㈠ 常用水处理技术中膜分离技术有哪几种
常见的膜分离法主要有微滤、超滤、纳滤、反渗透、电渗析、渗透汽化等方法。
1、微滤:与常规过滤相比,微滤属于精密过滤,它是截留溶液中的砂砾、淤泥、黏土等颗粒和贾第虫、隐孢子虫、藻类和一些细菌等,而大量溶剂、小分子及少量大分子溶质都能透过膜的分离过程。微滤操作有死端过滤和错流(又称切线流)过滤两种形式。
2、超滤:超滤是在压差推动力作用下进行的筛孔分离过程,它介于纳滤和微滤之间,膜孔径范围在1nm~0.055m之间。最早使用的超滤膜是天然动物的脏器薄膜。
3、纳滤:纳滤膜分离在常温下进行,无相变,无化学反应,不破坏生物活性,能有效地截留二价及高价离子和相对分子质量高于200的有机小分子,而使大部分一价无机盐透过,可分离同类氨基酸和蛋白质,实现高分子量和低分子量有机物的分离,且成本比传统工艺低,因而被广泛应用于超纯水的制备、食品、化工、医药、生化、环保、冶金等领域的各种浓缩和分离过程。
㈡ 错流过滤的工作原理:
膜的定义是将两相分开的中间相,对不同化学成分设置不同传输阻力。
工业过滤膜特性保留较大分子或颗粒,允许较小分子和溶剂通过,形成分离层。
产品可为浓缩物(浓缩有价值的物质)或渗透物(除去大分子杂质)。
错流过滤(切向流过滤,TFF)与经典过滤不同,压力侧膜具有强大错流。
交叉流动保持边界层薄,避免顶层。膜表面组分浓度高于进料流。
调节膜上溶解组分浓度,使对流传输(渗透流)等于扩散返回传输。
比较溢流与渗透速度大小,即使顶级膜,渗透性能受限于错流。
常用膜技术有微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(UO),皆为压力驱动过程。
批次或连续操作模式中,批处理是最常见方法。
批处理系统包括进料罐、泵、隔膜模块、压力保持阀与热交换器。
进料溶液或悬浮液在压力下流过膜(错流过滤、切向流过滤、TFF)。
压力由压力控制阀调节,产生的热量被热交换器带走,容器无压力。
选择膜以保留期望成分,产品可为浓缩或渗透。
工厂操作模式包括浓缩与渗滤(洗涤)。
浓缩过程去除渗透物,进料容器体积减少,保留组分浓度增加。
渗滤产生新鲜洗涤液,加入到进料容器中,保留组分浓度保持不变。
批处理优点包括灵活应对产品特性、低投资成本。
缺点涉及较高能耗与额外缓冲罐需求。
连续工厂产生压力进料泵通过量小,除去渗透物流后,浓缩物立即具有所需浓缩系数。
连续系统需多个膜回路,每个回路有自己的循环泵,操作更昂贵且不灵活。
适用于大型工厂与固定应用,如海水淡化。
㈢ 反渗透与过滤有哪些不同
哈尔滨纯净水处理设备,
哈尔滨反渗透水处理设备,
传统悬浮固形物过滤是通过垂直方向使溶内液穿过过滤介质容来实现.(见图3)
图3 常规过滤和横流过滤
溶液全部通过过滤介质,仅有一股水流出.此类过滤通常称作端点过滤,包括保安过滤、袋过滤、砂滤和多介质过滤.这些过滤方法一般局限于过滤直径大于1微米的悬浮颗粒.
为去除直径小于1微米的小颗粒、胶体物质、腐殖质和溶解盐,另外一种去除法膜开始被使用,颗粒被反渗透膜截留而非停留在过滤介质中,反渗透膜不仅表面能够截留而且基质本身也选择吸附颗粒.此外此工艺中进水沿薄膜表面流动,水的一部分通过渗透膜,将大部分盐类存留于浓水中.因为水流会连续流过膜表面,被截留的颗粒不会沉积,会被浓水冲走.
横流膜过滤一般由去除的颗粒大小决定.微滤(MF)主要去除直径大于0.1微米的颗粒,超滤(UF)去除颗粒和分子量大于1000摩尔的可溶固体,纳滤(NF)去除可溶固体和大量分子量大于200的多价盐.反渗透(RO)可去除大部分可溶物质,包括分子量为10-20的溶解盐.
㈣ 纳滤的应用
纳滤分离作为一项新型的膜分离技术,技术原理近似机械筛分。但是纳滤膜本体带有电荷性。这是它在很低压力下仍具有较高脱盐性能和截留分子量为数百的膜也可脱除无机盐的重要原因。
纳滤分离愈来愈广泛地应用于电子、食品和医药等行业,诸如超纯水制备、果汁高度浓缩、多肽和氨基酸分离、抗生素浓缩与纯化、乳清蛋白浓缩、纳滤膜-生化反应器耦合等实际分离过程中。与超滤或反渗透相比,纳滤过程对单价离子和分子量低于200的有机物截留较差,而对二价或多价离子及分子量介于200~500之间的有机物有较高脱除率,基于这一特性,纳滤过程主要应用于水的软化、净化以及相对分子质量在百级的物质的分离、分级和浓缩(如染料、抗生素、多肽、多醣等化工和生物工程产物的分级和浓缩)、脱色和去异味等。主要用于饮用水中脱除Ca、Mg离子等硬度成分、三卤甲烷中间体、异味、色度、农药、合成洗涤剂,可溶性有机物,及蒸发残留物质。
随着对环境保护和资源综合利用认识的不断提高,人们希望在治理废水的同时实现有价物质的回收,比如:大豆乳清废液中含有1%左右的低聚糖和少量的盐,亚硫酸盐法制备化纤浆和造纸浆过程出现的亚硫酸钙废液中含有2%~2.5%的六碳糖和五碳糖,制糖工业中出现的废糖蜜中含有少量的盐等等。
NF分离是一种绿色水处理技术,在某些方面可以替代传统费用高,工艺繁琐的污水处理方 法.其技术特点是:能截留分子量大于100的有机物以及多价离子,允许小分子有机物和单 价离子透过;可在高温,酸,碱等苛刻条件下运行,耐污染;运行压力低,膜通量高,装置 运行费用低;可以和其他污水处理过程相结合以进一步降低费用和提高处理效果.在水处理 中,NF膜主要用于含溶剂废水的处理,能有效地去除水中的色度,硬度和异味.NF膜以其特殊的分离性能已成功地应用于制糖,制浆造纸,电镀,机械加工以及化工反应催化剂的回收等行业的废水处理.
纳滤是一种绿色水处理技术,是国际上膜分离技术的最新发展,在某些方面可以替代传统费用高、工艺繁琐的污水处理方法。纳米级孔径且带有电荷的特殊过滤性能特点是:能截留分子量大于200的有机物以及多价离子,允许小分子有机物和单价离子透过;可在高温、酸、碱等苛刻条件下运行,膜耐受的条件范围宽,浓缩倍数高,耐污染;运行压力低,膜通量高,装置运行费用低,能耗极低(唯一驱动力是压力)。
由于纳滤膜特殊的孔径范围和制备时的特殊处理(如复合化、荷电化),使得纳滤膜具有较特殊的分离性能,其在降低废水COD、水源水的色度、硬度和去除饮用水中的有机物(TOC)、三卤代烷(THMs)前驱物等方面的应用近年来受到广泛重视,已成功地应用于制糖行业、造纸行业、电镀行业、机械加工行业及化工反应催化剂的回收行业等的废水处理中。纳滤膜的应用研究主要集中在几个方面:根据中性溶质的分子量大小而进行分离;截留有机物分子而让单价电解质透过膜层;根据离子价态而实现离子问的分离。根据纳滤膜分离的特点,其应用范围主要适用于下述情况的物质分离:①对单价盐分离的截留率要求不高;②要求进行不同价态离子的分离,如软化处理;③需要对高分子量有机物与低分子量有机物进行分离,如葡萄酒脱醇;④盐和对应的酸的分离;⑤有机物和无机物的分离,如染料脱盐、乳清浓缩脱盐和饮用水净化。
纳滤膜具有热稳定性、耐酸、耐碱和耐溶剂等优良性质,在废水的有价物质回收中起到不可估量的作用,广泛地应用于各种有机废水的回收处理。比如农药废液处理、乳清和抗菌素脱盐、电镀废液中金属回收、各种石化废水处理等。在给水处理中,纳滤膜主要用于制备软化水、饮用纯净水,能有效地去除水中的色度、硬度和异味 。
试验研究及应用
(1)日用化工废水处理.用NF膜处理日用化工废水的应用研究表明NF膜耐酸碱,有优良的截留率,对重金属有很好的去除率,不存在膜污染问题.据估计,由于NF膜的运行费用低于反渗透技术,对有机小分子有良好的脱除率,可能会覆盖90%以上的日用化工废水处理.
(2)石油工业废水处理.
石油工业废水主要包括石油开采和炼制过程中产生的含各种无机盐和有机物的废水,其成分 非常复杂,处理难度大.采用膜法特别是NF法与其他方法相给合,既可有效处理废水还可以 回收有用物质.例如,先用NF膜将原油废水分离成富油的水相和无油的盐水相,然后把富油 相加入到新鲜的供水中再进入洗油工序,这样既回收了原油又节约了用水.以前多采用反渗 透 和相分离结合的方法处理石油工业废水,但存在着膜污染严重的问题,如果在反渗透前加一NF膜,就可以解决膜污染的问题.石油工业的含酚废水中主要含有苯酚,甲基酚,硝基酚以 及各类取代酚,此类物质的毒性很大,必须脱除后才能排放,若采用NF技术,不仅酚的脱除 率可达95%以上,而且在较低压力下就能高效地将废水中的镉,镍,汞,钛等重金属高价离子脱除,其费用比反渗透等方法低得多.
(3)杀虫剂废水处理.一般的水处理方法不能除去污染水中的低分子有机农药.通过研究NF膜对不含酚杀虫剂的截留性能发现除了二氯化物以外,其他杀虫剂的截留 率均高于96.7%,所有杀虫剂在NF膜上的吸附能力均受其疏水性的影响.采用NF处理含有酚 类杀虫剂的废水也十分有效.
(4)化纤,印染工业废水处理.NF可以用于印染过程排水中染料及助剂的脱除和回用.处 理染料聚合浆料时,由于大多数染料的分子量在几百到几千,NF膜可以让一些无机盐或小分 子通过,而对较大的染料分子进行截取,粗染料浆液经NF系统后,染料可以富集,而无机盐 的浓度下降,脱盐率大于98%,染料损失率小于0.1%,而且可以在高温下运行.此外,NF还 可以用于纤维加工过程中的含油废水的处理及回收再利用.
(5)生活污水处理.采用常用的生物降解和化学氧化相结合的方法处理生活污水时,氧化 剂的消耗很大,残留物多.如果在它们之间增加一个NF系统,让能被微生物降解的小分子( 分子量小于100)通过,不能生物降解的有机大分子(分子量大于100)被截留下来经化学氧化 后再生物降解,这样就可以充分发挥生物降解的作用,节省氧化剂或活性炭的用量,降低最 终残留物的含量.
(6)热电厂二次废水的治理及回收利用.热电厂的二次废水主要来自冲灰,除尘及冷却系统,此类废水中含有大量的悬浮固体,灰份 及高含量的盐份和部分有机物.利用NF可以把这一类废水处理成工业回用水.首先用微滤除 去水中的全部悬浮颗粒,质量分数为99%的BOD,98%的COD,73%的总氮和17%的总磷,同时将水中的菌落总数降到3~4个/L,然后加酸降低pH以除去CO2,最后再经NF脱盐,达到锅炉用水的质量.澳大利亚太平洋热电厂的Eraring发电站已用NF对此类废水进行处理,每天处理1 000~15 000 m3废水,既减轻了市政供水系统的负荷,每年又可为热电厂节约 操作费用80万美元.该热电厂准备扩大发电规模,用水量也相应增大,估计到2010年,处理 此类废水量将达5 000 m3/d,效益极其可观.
(7)酸洗废液处理.钢厂的酸洗工序是将钢材浸入质量分数为20%左右的硫酸酸洗槽中进行 酸洗.随着酸洗的进行,硫酸浓度逐渐降低,硫酸亚铁浓度不断增高,当溶液中硫酸的质量 分数降至6%~8%,生成的硫酸亚铁浓度超过200~250 g/L时,酸洗速率下降,必须更 换酸洗液,排放酸洗废液.酸洗好的钢材必须用清水进行冲洗以除去表面的酸性物质,又造 成了废酸水的外排.为了保护环境,节约资源,可采用NF工艺处理酸洗废液.利用NF膜对硫 酸和硫酸亚铁截留率的不同,先将硫酸亚铁截留在浓缩液中,然后将浓缩液送入冷却结晶罐,冷却结晶出FeSO4·7H2O;透过液再经能截留硫酸的另一NF膜组件,截留后浓缩为20%的 硫酸,再生酸液回收利用,透过液则排至废酸水站,进一步处理排放或回收.这一工艺回收 了硫酸和硫酸亚铁,同时实现了酸洗废液的回收综合利用和废酸水达标排放的目的.
(8)造纸废水处理.采用NF膜技术替代传统的化学处理 法能更为有效地除去深色木质素.木浆漂白过程产生的氯化木质素 是带负电的,容易被带负电性的NF膜截留,并且对膜不会产生污染.另外,因为整个处理过程中对阳离子(Na+)的脱除率并没有严格要求,采用反渗透技术就显得没有必要 .采用超滤/纳滤处理牛皮纸制造废水有很好的效果。
工程应用
纳滤膜的孔径范围介于反渗透膜和超滤膜之间,其对二价和多价离了及分子量在200~1000之间的有机物有较高的脱除性能,而对单价离子和小分子的脱除率则较低。而且,与反渗透过程相比,纳滤过程的操作压力更低(一般在1.0Mpa左右);同时由于纳滤膜对单价离子和小分子的脱除率低,过程渗透压较小,所以,在相同条件下,纳滤与反渗透相比可节能15%左右[3]。因而在水处理中,纳滤被广泛应用于饮用水的浓度净化、水软化、有机物和生物活性物质的除盐和浓缩、水中三卤代物前躯物的去除、不同分子量有机物的分级和浓缩、废水脱色等领域。
Sibille等研究了法国Auverw-sur-Oise市的地下水,对纳滤和生物处理饮用水(臭氧—生物活性炭过滤)进行了对比。结果表明,纳滤可以显著提高饮用水的水质,减少细菌数量和有机物的浓度,从而使后续消毒更有效,也减少了三氯甲烷的形成。但是,研究又指出,少量极易被细菌等吸收的可生物降解的有机物质(BOM:BiologicalOrganicMatter)、可同化有机碳(AOC:AssimilableOrganicCarbon)也能透过纳滤膜。
虽然,纳滤技术的工程应用在美国、日本等国家的给水行业中已经得到大规模的推广,但在我国,将纳滤技术广泛地应用于工程实践的条件还不成熟,尚处于尝试阶段、本要问题是国产纳滤膜的性能指标不够过关。已有工程实例的报道,如国内首套工业化大规模膜软化系统——山东长岛南隍城纳滤示范工程,是纳滤技术在高硬度海岛苦咸水净化的实际应用。该工程由国家海洋局杭州水处理中心设计,于1997年4月正式投入生产淡水,系统连续正常运行27个月,淡化水符合国家生活饮用水卫生标准。
有关学者曾采用纳滤膜对某市自来水(以污染严重的淮河水为原水)进行深度处理试验,研究了纳滤循环制水试验工艺的效果。结果表明,循环试验工艺与单级纳滤工艺相比,在同样较低的压力下,出水率较高,并且能耗降低,减少了浓水排放。即使在回收率较高(80%)的情况下,膜出水中的总有机碳(TOC)仍比自来水低50%;对致会变物的去除十分显著,使Ames试验阳性的水转为阴性。
纳滤膜应用问题
纳滤膜有较高的膜通量,可以截留有机及无机污染物,而对人体必需的一些离子又有较大的透过率,因此,把纳滤膜应用于饮用水的深度净化较其它的膜分离技术有较大的优势。把钢滤膜应用于给水处理领域的主要问题是:
这三个问题是膜分离的基本问题,也是纳滤膜法水处理技术难以广泛应用的主要原因。世界各国的水处理工作者正在进行广泛的研究,寻求解决这些问题的途径。纳滤技术在给水处理领域的推广应用还依赖于这些问题的进一步解决。
净水机滤芯分为微滤(也叫粗滤),超滤(简称UF),纳滤(简称NF),反渗透(简称RO)四种。
微滤
就是简单的过滤,滤芯材料一般是采用PP棉滤芯和石英砂、颗粒或压缩的活性碳滤芯、或KDF颗粒等进行处理。微滤膜的孔径一般都在0.5-1微米,只能起到过滤泥沙、铁锈、胶体等可见杂质以及大的细菌团。通过微滤膜处理的水,只能在感官上达到清澈,并不能作为合格的饮用水来饮用,是市场多见的简单过滤装置。
超滤
简称UF,也叫中空纤维,是利用超滤膜孔径对液体进行分离的物理筛分过程;孔径一般为0.1-0.01微米,在水处理中主要是可以过滤细菌、病毒、炭粉等大分子有机物,但对于农药、除草剂、洗涤剂等低分子的有机物、重金属以及在自来水运输过程中产生的铁、锰离子等有害的物质则不能有效去除;总的来说,超滤孔径达到0.01微米的超滤净水产品净化出来的水可以达到直接饮用的标准,但是整体过滤效果和水质口感不好。
超滤膜以压力差为推动力的膜过滤方法为超滤膜过滤。超滤膜大多由醋酯纤维或与其性能类似的高分子材料制得。最适于处理溶液中溶质的分离和增浓,也常用于其他分离技术难以完成的胶状悬浮液的分离,其应用领域在不断扩大。
纳滤
纳滤简称NF,纳滤芯的孔径范围在0.01-0.001微米之间;能够滤除抗生素、激素,农药、石油、洗涤剂、重金属、藻毒素等化学污染物;而小于此孔径的矿物质离子则可以通过;能够有效保留有益的矿物质。
反渗透
反渗透(简称RO),即运用特制的高压水泵,增加原水压力,使原水在压力的作用下渗透过孔径只有0.0001微米的逆渗透膜。化学离子和细菌、真菌、病毒体均不能通过,随废水排出,只允许体积小于0.0001微米的纯水分子通过,也就是纯水。不含对人体有益的矿物质,长期饮用人体不利。
㈥ 膜分离技术都有哪些种类各类膜分离技术的分离原理是什么
膜分离技术来种类有:微滤(源MF)、超滤(UF)、纳滤(UF)、反渗透(RO)、膜生物反应器(MBR)、膜集成技术等。
膜分离技术广泛应用于纺织、电力、机械、发酵、食品、医药化工、生物、环保、农药化工、冶金、能源、石油、水处理、电子、仿生等领域,在提高分离效率的同时,能耗大大降低。
㈦ 净水器的纳滤膜和RO膜,超滤膜有什么区别
纳滤膜和RO膜的区别:
1. NF膜分离需要的跨膜压差一般为0.5~2.0MPa,比用反渗透膜达版到同样的渗透能量所权必须施加的压差低0.5~3MPa。在同等的外加压力下,纳滤的通量要比反渗透大得多,而在通量一定时,纳滤所需的压力则比反渗透的低很多。所以用纳滤代替反渗透时,“浓缩”过程可更有效、快速地进行,并达到较大的“浓缩”倍数。
2.纳滤膜与其他膜分离过程比较,纳滤的一个优点是能透析反渗透膜所截留的部分无机盐——也就是能使“浓缩”与脱盐同步进行。
3.纳滤膜介于反渗透和超滤膜之间,其膜表面分离皮层可能具有纳米级微孔结构。
4.相对于反渗透膜NaCI的脱除率均在95%以上,一般将NaCI脱除率为90%以下的膜均可称之为纳滤膜。
5.反渗透膜几乎对所有溶质都有很高的脱除率,而纳滤膜只对特定的溶质具有脱除率。
6.反渗透膜几乎均为聚酰胺材质,而纳滤膜材料可采用多种材质,如醋酸纤维素、醋酸-三醋酸纤维素、磺化聚砜、磺化聚醚砜、芳香聚酰胺复合材料和无机材料等。
其实这几种滤膜区别不大,主要的区别就是精度大小不一样,还有就是应用领域也有些不一样。如果对这几种滤膜的区别还是不是很清楚详细的可以看网页链接
㈧ 净水器纳滤和反渗透的哪个好
净水器目前就三种 4种 一是陶瓷滤芯加活性炭 二是超滤加活性炭 三是PP棉加活性炭 四是反渗透系统需要PP棉超滤滤活性炭等为反渗透服务。
前三者是初级过滤后再是厨房的终端系统。