下水对土壤、岩石以及建筑物的影响,进行重点研究,从而有效的预测岩土工程会带来怎样的危害,并且对此做出防范措施。2)根据建筑物的地基基础,对水文地质问题进行分析研究,并提供水文地质所需要的必要材料。3)从工程建设的视角来看,针对地下水对工程的不同影响,提出可能出现的地质问题:①处于地下水中的建筑物,其钢筋可能会被地下水腐蚀;②建筑工程的基坝土质的选择有限,只能考虑土质不好的风化岩、软岩等,对可能会发生的崩解、岩石与土壤软化等进行对地下水的评估;③应该对地基挤压问题进行预测,观察是否会有流砂与潜在侵蚀发生的可能性;④在对水利工程进行设计与施工中,由于水位变化返升则产生地基浮动等问题;⑤随着工程施工的开展,会造成土壤与岩石的变化,甚至会对建筑物与环境造成一定影响。
2测试与研究岩土的水理性质
土壤中的水分与地下水会发生一定的相互作用,从而显示不同的属性,这就是土壤物理性质,其主要有水分保持能力、土壤透气性、水分含量等特点,这些方面导致了地下水、气态水与液态水的联系。岩层是岩土体贮藏地下水的地方,会产生不同形式的水,如潜水、承压水等。含水层空隙性质的不同,使地下水可分为岩溶水、裂隙水。土壤与地下水的相互作用,使岩土体的存在方式与地下水有所不同,不同的地下水形式会给岩土体带来不同程度的影响。砂黏土中有极少的地下水这是结合水存在的主要方式。当结合水与黏土显示属性为可塑性、收缩为黏土、膨胀等形式时,就是弱结合水,它是由于受到物理作用与机械作用的制约,活动范围受到限制,受到的岩土动态物理性小,从而产生的。当土质失去植被保护或者遇到强降雨等情况,泥土流失会比较严重,土质随雨水流失过程中慢慢沉积,导致河床抬高,因此,了解清楚水利工程上游土质构造问题,能制定有效措施,控制水土流失问题。例如三峡工程占地面积广阔,又位于地质复杂的四川省,所以在工程开始之初必须严漏棚格探测土质结构,采用正确的蓄水运行方式。“蓄清排浑”是三峡工程运用的比较成功的一个排洪方式,在汛期,控制145m的运行水位,与正常蓄水位相比,低30m。当水位高于145m时,其泄洪能力达到64000多m3/s,这样可大大降低泥沙淤积问题。
3水利地质的分析
3.1地下洞室围岩稳定性的分析
理想的建洞山体具备的条件应该是:构建洞区地质条件简单,裂隙间距大,岩层厚,无断裂带不会对山体稳定性造成影响,具有完整坚硬的岩体,完整的地形,没有受到泥石流、滑坡等地质灾害的破坏,没有岩溶现象或岩溶现象不发育,地下水影响较小,无有毒气体与异常地热的发生。脆性断裂,层状弯折与拱曲,塑性变形与膨胀,山体滑坡与断层以上几种都属于岩石变形与破坏类型。
3.2坝基岩体工程地质的分析
不同的坝型,所其工作特点也具有不同的特性,对地质的要求也不同。所以要对不同类型的坝应该适应什么样的地质条件进行分析与了解。但是由于坝区的岩体会有地质的缺陷,从而会引起坝区渗漏与坝基稳定等工程事故的发生。
3.3分析边坡工程
蠕动变形、崩塌、山体滑坡是常见的'边坡类型。以外,还有松弛张裂、泥石流等问题存在。泥石流属于常见边坡失稳的类型。地下水与地表水以及降雨,地形条件,地质构造与岩体构造,岩石类型与性质,其他因素(日照、地震、风力、温度等)都是造成影响地质构造与岩体结构的原因。3.4影响水库工程地质问题的原因水库分为两类:地面水库(河流上建筑坝所形成人工湖);地下水库(根据地下的蓄水结构,由于人工控制造成)。由于蓄水后,对水文地质和工程周围水文条件造成了影响,使库区与邻近地段的地质环境受到改变。如:由于地下水的上升导致洼地淹没等。从而导致各种工程地质问题的发生,如:水库淤积、水库渗漏、库岸塌陷等问题的发生。
3.5软土路基边坡稳定性与基坑降排水
作为软土基坑地质问题较为注意的两个方面。在对其进行建设时,要注意边坡稳定性,要保证事故的安全,需要采取以下措施:对坡度进行合理设置、对边坡进行有效的安全措施等。其目的是为了加强边坡稳定性;对于粉砂与细砂土质的边坡,进行流砂与管涌评价,从而防止发生事故;防止坑底的隆起,确保基坑的土壤随时处于干燥状态,方便工人的施工。明排法与人工降水是开挖软土基坑降排水的方法。
4结语
在工程地质中,工程地质的环境都是由工程环境与地质环境组合构成的,岩土体加载路径与时间作为工程地质环境变化与内部自我调整的决定因素,积累到一定程度会对原因系统造成必然的改变,这表现出工程环境需要对地质环境的影响,地质环境需要适应工程环境。如果需要对水利工程的地质环境进行现状分析,必须要对该区域地质与水文地质条件进行分析,还需要分析水利项目是否适应,并且还要对发生灾难的破坏程度进行预测与分析。进行水利工程地质环境现状的分析,是为了更好的对水利工程做出设计与规划,并且提出更为合理化的意见与建议。
参考文献:
[1]骆祖江,张弘,李会中等.乌东德水电站坝址区地下水渗流三维非稳定流数值模拟[J].岩石力学与工程学报,2011,30(02):341-347.
[2]王媛,王学潮,王建平等.南水北调西线一期工程区水文地质条件评价[J].岩石力学与工程学报,2005,24(20):3614-3619.
;4. 矿山与地下工程地质灾害
地下采矿和地下工程开挖,最基本的生产过程就是破碎和挖掘岩石与矿石,同时维护顶板和围岩稳定。如果对地下洞室不加以支撑维护,则洞室围岩在地应力的作用下发生变形或破坏,这种现象在采矿界称为地压显现。由地压造成的灾害,对矿井来说,主要表现为顶板下沉和垮落、底板隆起、岩壁垮帮、支架变形破坏、采场冒落、岩层错动、煤与瓦斯突出及岩爆等。因采备乎空区处理不当而引起的大规模地压灾害在地面表现为地表开裂、地面下沉、建筑物倒塌、水源枯竭等。对于煤矿,尤其是露天煤矿,常常表现为滑坡、崩塌、倾倒等边坡失稳及其引起的地面变形破坏。而煤与瓦斯突出是高瓦斯煤矿开采过程中最常见、危害性最大的地压灾害。这里主要讨论危害大、发生频率高、分布范围广的冒顶垮帮、岩爆、煤与瓦斯突出。
(一)冒顶垮帮
1.冒顶垮帮的特征及其影响因素
地下洞室开挖后,由于卸荷回弹,应力和水分的重新分布常使围岩的性状发生很大变化。如果围岩岩体承受不了回弹应力或重新分布应力的作用,就会发生变形或破坏。围岩岩体变神滚宴形及破坏的形式和特点,除与岩体内的初始应力状态和洞形有关外,主要取决于围岩的岩性和结构(表92)。
冒顶事故是对矿山工人人身安全威胁大且发生频率最高的矿山地质灾害之一。据不完全统计,我国各种矿山每年工伤死亡人数中有40%死于矿坑冒顶,死亡频率占各种矿山地质灾害之首。
表9-2 围岩的变形破坏形式及其与围岩岩体和结构的关系
续表
(据张倬元等,1994)
湖南锡矿山南矿的开采实践表明,当失去支撑能力的矿柱达到全采场矿柱60%左右时,采空区顶板就可能冒落。而一个采空区的冒落会在相邻采空区引起连锁反应,导致采场地压急剧增大,采场和巷道严重破坏,人员伤亡。美国、英国、日本等国金属矿山冒顶事故死亡人数均占井下事故死亡总人数的1/3~1/2,日本为40.7%,美国为30.2%,英国、俄罗斯、波兰和比利时等国约占30%~50%。
我国冶金矿山顶板冒落及其他地压灾害死亡人数占全部伤亡人数的25%~27%;大中型统配煤矿近年发生的重大死亡事故中,顶板冒落灾害占30%左右。
顶板冒落或侧壁垮帮的征兆有:顶板掉渣由小而大,由稀变密,裂隙数量增多、宽度加大,煤帮煤质在高压下变软,支架压坏、折断,瓦斯涌出量突然增多,淋水量增大等。
2.采空区处理方法
防止采空区大冒落的处理方法可归纳为“充填”、“崩落”、“支撑”、“封闭”8个字(隋鹏程,1998)。
1)充填法:采空场采矿开采完毕后,要及时用碎石、尾矿砂、水沙、混凝土等物质充填采空区,从而起到支撑顶板、减小其承受上覆岩土体压力的作用。如湖南锡矿山南矿在3次大冒落后,新采区地压剧增,地表不断沉陷,为保证安全,对采空区进行了全面充填处理,充填率达90.6%,使地压活动得以缓和。
2)崩落法:指利用深孔爆破的方法将采空区围岩崩落,充填采空区。
3)支撑法:以矿柱或支架等支撑采空区,防止其发生危险变形。
4)封闭法:常用来处理与主要矿体相距较远、围岩崩落后不会影响主矿体坑道和其他矿体开采的孤立小采空区。封闭这些小采空区的目的主要是防止围岩突然冒落时空气冲击波对人员和设备的危害游银。
为有效预防冒顶垮帮,还必须采取合理的开采方案,避免片面追求产量而采富弃贫,坚决杜绝开采保护矿柱的乱采行为;采用合理的设计方案,进行科学的顶板管理;根据围岩应力集中大小与分布形式,采用声发射监测技术及其他测定地应力方法,预测预报顶板来压的强度和时间,掌握地压规律,及时采取有效措施;制定科学合理的工作面作业规程、支护规程、采空区处理规程等。
(二)岩爆
岩爆又称冲击地压,是指承受强大地压的脆性煤、矿体或岩体,在其极限平衡状态受到破坏时向自由空间突然释放能量的动力现象,是一种采矿或隧道开挖活动诱发的地震。在煤矿、金属矿和各种人工隧道中均有发生。
岩爆发生时,岩石碎块或煤块等突然从围岩中弹出,抛出的岩块大小不等,大者直径可达几米甚至几十米,小者仅几厘米或更小。大型岩爆通常伴有强烈的气浪巨响,甚至使周围的岩体发生振动。岩爆可使洞室内的采矿设备和支护设施遭受毁坏,有时还造成人员伤亡。
1.岩爆的类型和特点
由于发生部位和释放能量的差异,岩爆表现为多种不同的类型,它们的特点也各不相同(张倬元等,1994)。
1)围岩表部岩石破裂引起的岩爆:在深埋隧道或其他类型地下洞室中发生的中小型岩爆多属这种类型。岩爆发生时常发出如机枪射击的噼噼啪啪响声,故被称为岩石射击。一般发生在新开挖的工作面附近,掘进爆破后2~3h,围岩表部岩石发生爆破声,同时有中间厚、边部薄的不规则片状岩块自洞壁围岩中弹出或剥落。这类岩爆多发生于表面平整、有硬质结核或软弱面的地方,且多平行于岩壁发生,事前无明显的预兆。
2)矿柱围岩破坏引起的岩爆:在埋深较大的矿坑中,由于围岩应力大,常常使矿柱或围岩发生破坏而引发岩爆。这类岩爆发生时通常伴有剧烈的气浪和巨响,甚至还伴有周围岩体的强烈振动,破坏力极大,对地下采掘工作常造成严重的危害,被称为矿山打击或冲击地压。在煤矿中,这类岩爆多发生于距坑道壁有一定距离的区域内。四川绵竹天池煤矿就曾多次发生此类岩爆,最大的一次将约20t的煤抛出20m以外。
3)断层错动引起的岩爆:当开挖的洞室或坑道与潜在的活动断层以较小的角度相交时,由于开挖使作用于断层面上的正应力较小,降低了断层面上的摩擦阻力,常引起断层突然活动而形成岩爆。这类岩爆一般发生在活动构造区的深矿井中,破坏性大,影响范围广。
2.岩爆的产生条件与发生机制
岩爆是洞室围岩突然释放大量潜能的剧烈的脆性破坏。从产生条件来看,高储能体的存在及其应力接近于岩体极限强度是产生岩爆的内在条件,而某些因素的触发则是岩爆产生的外因(张倬元等,1994)。
围岩内高储能体的形成必须具备两个条件:①岩体能够储聚较大的弹性应变能;②在岩体内部应力高度集中。弹性岩体具有最大的储能能力,受力变形时所能储聚的弹性应变能非常大,而塑性岩体则无储聚弹性应变能的能力。
从应力条件看,围岩内高应力集中区的形成首先需要有较高的原岩应力。但在构造应力高度集中的地区,岩爆也可以发生在浅部隧洞中,甚至有可能发生在地表的基坑或采石场中。
洞室围岩表部岩爆经常发生在如下一些高压力集中部位:因洞室开挖而形成的最大压应力集中区,围岩表部高变异应力及残余应力分布区以及由岩性条件决定的局部应力集中区,断层、软弱破碎岩墙或岩脉等软弱结构面附近形成的应力集中区。
对地下洞室造成破坏的岩爆主要有三种形式:岩体扩容、岩石突出和振动诱发冒落。岩体扩容是指由于岩石的破碎或结构失稳而使岩体体积增大的现象,如果扩容的幅度很大且过程较为猛烈,就会给洞室造成危害。当远处传来的扰动地震波能量较高时,可直接将洞室围岩碎块以非常快的速度(可达2~3m/s)弹射到洞室中而形成灾害,这就是以岩石突出形式发生的岩爆。振动诱发岩石冒落是当洞室顶部有松动岩块或存在软弱面时,在扰动地震波和巨大重力势能作用下发生垮落的现象。
3.岩爆的预测及防治
(1)岩爆的监测预报
对岩爆灾害的预测包括对岩爆发生强度、时间和地点的预测。由于地下工程开挖和岩爆现象本身的复杂性,岩爆的预测工作需要考虑地质条件、开挖情况以及扰动等许多因素。以往的岩爆记录是预测未来岩爆的重要参考资料。
岩爆的预测预报可以分为两个方面:①在试验室内测量煤岩或岩块的力学参数,依据弹性变形能量指数判断岩爆的发生几率和危险程度;②现场观测,即通过观测声响、震动,在掘进面上钻进时观察测量钻屑数量等进行预测预报。目前国内外常用的岩爆预测预报方法有钻屑法、地球物理法、位移测试法、水分法、温度变化法和统计方法等(张斌等,1999)。
1)钻屑法或岩心饼化率法:对于强度很高的岩石,若钻孔岩心取出后在地表发生饼化现象则表明地下存在较高的地应力,可根据一定厚度岩心中岩饼数量的相对大小来进行判断。在钻进过程中,还可借助钻孔中的爆裂声、摩擦声和卡钻现象等动力响应进行辅助判断。
2)地震波预测法:利用已发生岩爆(诱发地震)的信息来预测未来开挖过程中的岩爆,并建立岩爆次数、大小、分布及其与地应力场变化的关系,从而预报大中型岩爆的时空位置及数量和大小。此外,还可以利用单道地震仪对掌子面及前方岩体进行监测,如沿水平线每隔1 m逐点测试岩石弹性波速度,采用强度概念推测发生岩爆的可能性等。
3)声发射(A-E)法:声波发射A-E法即Acoustic-Emission方法。此方法的建立基于岩石临近破坏前有声发射这一实验检测结果,它是对岩爆孕育过程最直接的监测预报方法。其基本参数是能率和大事件数频度,二者在一定程度上可以反映岩体内部的破裂程度和应力增长速度。岩爆发生前通常有一个能量的积蓄期,这一时期是声发射平静期,可以视为发生岩爆的前兆。这种方法可望在现场对岩爆进行直接的定量定位监测,是一种具有很大发展前景的监测和预报方法。
岩爆预测是地下建筑工程地质勘查的重要任务之一,在总结已有的实践经验和研究成果的基础上,国内外学者目前已建立了一些可行的准则。挪威曾采用巴顿的方法,将岩石单轴抗压强度(Re)与地应力(σ1)的比值(α=Re/σ1)作为岩爆的判别准则:
1)当α=5~2.5时,有中等岩爆发生;
2)当α<2.5时,有严重岩爆发生。
我国在一些工程实践中常采用巴顿法进行预测。例如贵州天生桥电站,根据巴顿法判断隧洞施工中可能有中等岩爆发生,工程开挖的实际情况证明预测基本成功(张倬元等,1994)。
此外,由于岩爆属于一种诱发地震,地震震级和发震时间的预报方法可用来预测岩爆的震级和发生概率。
(2)岩爆的防治
岩爆的防治问题虽然目前尚难彻底解决,但在实践中已摸索出一些较为有效的方法,根据开挖工程的实际情况,可采取不同的防治方法。
1)设计阶段的防治对策:
·洞轴线的选择:人们通常认为洞轴线方向应与最大主应力方向平行,以改善洞室结构的受力条件。然而,使洞室相对稳定的受力条件是围岩不产生拉应力、压应力均匀分布和切向压应力最小。在选择轴线方向时应多方面比较选择,以减少高地应力引发的不利因素。
·洞室断面形状选择:洞室断面形状一般有圆形、椭圆形、矩形和倒U形等。当断面的宽度高比等于侧压系数时,可综合考虑各种因素确定洞室断面形状。
2)施工阶段的防治对策:
·超前应力解除法:在高地应力区,洞室开挖后易产生超高应力集中。为了有效地消除应力集中现象,可采取预切槽法、表面爆破诱发法和超前钻孔应力解除法等提前释放地应力。在岩爆危险地带钻浅孔进行爆破,造成围岩表部松动带,可有效防止破坏性岩爆的发生。开采煤层时,首先开采无冲击地压或一般冲击地压的煤层,作为解放压力层。回采时,要用全面陷落法管理顶板,不要留煤柱;对不易冒落的顶板要采用深孔爆破法或强力高压注水法强制放顶。
·喷水或钻孔注水促进围岩软化:在洞室的易发生岩爆地段,爆破后立即向工作面新出露围岩喷水,既可降尘又可缓释围岩应力。因为注水使裂纹尖端能量降低,裂纹扩张传播的可能性减小,裂纹周围的热能转为地震能的效率随之降低。从而减少剧烈爆裂的危险性。
·选择合适的开挖方式:岩爆是高压力集中的结果,因此,开挖时可采取分步开挖的方式,人为地给围岩岩体提供一定的变形空间,使其内部的高应力得以缓慢降低,从而达到预防岩爆的目的。
·减少岩体暴露的时间和面积:在短进尺、多循环的施工作业过程中,应及时支护,以尽量减少岩体暴露的时间和面积,防止或减少岩爆发生。
·岩爆发生的处理措施:一旦发生岩爆,应彻底停机、躲避,对岩爆的发生情况进行详细观察并如实记录,仔细检查工作面、边墙或拱顶,及时处理、加固岩爆发生的地段。
3)合理选择围岩的支护加固措施:使开挖的洞室周边或前方掌子面的围岩岩体从单向应力状态变为三向应力状态,同时,围岩加固措施还具防止岩体弹射和塌落的作用。主要的支护加固措施有:①喷混凝土或钢纤维喷混凝土加固;②钢筋网喷混凝土加固;③周边锚杆加固;④格栅钢架加固;⑤必要时可采取超前支护。
(三)煤与瓦斯突出
在煤矿地下开采过程中,从煤(岩石)壁向采掘工作面瞬间突然喷出大量煤(岩)粉和瓦斯(CH4,CO2)的现象,称为煤与瓦斯突出。大量承压状态下的瓦斯从煤或围岩裂缝中高速喷出的现象称为瓦斯喷出。突出与喷出均是在地应力、瓦斯压力综合作用下产生的伴有声响和猛烈应力释放效应的现象。煤与瓦斯突出可摧毁井巷设施和通风系统,使井巷充满瓦斯与煤粉,造成井下矿工窒息或被掩埋,甚至可引起井下火灾或瓦斯爆炸。因此,煤与瓦斯突出是煤炭行业中的严重矿山地质灾害。
1.煤与瓦斯突出的特征及其影响因素
煤与瓦斯突出是地应力和瓦斯气体体积膨胀力联合作用的结果,通常以地应力为主,瓦斯膨胀力为辅。煤与瓦斯突出的基本特征是固体煤块(粉)在瓦斯气流作用下发生远距离快速运移,煤、碎块和粉尘呈现分选性堆积,颗粒越小被抛得越远。突出时有大量瓦斯(CH4或CO2)喷出,由于瓦斯压力远大于巷道内通风压力,喷出的瓦斯通常逆风前进;煤与瓦斯突出具有明显的动力效应,可搬运巨石、推翻矿车、毁坏设备、破坏井巷支护设施等。
发生突出的煤层具有瓦斯扩散速度快、湿度小,煤的力学强度低且变化大、透气性差等特点,大多属于遭构造作用严重破坏的“构造煤”。突出的次数和强度随煤层厚度的增加而增多,突出最严重的煤层一般都是最厚的主采煤层。突出的时间多发生在爆破落煤的工序。
煤与瓦斯突出灾害随采掘深度的增加而增加,其主要影响因素有矿区的地质构造条件、地应力分布状况、煤质软硬程度、煤层产状以及厚度和埋深等。一般说来,煤层埋深大,突出的次数多,强度也大。
此外,水力冲孔和震动放炮可使地应力作用下的高压瓦斯煤体在人为控制下发生突出。
2.煤与瓦斯突出的预防措施
预防煤与瓦斯突出的技术措施主要有以下4种:
1)首先开采没有突出危险或突出危险性较小的煤层。由于受采动影响,地应力以弹性潜能得以缓慢释放,煤层因卸压而膨胀变形,透气性增大,或者因层间岩石移动形成裂隙与孔道,有突出危险的煤层中瓦斯缓慢排放而使瓦斯压力和瓦斯含量明显下降,从而避免或降低煤与瓦斯突出的危险。
2)在有突出危险的煤层内均匀布置钻孔并预先抽放一定时间的瓦斯,以降低瓦斯压力与瓦斯含量,并使地应力下降、煤层强度增加。
3)在工作面前方一定距离的煤体内,超前钻探一定数量的大口径钻孔,使煤层内的瓦斯得以提前释放。
4)利用封堵、引排、抽放等综合方法处理洞穴内积存的瓦斯。
为防止煤与瓦斯突出造成严重危害,必须加强煤层顶板管理和地应力监测,加强职工安全教育。
5. 新奥法优缺点
新奥法优点
1、及时性
新奥法施工采用羡源肆喷锚支护为主要手段,可以最大限度地紧跟开挖作业面施工,因此可以利用开挖施工面的时空效应,以限制支护前的变形发展,阻止围岩进入松动的状态,在必要的情况下可以进行超前支护,加之喷射混凝土的早强和全面粘结性因而保证了支护的及时性和有效性。
在巷道爆破后立即施工以喷射混凝土支护能有效地制止岩层变形的发展,并控制应力降低区的伸展而减轻支护的承载,增强了岩层的稳定性。
2、封闭性
由于喷锚支护能及时施工,而且是全面密粘的支护,因此能及时有效地防止因水和风化作用造成围岩的破坏和剥落,制止膨胀岩体的潮解和膨胀,保护原有岩体强度。
巷道开挖后,围岩由于爆破作用产生新的裂缝,加上原有地质构造上的裂缝,随时都有可能产生变形或塌落。当喷射混凝土支护以较高的速度射向岩面,很好的充填围岩的裂隙,节理和凹穴,大大提高了围岩的强度。
同时喷锚支护起到了封闭围岩的作用,隔绝了水和空气同岩层的接触,使裂隙充填物不致软化、解体而使裂隙张开,导致围岩失去稳定。
3、柔性
喷锚支护属于柔性薄性支护,能够和围岩紧粘在一起共同作用,由于喷锚支护具有一定柔性,可以和围岩共同产生变形,在围岩中形成一定范围的非弹性变形区,并能有效控制允许围岩塑性区有适度的发展,使围岩的自承能力得以充分发挥。
另一方面,喷锚支护在与围岩共同变形中受到压缩,对围岩产生越来越大的支护反力,能够抑制围岩产生过大变形,防止围岩发生松动破坏。
新奥法缺点:
1、实施不仅要求有良好的施工组织和管理,也要求技术人员和量测人员都十分熟练,兄轿没有这一点就易于发生错误;作业质量都与每一个人的仔细操作有关。
2、开挖暴露出的地质会立即改变其状态,因此要求施工地质人员要亲临现场,以便发现问题;
3、 用能控制的施工量测,往往给施工带来不便;
4、干喷射带来的灰尘以及由于易受化学药品的损害必须加强防护,尤其是对眼睛的防护,湿喷虽然可以避免此缺点,但在同样条件下,不如干喷那样有效的支护岩体。
(5)软化水洞室作用扩展阅读:
基本要点:
1、洞室开挖后,应使围岩自身承担主要的支护作用,而衬砌只是对围岩进行加固,使成为一个整体而共同发生作用。
因此,须最大限度地保持围岩的固有强度,以发挥围岩的自承能力。如及时喷混凝土封闭岩壁,就能有效地防止围岩松弛,而不使其强度大幅度降低,同时也不存在因顶替支撑而使围岩变形松弛。总之应使围岩经常处于三轴应力约束状态,最为理想。
2、预计围岩有较大变形和松弛时,应对开挖面施作保护层,而且应在恰当的时候敷设,过早或过迟均不利。其刚度不能太大或太小,又必须是能与围岩密贴,而要做成薄层柔性,允许有一定变形,以使围岩释放应力时起卸载作用,尽量不使其有弯矩破坏的可能。
这种支护和传统的支护不同,不是因受弯矩而是受压剪作用破坏的。由于混凝土的抗压和抗剪强度比抗拉和抗弯强度大得多,从而具有更高的承载能力。一次支护的位移收敛后,可在其光滑的表面上敷设高质量的防水层,并修筑为提高安全度的二次支护。前后两次支护与围岩之间都只有径向力作用。
3、衬砌需要加强的区段,不是增大混凝土的厚度,而是加钢筋网、钢支撑和锚杆,使隧道全长范围采用大致相同的开挖断面。此外,因为新奥法不在坑道内架设杆件支撑,空间宽敞,从而提高了安全性和作业效率。
4、为正确掌握和评价围岩与支护的时间特性,可在进行室内试验的同时,在现场进行量测。量测内容为衬砌内的应力、围岩与衬砌间的接触应力以及围岩的变位,据以确定围岩的稳定时间、变形速度和围岩分类等最重要的参数,以便适应地质情况的变化,及时变更设计和施工。
量测监控是新奥法的基本特征,量测的重点是围岩和支护的力学特征随时间的变化动态。衬砌的裂袭做法和施作时间是依据围岩变位量测决定的。
6. 隧道塌方处理方案介绍
现阶段,建筑企业如何制定隧道塌方处理方案?基本情况怎么样?中达咨询小编整理隧道塌方基本内容如下:
中达咨询通过本网站建筑知识专栏的知识整理,建筑企业隧道塌方处理方案主要基本情况包括:
首先我们先了解隧道塌方处理的基本情况:
随着我国经济的高速发展,国力的增强、人民生活水平的提高,对交通的要求也越来越高拍羡。近年来,我国的高速公路、城际铁路、铁路客运专线、高速铁路、城市地铁、城市轨道交通等得到迅速发展,隧道及地下工程越来越多。对于隧道建设而言,通过近两个世纪的探索,形成了多种设计理论和工法,如矿山法、浅埋暗挖法、新奥法、挪威法等,这些设计理论和工法在隧道建设实践中发挥了十分重要的作用;但在具体实践中也出现了一些问题,尤其是一些坍方事故的发生,规模较大、造成了生命和财产损失、影响恶劣。这些事故的发生,血的教训,警示人们高度关注和重视隧道及地下工程的施工安全。
在一份合理的隧道塌方处理方案中,主要的内容包括:(1)原设计情况(2)施工情况(3)塌方原因分析(4)处理方案等相关内容,针对不同类型的隧道塌方,基本原因分别自然原因和人为原因,基本情况如下:
自然因素(地质因素)
大量工程事实证明,隧道及地下工程施工安全事故(坍方、塌陷)中起决定性的是地质因素。在勘探和施工过程中对地质情况认识不清,造成施工时出现了坍方:
在开挖的过程中,围岩的地质条件发生突变,如从Ⅲ级突然变化到Ⅴ级围岩,存在岩层分界面、岩土分界面等不利结构。
在隧道施工范围内、或隧道周边出现的断层、破碎带、软弱夹层、结构不利面、岩层的不整合接触带等。
出现了特殊的不良地质,如膨胀岩、高地应力、溶洞、涌水等。
地下水。地下水是使隧道围岩丧失稳定的重要原因,其影响主要有三个方面:一是软化围岩,软质岩石(土)体受水饱和后,其强度有不同程度的降低。如水浸入泥质岩层,能使岩质软化;水浸入无水石膏或以蒙脱石为主要成份的粘土,地层膨胀而对隧道产生极大的膨胀压力。二是软化结构面,泥质充填或具有软弱夹层的软弱结构面遇水后,即发生液化变软或填充物被冲走而降低结构冲桥面的抗剪强度,使岩体易于滑动。三是承压水作用,围岩受到水压作用后,更易失去稳定。
人为因素
设计因素
选线不合理。无论是公路、铁路,还是城市地铁,有时过多的考虑到投资等经济因素,线路的选择和确定不能百分之百从技术、地质、实际功能需求和可行性来考虑,出现一些选线不合理的情况。如果线路不合理,隧道穿越地层就有可能由好地层变为不良地质地段,就容易出现隧道坍方。比如南方某线因线位过低,使一长隧道处在沟谷底部,施工时隧道内地下水长流不断,水量巨大,多次出现突水、涌水和坍方事故,造成工期、成本的巨大损失。另一长大隧道,因考虑投资,将线路标高提高,原来的长隧道变短,但隧道通过的地层由原来较为稳定的岩层,变为土质地层与含水砂层接触带,给施工造成极大困难,造成工期、投资得不偿失。
洞口的位置选择不恰当,如位于较大的滑动体、断层之中,或存在偏压,从而引发洞口坍方。
设计的支护参数偏小,无法保证围岩从开挖后到二次衬砌施作这段时间内的稳定。
针对特殊不良地质地段,设计上给出的处理措施不当。
施工因素
选择不正确的开挖方法,易引起坍方
一般情况为:开挖面积小于100m2隧道:Ⅱ、Ⅲ级围岩一般采用全断面法开挖,Ⅳ、Ⅴ级围岩一般采用台阶法开挖。
开挖面积100~200m2隧道:Ⅱ级围岩采用全断面法开挖,Ⅲ、Ⅳ级围岩采用台阶法开挖、Ⅴ、Ⅵ级围岩采用CD、CRD法或侧壁导坑法进行开挖。
对破碎、软弱围岩或大断面施工,要采取一些辅助措施配合开挖:上半断面采用环形开挖、留核心土,喷射混凝土封闭开挖工作面,设临时仰拱封闭成环;设超前锚杆、超前管棚、插板、预注浆加固等措施。隧道渗水或涌水较大情况下,应采取较为保守的施工方法。
但施工中经常存在:施工方法与地质条件不相适应,地质条件发生变化,没有及时改变施工方法,如应该采用半断面开挖而实际采用了全断面,应该采用分步开挖的而实际采用了全断面或半断面等等;
一次开挖进尺过长也极易导致坍塌事故的发生,特别是软弱破碎围岩地段,上半断面应一次开挖一榀钢架,下半断面Ⅳ级围岩不超过两榀钢架,Ⅴ级围岩不超过一榀钢架。以上情况,致使一次开挖跨度过大或高度过高,超出了围岩自身稳定自然拱跨度,使隧道周边围岩形成塑性滑移楔体,直接造成坍散贺猛方或支护结构的剪力破坏;
选择不正确的施工方案,易引起坍方。
(1)小间距隧道施工。
未严格按小间距隧道设计规范进行施工。后行隧道未在先行隧道的模筑衬砌达到设计强度后进行,且后行的隧道开挖面未滞后先行隧道模筑衬砌不小于50m的距离。这样左右线隧道在同一横断面上同时施工或相距较近,会造成群洞效应,引起坍方。
先行隧道开挖支护中存在涌水、涌泥、大变形等地段时,后行隧道必须在先行隧道施作二次衬砌后,且达到设计强度后方能进行施工。严禁在先行隧道未施作二次衬砌前,后行隧道施作注浆、开挖支护作业,引起先行隧道关门坍方。
(2)偏压隧道施工。
隧道建造中存在山体偏压的情况时,应先施工深埋一侧的隧道,可有效减少中间隔墙围岩的偏向及侧移,明显降低围岩塑性区面积,并有益于支护结构的稳定性。如先施工埋深较浅一侧,中墙的受力和倾斜均较大,会增加隧道坍塌的风险。偏压隧道应尽早施作洞口段的仰拱,封闭成环,使隧道整体受力,以减小隧道的偏压,支护结构剪切破坏,造成坍塌。
(3)洞室、通道与正洞的交叉处的施工。
Ⅳ、Ⅴ围岩洞室、横通道与正洞的交叉口处的施工应制定专项方案,采取横梁、套拱等加固方式进行开挖支护。严禁正洞钢架悬空,引起隧道坍塌。
(4)大变形拆换拱架地段的施工。
变形段处理应采取前后夹击的策略,应先施作变形段前后的仰拱、二次衬砌,待达到砼强度后,再进行变形段的处理。变形段拆换钢架必须逐榀拆除,每次拆换一榀,由上至下,每榀封闭成环,拆除一段(4-6米),衬砌一段。严禁多榀拱部钢架拆换,严禁多榀钢架不封闭成环的情况发生。
中达咨询整理相关知识点,更多关于隧道塌方基本情况可以登入中达咨询建筑知识专栏进行查询。
更多关于标书代写制作,提升中标率,点击底部客服免费咨询。
7. 水文地质和工程地质的勘察
水文地质和工程地质的勘察
水文地质与地质工程两者的关系是非常密切的,地下水是岩土体的组成部分,将直接影响着岩土体的工程特性,又是基础的工程环境,会影响着建筑物的持久性及稳定性。下面是我为大家带来的关于水文地质和工程地质勘察的知庆数识,欢迎阅读。
1概述
随着地下隐蔽工程的越来越多,一方面地下水是岩土的一部分,将直接影响着岩土体的化学及物力性质。地下工程存在的外部环境,会直接的影响地下工程,使建筑的持久性和稳定性降低,另一方面,水文勘察的实施,增加斗差蔽了地下工程施工的困难,所以,水文勘察工作的好坏会影响着社会的生产,切实的做好水文地质勘察工作,掌握地下水的状况,进而消除地下水对建筑质量的影响及岩土工程的危害。
2工程地质的意义
对工程建筑物地区的地址概况及地质环境进行调查分析,称之为工程地质勘查。通过调查对可能产生的工程地质问题做出正确合理的预测,根据科学的分析结果,尽量的利用有限的条件,去改造一些不利的地质因素,为后期的设计、规划和施工提供有效可靠的数据资料,所以地质工程勘察工作具有非常重要的意义,可以分为以下的几个阶段:
2.1规划勘察
实施规划勘察,只要是为工程初步的选择提供有效可靠的地质资料及信息。这一阶段的重要工作是,对整个地区的地形、地质、地震资料进行编录和收集;并对该工程建筑的土质条件进行核实及系列的主要工程地质问题;评估工程实施的'是可能性;普查规划中要求的天然建筑材料。
2.2研究勘察
在对河段、河流规划方案制定后,一F步进行的就是可行性研究勘察,勘察的主要作用在于为规划中涉及的弓I水线路、堤坝以及枢纽工程的整体布置提供一个可靠的支持,充分的保证地质资料对工程的重要意义。
2.3设计勘察
设计勘察是指在研究可行性勘查中,所选择的堤坝地址及建筑地中进行勘察。其中包括整个水利工程,枢纽、堤坝的选择,对其进行地质论证,提供建筑可用的地质资料。
2.4技施设计勘察
技施设计勘察是指对初步设计中的枢纽建筑场地进行勘察,技术勘察的意义在于,建筑已经勘察的地质资料中的结论,并且提出有效的优化场地的建设方案。
3水文地质评价的内容
在过去的工程勘察报告中,严重的缺少了同基础设计之间的沟通,也缺乏对下水对岩土工程影响的评价,在多数地区都出了由于地下水系统引起的房屋开裂、基础设备下沉等事件,我们要做的就是总结过去的经验和教训,对水文地质问题评价时需要考虑到以下几个方面:
3.1开展地下水对建筑物、岩土工程造成危害的可能性评价工作,提出预防措施,做出一定的预警,解决办法。
3.2进行工程勘察时,必须对建筑物地基基础的类型联系思考,寻找水文地质问题的根源所在,并且为建筑工程提供更多科学合理的资料。
3.3评估出地下水在自然条件、自然状态下出现的情况,同时还需要考虑建筑物与岩土层之间的相互作用。
3.4根据工程角度进行分析,地下水与工程之间的作用,并找出根据不同的工程、环境,地勘工作的内容:
3.4.1对埋藏相对过深的地下水淹没建筑物基础部分中,对材料腐蚀危害的程度;
3.4.2遇到建于强风化岩、残积土质、软质岩石之上的建筑场地,需要慎重的考虑,地下水层对岩层所造成的膨胀、崩解、软化的可能性如果建筑物的地基需要建设在内含饱和、松散的沙土地中,需要对沙体的管涌、流量情况进行评估;
3.4.3如果地空州基部分需要承受含水层,需要将基坑挖开,然后精确的计算、评估出承压水冲毁基坑底板的可能性.避免在地下水层挖基坑,开挖前需要进行富水性、渗水性的试验,进而评价出人工降雨等人为条件为后天造成建筑物不稳定的可能性。
4地下水引起的岩土工程危害
由于地下水引起的岩土工程危害,主要是因为地下水动水压力及地下水水位升降的变化两方面原因造成的。人为因素或天然因素可引起地下水水位的变化,但无论什么原因,地下水位的变化达到一定程度的时候,都会对岩士工程造成一定的危害,地下水位的变化引起的危害可以分为三种方式:
4.1水位上升
潜水位上升的原因有很多种,其中主要受到地质因素的影响如总体岩性、含水层结构、水文气象因素如降雨量、气温及人为因素施工、灌溉等的影响,有些时候很可能是几种因素的综合结果。潜水位上升对岩士工程可能造成:土壤的盐泽化,地下水及岩土对建筑物腐蚀性的增强;岩土体岩产生崩塌等不良的现象;特殊性岩土体强度降低、结构破坏;引起粉细砂液化出现管涌等现象;地下洞室基础上浮、建筑物失稳;由于地下水位下降引起的岩土工程危害。
4.2地下水位下降
地下水位之所以降低多是因为人为的因素所造成的。例如大量集中的抽取地下水、在采矿过程中上游筑坝、矿床疏千、修建水库截夺下游的地下水的补给等等。由于地下水的过度下降,常常诱发地面塌陷、沉降、地裂等地质灾害以及地下水质恶化、水源枯竭等环境问题,对建筑物、岩土体的稳定性及人类自身所居住的环境造成了很大的威胁。
4.3地下水的反复升降
由于地下水的升将变化会引起膨胀性岩土产生胀缩变形,如果地下水升降频繁时,不仅使岩土的膨胀收缩变形往复,而且导致岩土的膨胀收缩的幅度不断的加大,进而形成由地裂引起的建筑物特别是对轻型建筑物的破坏。
地下水升降变动带内由于地下水的积极交换,会使土层中的铁、铝成分大量的流失,土层失去胶结物会导致土质变松、含水量的孔隙增大,承载力降低、压缩模量,为岩土工程的处理、选择带来了很大的麻烦。
4.4地下水动压力作用的不良影响
地下水如果在天然的状态下动水的压力作用是比较微弱的,一般不会造成什么危害,但在人为的工程活动中因为改变了地下水天然动力平衡的条件,在移动着的动水压力作用下,往往会产生一些严重的岩土工程的危害,例如管涌、流砂、基坑突涌等等。
8. 隧道里面的小门洞是干什么的
隧道里面的小门洞是人行横洞。通常在线路检修、设施维护等施工期间供车辆调转方向、人员通行使用,施工结束后就用闸门封闭,作为消防通道使用。主要作用是在隧道内发生事故首肆茄时让车辆和人员可以转移到另一隧道中逃生,拉者察下卷帘门后也可用于防火防烟。
一般隧道两侧看到雹旅的方型洞室有照明配电洞室、消防洞室。短隧道里消防洞室一般是灭火器,长隧道里还会设置消火栓,消防洞室一般间距50米。一定长度以上的隧道,还需加装通风设备和风机配电洞室。此外还可能看到的洞室有紧急电话洞室,一般设施附近都有指示牌。