导航:首页 > 净水问答 > 阳离子交换吸附作用是一种可逆反应

阳离子交换吸附作用是一种可逆反应

发布时间:2025-05-22 07:16:50

Ⅰ 阳树脂的基本简介

阳树脂,全名是阳离子交换树脂,具有交换容量高,交换速度快,机械强度好等特点,尤其适合于制备供锅炉使用的软水纯水的制备。色可赛思开发出树脂也可用于催化剂和脱水剂,以及湿法冶金、制糖制药工业等。
离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。 这类树脂(IONRESIN)含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。色可赛思强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 这类树脂(IONRESIN)含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。色可赛思树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。色可赛思树脂亦是用酸进行再生(比强酸性树脂较易再生)。
据江苏色可赛思树脂有限公司产品在中国地区标准型号有如:001X7 D001 D113树脂等等。

Ⅱ 阳离子交换树脂的简介

离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的一种可逆性化学反应,当液相中的某些回离子较答为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.5~1.0mm,其离子交换能力依其交换能力特征可分 :
1. 强酸型阳离子交换树脂:主要含有强酸性的反应基如磺酸基(-SO3H),此离子交换树脂可以交换所有的阳离子。
2.弱酸型阳离子交换树脂:具有较弱的反应基如羧基(-COOH基),此离子交换树脂仅可交换弱碱中的阳离子如Ca2+、Mg2+,对于强碱中的离子如Na+、K+等无法进行交换。
阳离子树脂是以苯乙烯和二乙烯苯聚合, 经硫酸磺化而制得的聚合物。 生产过程中不含有明 胶及其它任何动物提取物。阳离子交换树脂遇水可将其本身的某一种具有活性的离子和水中某电离子相互交换,即发生置换反应,去除水中可溶解的离子。阳离子交换树脂有粉状和球状,都是人工合成的。

废水离子交换处理法交换反应

废水离子交换处理法是一种特殊的化学反应,其主要特点体现在三个方面:首先,它遵循当量定律,即离子之间的交换是等比例的;其次,它是可逆反应,受质量作用定律制约;再者,交换剂具有选择性,即优先与离子势能较大的离子进行交换。在常温和低离子浓度下,阳离子的交换势与其价数和原子序数相关,如强酸阳树脂中,Fe3+的交换势大于Al3+,而同价阳离子中,原子序数较大的离子交换势更强。


对于阳离子,强碱阴树脂的选择性顺序为:Cr2O崼>SO厈>NO婣>CrO厈>Cl->OH-。当离子浓度升高时,这些顺序可能会受到影响,主要取决于实际的浓度水平。离子交换的选择性可以用选择系数K屧来量化,它是一个无量纲数值,反映树脂中离子与溶液中离子的相对选择性。K屧大于1意味着树脂更倾向于吸附An+;K屧等于1表示对An+和B+的选择性相同;K屧为0则An+不会被树脂吸附。例如,阳离子交换树脂对阴离子的选择系数为0,反之亦然。


当K屧小于1时,树脂优先选择B+;而当K屧远大于或小于1时,An+和B+的分离更易进行。为了在再生时使树脂恢复至原始状态,需要调整溶液中B+离子的浓度。对于离子交换平衡的热力学解释,唐南膜平衡模型提供了更全面的阐述,它超越了简单的质量作用定律。




(3)阳离子交换吸附作用是一种可逆反应扩展阅读

借助于离子交换剂中的交换离子同废水中的离子进行交换而除去废水中有害离子的方法。 人类对自然界中的某些离子交换现象早已有所认识。古希腊著作中已有关于使用粘土脱去水中矿物质的叙述。1850年有人发现了土壤中离子交换的现象,以后又有人发现泥土吸附地下水中的离子是可逆反应。

Ⅳ 吸附种类和吸附机理

按吸附现象产生的原因而言,可分为物理吸附及化学吸附。

(一)物理吸附

固体颗粒表面电荷的不均衡,往往使其带电荷。按其电荷的性质可分为永久电荷和可变电荷。

永久电荷是矿物晶格内的同晶替代所产生的电荷。例如,粘土矿物的结构为硅四面体和铝八面体,四面体内的硅和八面体内的铝均可被与其直径大小相近的离子所替代;四价的Si4+可被三价的Al3+所替代,而三价的Al3+可被二价的Mg2+所替代,这样的结果,使颗粒表面电荷产生了不均衡,使其呈现出负电性。由于同晶替代是在粘土矿物形成时产生的,并且是在粘土晶格的内部,因此一旦产生这种电荷就不会改变,具有永久性质,故称永久电荷。蒙脱石和伊利石的同晶替代较多,所以它们的表面电荷以永久电荷为主;而高岭石则不同,它的同晶替代少,其主要的表面电荷另有来源。

可变电荷是颗粒表面产生化学解离形成的,其表面电荷的性质(正电荷或负电荷)及数量往往随介质的pH值的改变而变化,所以称为可变电荷。例如某些胶体颗粒表面分子或原子团的解离:

(1)二氧化硅胶体和含水二氧化硅胶体的解离

水文地球化学基础

(2)粘土矿物颗粒晶面上的OH基中H+的解离

水文地球化学基础

高岭石晶体表面的OH基较多,所以它的表面电荷以可变电荷为主。

(3)氢氧化铁及氢氧化铝表面分子OH基的解离

Fe(OH)3→Fe(OH)2--+OH-

A1(OH)3→Al(OH)2++H+

(4)腐殖质上某些原子团的解离

水文地球化学基础

上述谈到颗粒表面电荷形成的机理。由于固体颗粒表面带电荷,所以在固液相接触时。便会发生靠固体表面静电引力吸附液相异性离子的现象,这种现象称为物理吸附。

物理吸附的特点是,其吸附的键联力为静电引力,键联力较弱,因此已吸附在颗粒表面的离子,在一定条件下,可被液体中另一种离子所替换,所以物理吸附也称为“离子交换”。被吸附离子的电性,取决于表面电荷的电性,颗粒表面带负电荷,吸附阳离子,称为阳离子吸附,或阳离子交换;颗粒表面带正电荷,吸附阴离子,称为阴离子吸附,或阴离子交换。物理吸附这个表面反应是一种可逆反应,可用质量作用定律来描述。

(二)化学吸附

化学吸附不是依赖于静电引力发生的,液相中的离子是靠键力强的化学键(如共价键)结合到固体颗粒表面的;被吸附的离子进入颗粒的结晶格架,成为晶格的一部分,它不可能再返回溶液,是一种不可逆反应。这种现象也称为“特殊吸附”。产生化学吸附的一个基本条件是,被吸附离子直径与晶格中网穴的直径大致相等,例如,K+的直径为266pm(2.66Å),硅铝酸盐胶体晶格网穴直径为280pm(2.80Å),它们的直径大致相等,所以K+可被吸附到胶体的晶格里。

在实际研究中,要区分物理吸附及化学吸附是十分困难的;而物理吸附要比化学吸附普遍。因此,目前研究最多的是物理吸附,而且物理吸附的研究,实际上也包括化学吸附在内,因为两者很难区分。特别是地下水污染中污染物的研究更是如此。

Ⅳ 阳离子交换

1.阳离子交换

按质量作用定律,阳离子交换反应可以表示为

水文地球化学基础

式中:KA—B为阳离子交换平衡常数;A和B为水中的离子;AX和BX为吸附在固体颗粒表面的离子;方括号指活度。

在海水入侵过程中,准确模拟阳离子交换作用是预测阳离子在含水层中运移的前提条件。按照质量作用定律可以用一个平衡常数把离子交换作为一种反应来描述。例如Na+、Ca2+的交换:

水文地球化学基础

平衡常数为:

水文地球化学基础

式(3—115)表明,交换反应是等当量的,是个可逆过程;两个Na+交换一个Ca2+。如果水中的Na+与吸附在固体颗粒表面的Ca2+(即CaX)交换,则反应向右进行;反之,则向左进行。如果反应向右进行,Ca2+是解吸过程,而Na+是吸附过程。所以,阳离子交换实际上是一个吸附—解吸过程。Na+、Ca2+的交换是一种最广泛的阳离子交换。当海水入侵淡水含水层时,由于海水中Na+远高于淡水,而且淡水含水层颗粒表面可交换的阳离子主要是Ca2+,因此产生Na+、Ca2+之间的离子交换,Na+被吸附而Ca2+被解吸,方程(3—115)向右进行;当淡水渗入海相地层时,则Na+被解吸而Ca2+被吸附,反应向左进行。

2.质量作用方程

描述离子交换反应的方程式有多种,通常主要是通过对实验数据的最佳拟合来决定选择哪一种方程式,众多的研究者很难达成一致(Gaines et al.,1953;Vanselow,1932;Gapon,1933;Appelo et al.,1993;Grolimund et al.,1995;Vulava et al.,2000),因为目前并没有一个统一的理论来计算吸附剂上的离子活度,而前面提到的迪拜—休克尔方程、戴维斯方程都是适用于水溶液中的离子活度计算。

交换性阳离子活度有时用摩尔分数来计算,但更为常用的是当量分数作为交换位的数量分数或者作为交换性阳离子的数量分数。在一种理想的标准状态下,交换剂只被一种离子完全占据,交换离子的活度等于1。对于等价交换使用哪一种方程式没有区别,但是对于非等价交换影响十分显著(Grolimund et al.,1995;Vulava et al.,2000)。所有的模型都有相同的函数形式:

水文地球化学基础

即为交换位浓度(单位质量吸附剂的摩尔数)与无单位函数

)和

)的乘积。这些函数依赖于溶液中阳离子的活度。

海水入侵过程中的交换反应主要为Na+与Ca2+之间的交换,通常写作:

水文地球化学基础

X为—1价的表面交换位,交换位X的总浓度为

水文地球化学基础

式中:S指每单位质量固体的总交换位浓度,mol/g。这种情况下S的量等于阳离子交换容量(只要单位换算统一即可)。

水文地球化学基础

式(3—120)的书写方式符合Gaines—Thomas方程式,Gaines(盖恩斯)和Thomas(托马斯)(1995)最先给出交换性阳离子热动力学标准态的严格定义。它使用交换性阳离子的当量分数作为吸附离子的活度。若式(3—120)使用摩尔分数,则遵守Vanselow(1932)公式。

如果假定吸附阳离子的活度和被离子占据的交换位的数目成正比,反应式(3—115)则可写成

水文地球化学基础

式(3—122)符合Gapon(加蓬)方程式。在Gapon方程式中,摩尔分数和当量分数是一样的,都是电荷为—1的单一交换位。

还有一种交换形式为:

水文地球化学基础

Y指交换位的电荷为—2,这种反应式同样是交换反应的一种有效热力学描述。它假定交换位Y的总浓度为

水文地球化学基础

S则为阳离子交换容量的二分之一。Cernik(采尔尼克)等根据当量分数利用反应式(3—123),将交换系数表示为:

水文地球化学基础

3.质量作用方程拟合

利用Gaines—Thomas(GT)方程式、Vanselow(VS)方程式和Gapon(GP)方程式对在砂样中进行的试验所获得的数据进行拟合,根据拟合结果作出 Na+、Ca2+、Mg2+、K+吸附等温线(刘茜,2007),如图3—4~图3—7所示。

图3—4 Na+吸附等温线和拟合数据

由吸附等温线可以看出,砂样对Na+、Mg2+、K+的吸附量均随着溶液中离子浓度的增加而逐渐增加,而Ca2+发生解吸。图3—4中,砂样对Na+的吸附量随溶液中离子浓度的增加而缓慢增加。图3—5中,在Ca2+浓度较低时,解吸量迅速增大,当Ca2+浓度较高时,随浓度增加解吸量增加缓慢,逐渐趋于平稳状态。

图3—6中Mg2+浓度较低时,吸附量增加较慢,在较高浓度时增加较快,但并没有出现Ca2+的解吸等温线中的平稳状态,依然为直线型,且直线的斜率大于低浓度状态时的斜率,说明Na+、Mg2+的吸附速率在低浓度(海水含量为20%左右)时较小,在高浓度时,吸附速率变大;Ca2+的解吸在高浓度时基本达到平衡,而Na+、Mg2+还有增长趋势,也较好证明了试验所用砂样的交换位主要为Ca2+所占据。图3—7中K+实测值的吸附等温线则没有出现Ca2+、Na+、Mg2+的规律,虽然整体上随着溶液离子浓度的增加,吸附量也是增长趋势,但并没有出现直线规律。究其原因,主要是阳离子交换吸附作用不大,主要是化学吸附,因为K+的水化膜较薄,所以有较强的结合力,K+被吸附后,大多被牢固吸附在黏土矿物晶格中。

图3—5 Ca2+吸附等温线和拟合数据

图3—6 Mg2+吸附等温线和拟合数据

图3—7 K+吸附等温式和拟合数据

由吸附等温线模拟图(图3—4~图3—7)及公式与试验数据拟合的相关系数(表3—17)看出,GT方程式拟合效果较好,能够很好地预测离子交换趋势。因此,在多组分离子交换模拟计算中采用Gaines—Thomas方程,为阳离子交换的定量研究提供了依据。

表3—17 GT、GP、VS方程式拟合的相关系数

所以根据Gaines—Thomas方程式(3—126)~式(3—131)计算离子交换系数(表3—18)。由于 9 种配比浓度的离子强度不同,所以各自的交换系数也有所差别。对比

可知3种离子的吸附亲和力顺序为Mg2+>K+>Na+。但是由于海水中Na+、Mg2+含量远远高于地下水,尤其是Na+的含量比地下水高出3个数量级,因此,海水入侵过程中以Ca2+、Na+交换为主,其次为Ca2+、Mg2+交换,交换量最少的为Ca2+、K+

水文地球化学基础

表3—18 试验土样不同浓度下的交换系数

阅读全文

与阳离子交换吸附作用是一种可逆反应相关的资料

热点内容
饮水机浇花是什么梗 浏览:643
怎么辨别ro膜的好坏 浏览:61
更换滤芯后有什么变化 浏览:928
环氧树脂胶可以做地板 浏览:947
奉化污水处理厂是什么企业 浏览:97
臭氧在水处理中的作用 浏览:954
前置过滤器会被偷吗 浏览:454
污水混匀的菌落总数检测 浏览:644
环氧树脂属于危废 浏览:463
鸡蛋壳去水垢 浏览:438
污水分析员安全责任书 浏览:431
净水器出去跑业务怎么样 浏览:539
led蓝光滤芯怎么处理 浏览:709
柠檬酸除垢剂对婴儿有危害吗 浏览:127
3万人污水处理厂需要多少钱 浏览:96
3秒出开水的饮水机多少钱 浏览:879
仙桃污水处理多少钱 浏览:215
污水净化费用多少 浏览:755
净水器工作时不排废水怎么回事 浏览:904
3M反渗透滤芯参数 浏览:690