① 液相色谱有几种类型保留机理是什么 最适宜分离的物质是什么
液相色谱有几种类型?它们的保留机理是什么? 在这些类型的应用中,最适宜分离的物质是什么?
解:液相色谱有以下几种类型:液-液分配色谱; 液-固吸附色谱; 化学键合色谱;离子交换色谱; 离子对色谱; 空间排阻色谱等.
其中;液-液分配色谱的保留机理是通过组分在固定相和流动相间的多次分配进行分离的。可以分离各种无机、有机化合物。
液-固吸附色谱是通过组分在两相间的多次吸附与解吸平衡实现分离的.最适宜分离的物质为中等相对分子质量的油溶性试样,凡是能够用薄层色谱分离的物质均可用此法分离。
化学键合色谱中由于键合基团不能全部覆盖具有吸附能力的载体,所以同时遵循吸附和分配的机理,最适宜分离的物质为与液-液色谱相同。
离子交换色谱和离子色谱是通过组分与固定相间亲合力差别而实现分离的.各种离子及在溶液中能够离解的物质均可实现分离,包括无机化合物、有机物及生物分子,如氨基酸、核酸及蛋白质等。
在离子对色谱色谱中,样品组分进入色谱柱后,组分的离子与对离子相互作用生成中性化合物,从而被固定相分配或吸附进而实现分离的.各种有机酸碱特别是核酸、核苷、生物碱等的分离是离子对色谱的特点。
空间排阻色谱是利用凝胶固定相的孔径与被分离组分分子间的相对大小关系,而分离、分析的方法。最适宜分离的物质是:
另外尚有手性色谱、胶束色谱、环糊精色谱及亲合色谱等机理。
② 离子对色谱的保留机理是什么这种类型的色谱在分析应用中,最适宜分离的物质是什么
这个在教科书上说的比较详细。
简单地说一下:
有机酸或生物碱,有一定的解离,但离解较弱,不适合用离子交换色谱。但直接采用正相色谱保留值太强,用反相色谱保留太弱,用离子对色谱则比较合适。
它的原理是:在流动相中加入与目标物质离子电荷相反的离子,与其形成疏水性离子对化合物,从而能在固定相和流动相之间进行分配。
在色谱中的应用主要是生物碱的分析,因为普通的色谱柱pH范围是从中性到偏酸,有机酸可以通过调低流动相的pH(<pKa)来使其处于非解离状态而达到分离,而生物碱需要调高pH(>pKb)才能处于非解离状态,这样的话硅胶基质色谱柱受不了。
不过,现在也有高pH范围的色谱柱,也可以不采用离子对色谱,毕竟流动相中加入SDS之类的东西,不容易平衡,对色谱柱也有损害。
希望能对你有所帮助。
③ 色谱最初设计为分离的是哪种物质
离子交换色谱法是利用离子交换原理和液相色谱技术的结合来测定溶液中内阳离子和阴离子的一种分离分容析方法。凡在溶液中能够电离的物质通常都可以用离子交换色谱法进行分离。现在它不仅适用于无机离子混合物的分离,亦可用于有机物的分离,例如氨基酸、核酸、蛋白质等生物大分子,因此应用范围较广。
④ 离子交换层析中流出物质顺序是什么
若用离子交换层析分离物质,以蛋白质为例,离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阴离子交换树脂;而带有负电荷的称之阳离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。
由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。
反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。
(4)离子交换色谱对物质分离的依据是扩展阅读:
对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。
溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型。阴离子交换剂常用“碱-酸-碱”处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用“酸-碱-酸”处理,使最终转为-H-型交换剂。
梯度不要上升太快,要恰好使移动的区带在快到柱末端时达到解吸状态。目的物的过早解吸,会引起区带扩散;而目的物的过晚解吸会使峰形过宽。
⑤ 离子交换色谱法的分离原理
离子交换色谱(ion exchange chromatography,IEC)以离子交换树脂作为固定相,树脂上具有固定离回子基团及可交换的答离子基团。当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。根据组分离子对树脂亲合力不同而得到分离。
阳离子交换:
阴离子交换:
式中"--"表示在固定相上,Kxy和Kzm是交换反应的平衡常数,Z+和X-代表被分析的组分离子。M+和Y-表示树脂上可交换的离子团。
离子交换反应的平衡常数分别为:
阳离子交换:
阴离子交换:
平衡常数K值越大,表示组分的离子与离子交换树脂的相互作用越强。由于不同的物质在溶剂中离解后,对离子交换中心具有不同的亲合力,因此具有不同的平衡常数。亲合力大的,在柱中的停留时间长,具有高的保留值。
⑥ 液相色谱法分离两种物质的理论依据是什么具体操作方法和步骤是怎样的
最常用方法:反向色谱法,通常用C18键和相的色谱柱,流动相通常为甲醇、乙腈、水或者它版们一定比例的混权合物;简单来讲,主要是通过不同物质与色谱柱内固定相(也就是C18)的相互作用力进行分离,如果一种组分和固定相相互作用力小,在色谱柱上保留的时间比较短,很快会流出,另一种组分和固定相相互作用力大,在色谱柱上保留的时间长,于是比较晚流出,由此达到分离;稳妥起见,具体操作建议看一下自己手头仪器的说明书;另外,色谱柱的寿命和样品的纯净程度和使用习惯有很大关系;
⑦ 液相色谱法什么是固定相什么是流动相
在色谱法中,是利用溶液中被分离物质在两相中分配系数不同以使组分分离的方法。其中一相为
液体,涂布或使之键合在固体载体上,称固定相;另一相为液体或气体,称流动相,流动相中携带
了( 溶解)待测的药物。固定相就是用来分离物质的,流动相就是载体,将物质带到固定相里并通
过固定相的流体。在气相里就是栽气,在液相里就是液体,就叫流动相。也可以这样理解,固定相是
为了把样品里面的成分留下,固定住;而流动相则要把样品的组分带走进检测器。不同的组分的能力不
一样导致了组分的分离。流动相是携带样品进入分析流程的物质。固定相是用来分离被测组分的物质。
所以顾名思义,流动的一相即为流动相,固定不同的一相即为固定相。
固定相的选择对样品的分离起着重要作用,有时甚至是决定性的作用。不同类型的色谱采用不同的固定相,如气-固色谱的固定相为各种具有吸附活性的固体吸附剂;气-液色谱的固定相是载体表面涂渍的固定
液,液相色谱中的固定相为各种键合型的硅胶小球,离子交换色谱中的固定相为各种离子交换剂,排阻色
谱中的固定相为各种不同类型的凝胶等等。
色谱过程中携带待测组分向前移动的物质称为流动相。与固定相处于平衡状态、带动样品向前移动的另一相。用作流动相的物质有:气体、液体、超临界流体等。常见的流动相主要有:乙腈-水溶液、乙
腈-醋酸水溶液、甲醇-水溶液、乙腈-磷酸水溶液等。
⑧ 气相色谱原理
天瑞仪器为您介绍气相色谱技术原理
1进样口温度:独立控温,温度400?C2压力设定范围:0---50 Psi,精度0.1 Psi3压力控制模式:电子压力控制,支持恒压,恒流4分流模式:分流与不分流进样口,支持分流比100:1 5柱温箱操作温度:室温10?C---400?C6柱箱升温速率:40?C /min7平台升温:7阶8平台程序升温8离子化能量(EI源):10 eV ---100 eV(可调)9质量范围:1.5---1000 amu10分辨率:单位质量分辨11离子源温度:100---350℃12灯丝发射电流:300uA13气质接口温度:400℃14质量轴稳定性: ±0.10 amu/48 hrs15灵敏度:全扫描,1pg八氟萘(OFN)在m/z 272 amu处,信噪比(S/N)≥30:1(RMS)16扫描速率:10000 amu/s17真空系统:涡轮分子泵(67L/s)18检测器:高能打拿极(HED)的电子倍增器
产品详细介绍点击:气相色谱仪工作原理
⑨ 离子交换色谱适合下面哪一种物质的分离
离子交换色谱法是利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子内和阴离子的一容种分离分析方法。凡在溶液中能够电离的物质通常都可以用离子交换色谱法进行分离。现在它不仅适用于无机离子混合物的分离,亦可用于有机物的分离,例如氨基酸、核酸、蛋白质等生物大分子,因此应用范围较广。