Ⅰ 污水处理过程中,我们要检测HP,SS,温度,CODcr,BOD,BOD5,总镍的浓度,磷酸盐的含量,石油类,LAS等等。
我是BFMS工艺设备销售员,下面是我下栽的
水污染物
PH氢离子浓度指数,即 pH值。这个概念是1909年由丹麦生物化学家Søren Peter Lauritz Sørensen提出。p代表德语Potenz,意思是力量或浓度,H代表氢离子。
pH实际上是水溶液中酸碱度的一种表示方法。平时我们经常习惯于用百分浓度来表示水溶液的酸碱度,如1%的硫酸溶液或1%的碱溶液,但是当水溶液的酸碱度很小很小时,如果再用百分浓度来表示则太麻烦了,这时可用pH来表示。pH的应用范围在0-14之间,当pH=7时水呈中性;pH<7时水呈酸性,pH愈小,水的酸性愈大;当pH>7时水呈碱性,pH愈大,水的碱性愈大。
pH值的计算公式如下:
C(H)为H离子浓度
-lg(C(H)),例如HCL溶液,-lg(10^-2)=2
碱性溶液中
14-lg(C(OH))
世界上所有的生物是离不开水的,但是适宜于生物生存的pH值的范围往往是非常狭小的,因此国家环保局将处理出水的pH值严格地规定在6-9之间。
水中pH值的检测经常使用pH试纸,也有用仪器测定的,如pH测定仪。
生化需氧量和化学需氧量的比值能说明水中的有机污染物有多少是微生物所难以分解的。微生物难以分解的有机污染物对环境造成的危害更大。
COD(化学需氧量,ChemicalOxygenDemand)区别:COD,化学需氧量是以化学方法测量水样中需要被氧化的还原性物质的量。水样在一定条件下,以氧化1升水样中还原性物质所消耗的氧化剂的量为指标,折算成每升水样全部被氧化后,需要的氧的毫克数,以mg/L表示。它反映了水中受还原性物质污染的程度。该指标也作为有机物相对含量的综合指标之一。
BOD(Biochemical Oxygen Demand的简写):生化需氧量或生化耗氧量。
BOD,生化需氧量(BOD)是一种环境监测指标,主要用于监测水体中有机物的污染状况。一般有机物都可以被微生物所分解,但微生物分解水中的有机化合物时需要消耗氧,如果水中的溶解氧不足以供给微生物的需要,水体就处于污染状态。BOD才是有关环保的指标!
表示水中有机物等需氧污染物质含量的一个综合指示。
它说明水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。其单位ppm成毫克/升表示。其值越高说明水中有机污染物质越多,污染也就越严重。
为了使检测资料有可比性,一般规定一个时间周期,在这段时间内,在一定温度下用水样培养微生物,并测定水中溶解氧消耗情况,一般采用五天时间,称为五日生化需氧量,记做BOD5。数值越大证明水中含有的有机物越多,因此污染也越严重。
生化需氧量的计算方式如下:
BOD(mg / L)=(D1-D2) / P
D1:稀释后水样之初始溶氧(mg / L)
D2:稀释后水样经 20 ℃ 恒温培养箱培养 5 天之溶氧(mg / L)
P=【水样体积(mL)】 / 【稀释后水样之最终体积(mL)】
悬浮物
指悬浮在水中的固体物质,包括不溶于水中的无机物、有机物及泥砂、黏土、微生物等。水中悬浮物含量是衡量水污染程度的指标之一。悬浮物是造成水浑浊的主要原因。水体中的有机悬浮物沉积后易厌氧发酵,使水质恶化。中国污水综合排放标准分3级,规定了污水和废水中悬浮物的最高允许排放浓度,中国地下水质量标准和生活饮用水卫生标准对水中悬浮物以浑浊度为指标作了规定。
总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。正磷酸盐的常用测定方法有3种:①钒钼磷酸比色法。此法灵敏度较低,但干扰物质较少。②钼-锑-钪比色法。灵敏度高,颜色稳定,重复性好。③氯化亚锡法。虽灵敏但稳定性差,受氯离子、硫酸盐等干扰。水中磷可以元素磷、正磷酸盐、缩合硫酸盐、焦磷酸盐、偏磷酸盐和有机团结合的磷酸盐等形式存在。其主要来源为生活污水、化肥、有机磷农药及近代洗涤剂所用的磷酸盐增洁剂等。磷酸盐会干扰水厂中的混凝过程。水体中的磷是藻类生长需要的一种关键元素,过量磷是造成水体污秽异臭,使湖泊发生富营养化和海湾出现赤潮的主要原因。我国地面水环境质量标准规定总磷容许值如下。
氨氮:动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氨。
氨氮主要来源于人和动物的排泄物,生活污水中平均含氮量每人每年可达2.5~4.5公斤。
雨水径流以及农用化肥的流失也是氮的重要来源。
另外,氨氮还来自化工、冶金、石油化工、油漆颜料、煤气、炼焦、鞣革、化肥等工业废水中。
当氨溶于水时,其中一部分氨与水反应生成铵离子,一部分形成水合氨,也称非离子氨。
非离子氨是引起水生生物毒害的主要因子,而氨离子相对基本无毒。 国家标准Ⅲ类地面水, 非离子氨的浓度≤0.02毫克/升。
氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。。
测试方法
纳氏试剂比色法
1 原理
碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量.
本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定.
2 仪器
2.1 带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管.
2.2 分光光度计
2.3 pH计
3 试剂
配制试剂用水均应为无氨水
3.1 无氨水可选用下列方法之一进行制备:
3.1.1 蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存.
3.1.2 离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱.
3.2 1mol/L盐酸溶液.
3.3 1mol/L氢氧化纳溶液.
3.4 轻质氧化镁(MgO):将氧化镁在500℃下加热,以出去碳酸盐.
3.5 0.05%溴百里酚蓝指示液:pH60.~7.6.
3.6 防沫剂,如石蜡碎片.
3.7 吸收液:
3.7.1 硼酸溶液:称取20g硼酸溶于水,稀释至1L.
3.7.2 0.01mol/L硫酸溶液.
3.8 纳氏试剂:可选择下列方法之一制备:
3.8.1 称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改写滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液.
另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存.
3.8.2 称取16g氢氧化纳,溶于50mL水中,充分冷却至室温.
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化纳溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存.
3.9 酒石酸钾纳溶液:称取50g酒石酸钾纳KNaC4H4O6•4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100Ml.
3.10 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含1.00mg氨氮.
3.11 铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮.
4 测定步骤
4.1 水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,家数滴溴百里酚蓝指示液,用氢氧化纳溶液或演算溶液调节至pH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导
管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL.
采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液.
4.2 标准曲线的绘制:吸取0,0.50,1.00,3.00,7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,家1.0mL酒石酸钾溶液,混匀.加1.5mL纳氏试剂,混匀.放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度. 由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线.
4.3 水样的测定:
4.3.1分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,家0.1mL酒石酸钾纳溶液.以下同标准曲线的绘制.
4.3.2 分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol/L氢氧化纳溶液,以中和硼酸,稀释至标线.加1.5mL纳氏试剂,混匀.放置10min后,同标准曲线步骤测量吸光度.
4.4 空白实验:以无氨水代替水样,做全程序空白测定.
5 计算
由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮量(mg)后,
按下式计算:
氨氮(N,mg/L)=m/V×1000
式中:m——由标准曲线查得的氨氮量,mg;
V——水样体积,mL.
6 注意事项:
6.1 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响.静置后生成的沉淀应除去.
6.2 滤纸中常含痕量铵盐,使用时注意用无氨水洗涤.所用玻璃皿应避免实验室空气中氨的玷污.
Ⅱ 地层组构特性、理化性能和井壁稳定性的室内评价方法
3.2.1 地层组构特性和理化性能的分析方法
研究井壁失稳的原因及技术对策必须搞清井壁不稳定地层的组构特性和理化性能,常用的分析方法有以下几种。
(1)肉眼观察
通过肉眼观察可以掌握地层的层理、裂隙和镜面擦痕发育情况,地层倾角大小,地层软硬程度及遇水后膨胀、分散和强度定性变化情况。
(2)X光衍射分析法、红外光谱吸收法和差热分析等方法
采用X光衍射分析法、红外光谱吸收法和差热分析等方法测定地层中各种非黏土矿物,晶态黏土矿物、非晶态黏土矿物的相对和绝对含量。
(3)扫描电镜分析
用扫描电镜可以定性地确定地层中黏土矿物特征、裂隙发育情况及裂缝宽度。
(4)薄片分析
薄片分析可测定碎屑、基岩及胶结物的组分及分布型,测定黏土矿物的分布及成因。
(5)密度法
用甘氏比重瓶或李氏比重瓶进行测定,然后用半对数坐标作密度或密度与深度的相关图。
(6)阳离子交换容量
压实作用导致地层变得致密,也导致黏土矿物的改变。一般来说,随着压实程度的增加,蒙脱石将向伊利石转变。因此,可以预计,蒙脱石含量将随深度的增加而减少。在正常压实带内,也会出现一条递减的倾向线。当进入压实过渡带后,由于温度较高,伊利石化的速度加快,蒙脱石几乎全部变成伊利石。
蒙脱石含量的递减骤减特征,也可以用来指示高压带。测量页岩岩屑的蒙脱石含量,作深度相关图,发现曲线骤然下降,就是警示高压带的出现。
目前,一般采用亚甲基蓝试验(MBT)测定页岩岩屑的阳离子交换容量(CEC)评价蒙脱石含量,作CEC对深度的相关图。
(7)可溶性盐的含量
在正常压实的沉积层内,泥页岩内地层水的含氯量随深度而增加,这一增加趋势在压力过渡带中断。此外,正常压实带内的砂岩水的含盐度的变化趋势也与页岩水一致,但其浓度比页岩水高。但在压力过渡带内,砂岩水与页岩水的含盐度趋于一致。根据这一特征,可以鉴别高压带,其方法是不断测定泥浆滤液的氯离子含量,并作井深相关图。
(8)吸附等温线试验
描述孔隙的性质和类型,测定不同平衡条件下泥页岩的含水量,用以估计地层的膨胀程度、活度。
(9)比表面积法
比表面积是表征泥页岩水化特性或膨胀性能的物理量。测定比表面积有助于了解泥页岩水化膨胀特性和分析井壁稳定问题。比表面积测定方法较多,如亚甲基蓝法、CST法、乙二醇质量法等。
(10)ζ电位法
通常可用电泳法测定颗粒的ζ电位。在电泳池中,一定电场强度下,测得颗粒的运移速度,依据下式计算ζ电位:
科学超深井钻探技术方案预研究专题成果报告(下册)
式中:η为介质黏度;μ为胶粒的电泳速度;D为介质的介电常数;E为外加电场的电位梯度。
泥页岩浆ζ电位的大小可以用来判断泥页岩的膨胀和分散特性。美国学者Lauzon曾提出以下看法:ζ电位为-60mV时属于极端分散;ζ电位为-40mV时属于较强分散:ζ电位为-20mV时属于可能分散:ζ电位为-10mV时属于不分散。
(11)泥浆温度梯度法
热的传播包括传导、对流和辐射3种方式,三者的传播机理是不同的:热传导依靠的是物质分子的定位热运动,传热过程仅存在能量交换,不存在宏观的质量交换;热对流则不同,颗粒的位置是变动的,在不断流动的过程中,既进行能量交换,也进行质量交换;热辐射则仅依靠能量的发射。一般情况下,将油气层、水层、地热水层作为对流传热型,而把所有其他地层,包括盖层及压力过渡带的泥页岩都作为热传导型地层。
在与地层压力有密切关系的泥页岩中,影响其热传导系数的是其孔隙度及孔隙中的流体。在压力过渡带内,由于孔隙及流体的存在,热传导系数较低,地层温度梯度(地温梯度)将明显升高。地温梯度的这一高异常,也会影响泥浆温度出现高异常——这是高压层的第一温度显示。
泥浆温度梯度因素法是泥浆温度梯度法的另一种表达形式。所谓泥浆温度梯度因素是泥浆温度梯度与正常温度倾向线所决定的温度梯度(正常温度梯度)之比,以泥浆温度梯度因素对深度作图,当温度梯度因素突然增大时,则指示高压。
3.2.2 井壁稳定性的室内评价方法
3.2.2.1 分散性试验
分散性试验方法常用的有两种:页岩滚动试验和CST(毛细管吸入时间)试验。
(1)页岩滚动试验
页岩滚动试验方法可用来评价泥页岩的分散特性,研究钻井液抑制地层分散能力的强弱。此试验采用干燥的泥页岩样品(如果没有岩心可用岩屑),将其粉碎,使岩样过10目筛,往加温罐中加入350mL水(试验的液体)和50g岩样,然后将加温罐放入滚子加热炉中滚动16h(控制在所需温度)。倒出试验液体与岩样,过30目筛,干燥并称量筛上岩样,计算质量回收率(以百分数表示)。再取上述过30目筛干燥的岩样,放入装有350mL水的加温罐中,继续滚动2h,倒出水与岩样,再过30目筛,干燥并称筛上的岩样,计算回收的岩样占原岩样的质量百分数。
(2)CST试验
CST试验是一种通过滤失时间来测定页岩分散特性的方法,即在恒速混合器(高速搅拌器)中测定体积分数为15%的稠页岩悬浮液(过100目筛)在剪切不同时间后的滤失时间,用以表示页岩分散特性。通常将页岩悬浮液滤液在CST仪器(图3.1)的特性滤纸上运移0.5cm距离所需的时间称为CST值。根据试验结果可绘制CST值与剪切时间的关系曲线,两者为线性关系,可用下式表示页岩分散特性:
科学超深井钻探技术方案预研究专题成果报告(下册)
式中:Y为CST值,s;m为页岩的水化分散速度,cm/s;X为剪切时间,s;b为瞬时形成的胶体颗粒数目。
b值大小取决于页岩的胶结程度,它是页岩含水量、黏土含量及压实程度的函数。最大的Y值表示页岩的总胶体量,(Y-b)值是总胶体含量和瞬时可分散的黏土含量之差,用来表示页岩潜在的水化分散能力。
图3.1 CST测定仪
使用CST法所测得的1/(Y-b)值可用来预测井壁坍塌的可能性。此值越高,井壁坍塌的可能性越大。
3.2.2.2 水化试验
按照膨润土造浆率的测定方法测定泥页岩的造浆率,然后按下式计算出泥页岩的水化指数h:
科学超深井钻探技术方案预研究专题成果报告(下册)
式中:Ys、Yb分别表示页岩和膨润土的造浆率(水化24h),Yb一般取16m3/t。
3.2.2.3 膨胀性试验
地层膨胀是地层中所含的黏土矿物水化的结果。通常采用测定岩样线性膨胀百分数(称为膨胀率)或岩样吸水量来表示地层的膨胀性能。由于温度对岩样膨胀率有较大影响,因此不仅应测定岩样在常温下的膨胀率,还应测定在高温高压下的膨胀率。
(1)常温下膨胀率的测定
常温下的膨胀率通常选用以下进行测定:
1)采用NP-01页岩膨胀仪进行测试,该仪器示意图见图3.2。称取一定量风干的岩样(过100目筛),测定岩样遇水(或其他液体)不同时间线膨胀量的变化,然后按下式计算出线性膨胀率。
图3.2 NP-01页岩膨胀仪
科学超深井钻探技术方案预研究专题成果报告(下册)
式中:Vt为时间为t时岩样的线性膨胀率,%;Lt为时间为t时的线膨胀量,mm;H为岩样原始高度,mm。
2)采用应变仪膨胀传感器(即直读式数字膨胀指示仪,见图3.3)进行测试。取垂直岩心基面切割下来的岩样,放在聚乙烯小袋中,按一定方向放在夹子上,使传感器上的初始应变为1.5μ,袋中装满试验液体。当岩样膨胀时,应变仪记录下位移,从指示器直接读出应变,用下式计算出线性膨胀量:
科学超深井钻探技术方案预研究专题成果报告(下册)
式中:Vt为时间为t时岩样的线性膨胀率,%;Ki为常数;L为岩样长度,mm;δ为指示器读数。
图3.3 直读式数字膨胀指示仪
3)采用Ensulin膨胀仪进行测试(图3.4)。试验时将试验用岩粉装在杯中并与过滤圆盘接触,吸附试液,其吸附量可由刻度吸管读取。在t时间内,单位质量岩样所吸附的水量即为膨胀率。可在双对数坐标纸上画出吸附量与吸附时间之间的关系曲线。因二者呈线性关系,因而可用下式表示:
科学超深井钻探技术方案预研究专题成果报告(下册)
式中:Mt为在t时间内单位质量岩样所吸附的流体量,g/g;Mi为瞬时吸水量,g/g;N为水化速度或膨胀速度,g/min;t为吸附时间,min。
M的大小取决于岩样中黏土和水的含量以及压实作用,它随地层岩密度及压实作用的增大而减小。
图3.4 Ensulin膨胀仪
(2)高温高压下膨胀率的测定
使用YPM-01型页岩膨胀模拟试验装置或HTHP-1型高温高压页岩膨胀仪,可测定温度从室温至180℃、压力0~10MPa下的页岩膨胀率。但高温高压下所测定出的膨胀率与常温常压下的测定结果有较大的差别。
3.2.2.4 介电常数试验
泥页岩的介电常数主要取决于其中水敏性黏土矿物的种类和含量,其大小与岩石强度和有效应力有关。因此,测定地层的介电常数可以了解地层的性质,预测井壁稳定性和岩石强度。该参数通常使用介电常数测定仪进行测定。其原理是测量充填了岩样的容器的电容与充满空气时容器的电容的比值,从而获得该岩样的介电常数。
3.2.2.5 页岩稳定指数法
页岩稳定指数表示地层在钻井液等液体作用下,其强度、膨胀和分散侵蚀三个方面综合作用对井眼稳定性的影响。此方法是美国Baroid钻井液公司建立的。试验时先将泥页岩磨细,过100目筛,与人造海水配成浆液(比例为7∶3),再放置在干燥器内预水化16h。用压力机在7MPa下压滤2h,取出岩心放入不锈钢杯中,再用9.1MPa压力加压2min,刮平岩心表面,用针入度仪测定针入度,然后将岩心连同钢杯一起置于65.6℃下热滚16h,取出再测定针入度,并测量杯中岩样膨胀或侵蚀高度,按下式计算页岩稳定指数(SSI):
科学超深井钻探技术方案预研究专题成果报告(下册)
式中:Hy为热滚前的针入度,mm;Hi为热滚后针入度,mm;D为膨胀或侵蚀总量,mm。
3.2.2.6 三轴应力页岩稳定性试验仪
使用三轴应力页岩稳定性试验仪,可进行在径向应力、纵向应力及试验液柱压力作用下的页岩稳定性试验,用以研究钻井液对以下3种不稳定性的影响:①膨胀所致孔径的变化;②脆性岩石孔径的扩大;③地应力引起的井壁不稳定。使用此仪器可从以下几方面来判别钻井液的影响:①在一定压力与流速作用下测定岩样被破坏的时间;②岩样被侵蚀的百分数;③岩样含水量及岩样孔径的变化。此类仪器有两种不同的类型,一种用于常温下测定,另一种用于高温下测定。
3.2.2.7 DSC井下模拟装置
此仪器可模拟上覆压力、围压及井下温度,在直径为165mm的页岩样品上钻进和循环钻井液,用以评价在模拟的井底条件下,各种钻井液抑制地层坍塌的效果。
3.2.2.8 经改造的高温高压滤失量测定仪
采用经过改造的高温高压滤失量测定仪,可以评价钻井液封堵井壁的效果。采用一块直径为25.4mm、厚度为12.7mm的贝雷(Berea)砂岩作为渗滤介质,固定在岩心夹持器中,然后将其装入高温高压滤失量测定仪容器内,再将钻井液倒入上述仪器中,调节温度与压力至所需值,然后开始试验并记录滤失量。试验结束后,取出岩心,冷却后将岩心切片,在高倍显微镜下检测钻井液的封堵深度及效果。
Ⅲ 怎样测试污水中的氨氮的含量
水中氨氮的测定—纳氏试剂分光光度法
一、实验试剂
10%硫酸锌溶液,25%氢氧化钠溶液,纳氏试剂,酒石酸钾钠溶液,铵标准使用溶液
0.010mg/ml
二、实验仪器
UNICO分光光度计,50ml比色管8支,漏斗,实验室常用仪器
三、实验步骤
1.
试剂配制
10%硫酸锌溶液:称取10g硫酸锌溶于水,稀释100ml,贮于玻璃试剂瓶中
25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中
纳氏试剂:称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将亲氧化钠溶液在搅拌下徐徐注入此溶液中。用水稀释至100mL,贮于聚乙烯瓶中。
酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL
铵标准贮备溶液:称取0.3819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入100mL容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。
铵标准使用溶液:移取2.50mL铵标准贮备液于250mL容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。
2.
氨氮的测定
2.1标准曲线的绘制
用氯化铵配制的标准使用液,每毫升溶液含有氨氮0.01mg,分别吸取0,0.5、1.0、3.0、5.0、7.0、10.0ml溶液于50ml比色管中,加水至标线,加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。防止10min,在波长420nm,用光程伟20nm的比色皿,以水为参比,测量吸光度。减去空白吸光度,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的校准曲线。
2.2预处理水样
取水样100ml于烧杯中,加入10%的硫酸锌溶液1ml,滴加25%的氢氧化钠溶液0.1-0.2ml(大约2-3滴),调节pH值至10.5左右。然后用中速定量滤纸过滤,弃去初滤液20ml左右。
2.3水样的测定
取滤液5ml(保证其中氨氮含量不超过0.1mg)于50ml比色管中,用蒸馏水稀释至刻度线,加1.0ml酒石酸钾钠溶液,1.5ml纳氏试剂,摇匀,静置显色10min,在721分光光度计上,于420nm波长处,以水为参比,用2cm比色皿测定吸光度。
2.4空白实验
用100ml蒸馏水代替水样,同步进行实验,即从预处理开始,直到测定吸光度。
Ⅳ 粘土矿物功能材料的制备及在含重金属元素废水处理中的应用
龚文琪 韩沛 王湖坤 刘艳菊 饶波琼
(武汉理工大学资源与环境工程学院,湖北武汉 430070)
摘要 研究了累托石-水淬渣及累托石-粉煤灰颗粒吸附材料制备的工艺条件、再生方法及其去除铜冶炼工业废水中重金属的条件。试验结果表明:累托石与水淬渣的比例为1∶1,另加入10%的添加剂(IS)和50%的水,焙烧温度为400℃时,制成的颗粒吸附材料不仅吸附效果好,而且散失率较低。在不调节铜冶炼工业废水pH值的条件下,颗粒吸附材料用量为0.05g/cm3,反应时间为40 min,吸附温度为25℃(常温)时,Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.2%、96.3%、78.6%、86.2%、64.2%。累托石与粉煤灰的比例为1∶1,另加入15%的添加剂(IS)和50%的水,焙烧温度为500℃时,制成的颗粒吸附材料不仅吸附效果好,而且散失率较低。在不调节铜冶炼工业废水pH值的条件下,颗粒吸附材料用量为0.07g/cm3,反应时间为60 min,吸附温度为25℃(常温)时,Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.9%、97.5%、96.7%、90.2%、79.1%。处理后的水均符合国家污水综合排放标准(GB8978—1996 )的一级标准。吸附饱和的颗粒吸附材料用1 mol/L氯化钠溶液再生效果好。该颗粒吸附材料具有分离容易、可重复使用、处理效果好、应用前景广阔等优点[1~11]。
关键词 累托石;水淬渣;粉煤灰;颗粒吸附材料;再生;铜冶炼工业废水
第一作者简介:龚文琪(1948—),男,汉族,湖北省武汉市人,教授,博士生导师,矿物加工专业。电话:027-62574946,E-mail:[email protected]。
累托石是二八面体云母和二八面体蒙脱石按1∶1构成的规则间层粘土矿物,具有独特的结构、较强的吸附性和阳离子交换性[1,2]。国内外学者研究了用累托石及其改性产物处理废水[3~5],已取得可喜的进展。但是,研究者们发现这些粉状吸附材料处理废水时存在的主要问题是:吸附材料粒度细,遇水后易分散粉化,造成后续固液分离十分困难,易形成新的工业污泥,这种工业污泥因吸附物质的富集对环境的二次污染危害性更大;吸附材料不能重复使用,所吸附的物质不能回收,处理成本大大增加[6]。为了解决这些问题,本文探讨了累托石-水淬渣和累托石-粉煤灰颗粒吸附材料制备的工艺条件、再生方法及其在铜冶炼工业废水处理中的应用,为铜冶炼工业废水中Cu2+、Pb2+、Zn2+、Cd2+、Ni2+等重金属离子的去除提供一种价格低廉、去除效果好的吸附材料。
一、试验部分
(一)试验材料
试验所用累托石产自湖北钟祥,由湖北名流累托石科技公司提供。其化学组成为:SiO243.82%,Al2O334.25%,Fe2O31.59%,CaO 3.76%,K2O 0.93%,Na2O 1.54%,MgO 0.36%,TiO22.97%;其矿物组成为:累托石85%;伊利石10%;高岭石5%。
试验所用高炉水淬渣取自武汉钢铁集团公司炼铁厂。其化学组成为:SiO232.98%,Al2O316.67%,Fe2O30.70%,CaO 35.99%,K2O 0.44%,MgO 8.52%,TiO21.43%。X射线衍射物相分析表明其为非晶相。
试验所用粉煤灰是湖北华电集团黄石发电股份公司的干排粉煤灰。其化学组成为:SiO254.72%,Al2O328.65%,Fe2O34.14%,CaO 3.39%,K2O 1.68%,MgO 0.78%,TiO21.22%。其矿物组成为:石英15%,莫来石15%,非晶相70%。
试验所用铜冶炼工业废水取自湖北省黄石市大冶有色金属公司铜冶炼厂的实际废水,水质分析结果为:Cu2+2.62 mg/dm3,Pb2+0.63 mg/dm3,Zn2+3.92 mg/dm3,Cd2+0.58 mg/dm3,Ni2+1.48 mg/dm3,pH 6.5。
(二)试验仪器
D/MAX-RB X射线衍射仪、ST-2000比表面积与孔径测定仪、XTLZ多用真空过滤机、F97-系列封闭化验制样粉碎机、XSB-70 B型ф200标准筛振筛机、20~400目标准检验筛、PHS-3C酸度计、SKFO-01电热干燥箱、SX2-4-13 马弗炉、THZ-82恒温水浴振荡器、AB204-N电子天平、JY38plus等离子体单道扫描直读光谱仪(ICP-AES)。
(三)试验方法
1.样品的制备
累托石样品采用反复分散-沉降的方法进行提纯,水淬渣和粉煤灰样品则直接使用。样品均经烘干及粉碎后筛分至小于240目备用。
2.累托石-水淬渣和累托石-粉煤灰颗粒吸附材料的制备
将经过制备的水淬渣或粉煤灰与累托石,另加添加剂(工业淀粉,简称IS)和水,按一定比例混合均匀,陈化24 h,制成粒径1~3mm的颗粒,送至马弗炉内焙烧2 h,自然冷却至室温即为所需颗粒吸附材料。
3.铜冶炼工业废水的处理
在250 mL锥形瓶中加入100 mL铜冶炼工业废水,加入一定量的颗粒吸附材料,放入恒温水浴振荡器中(振荡频率110 r/min)反应一定时间后,离心分离,取出上清液,测定重金属离子的浓度并计算其吸附去除率η(%):η=(Co-Ce)/Co×100%,式中Co和Ce分别为吸附前后溶液中重金属离子的浓度(mg/dm3)。
4.颗粒吸附材料散失率的测定
准确称取一定量的颗粒吸附剂(记为G1),置于250 mL具塞的锥形瓶中,加入100 mL去离子水,在恒温水浴振荡器中以110 r/min的振荡频率于一定温度条件下振荡一定时间后,用去离子水洗掉因粒状吸附材料破碎而产生的粉末,然后将湿颗粒吸附材料置于103~105℃烘箱中烘至恒重,冷却至室温后称重(记为G2),则散失率P(%)的计算公式为[7]:
P=(G1-G2)/G1×100%
二、试验结果与讨论
为了简化处理工艺,降低处理成本,本试验均在铜冶炼工业废水的自然pH(即不调节pH)的条件下进行,考查了颗粒吸附材料制备的工艺条件、废水处理工艺条件、颗粒吸附材料再生利用方法等对废水中重金属元素去除率的影响。
(一)颗粒吸附材料制备工艺条件的影响
1.焙烧温度的影响
由试验结果经过综合考虑Cu的去除率及颗粒吸附材料的散失率,确定累托石-水淬渣和累托石-粉煤灰颗粒吸附材料的焙烧温度分别为400℃和500℃,此时Cu的去除率较高而颗粒吸附材料的散失率较低。
2.累托石和水淬渣或粉煤灰混合比例的影响
累托石和水淬渣或粉煤灰混合比例对废水中Cu的去除率的影响试验结果可知,当累托石含量从10%增加到20%时,Cu的去除率有所增加,以后随着累托石含量的增加,Cu的去除率呈下降的趋势,而散失率随累托石含量的增加一直呈下降趋势。当累托石含量大于50%时,散失率接近0。从有效利用水淬渣和粉煤灰的角度考虑,确定累托石含量为50%,即水淬渣或粉煤灰与累托石的配比为1∶1,Cu的去除率较高且散失率很低。
3.添加剂比例的影响
由添加剂比例对累托石-水淬渣或累托石-粉煤灰颗粒吸附材料去除废水中Cu的影响试验结果可知:这两种颗粒吸附材料中添加剂的含量分别为10%与15%时,Cu的去除率都很高,而散失率都很低,从去除效果及成本的角度考虑,确定这两种颗粒吸附材料中添加剂的含量分别为10%与15%。
(二)颗粒吸附材料去除铜冶炼工业废水中重金属元素的效果
按上述试验确定的制备条件:累托石与水淬渣的比例为1∶1,另加入10%的添加剂和50%的水,焙烧温度为400℃;累托石与粉煤灰的比例为1∶1,另加入15%的添加剂和50%的水,焙烧温度为500℃;分别制成颗粒吸附材料,用以进行去除铜冶炼工业废水中重金属元素的条件试验。
1.反应时间的影响
在常温(25℃)、颗粒吸附材料用量为0.03g/cm3的条件下,反应时间对去除铜冶炼工业废水中重金属元素的影响试验结果表明,随着反应时间的延长,重金属元素去除率有逐渐增加的趋势,使用累托石-水淬渣颗粒吸附材料40 min以后,或使用累托石-粉煤灰颗粒吸附材料60 min以后,去除率趋于平衡。因此,确定使用这两种颗粒吸附材料的反应时间分别为40 min 和60 min。
2.吸附温度的影响
在颗粒吸附剂用量为0.03g/cm3,累托石-水淬渣颗粒吸附材料反应时间为40 min,累托石-粉煤灰颗粒吸附材料反应时间为60 min的条件下,进行吸附温度对去除铜冶炼工业废水中重金属元素的影响试验。结果表明在25℃时,两种颗粒吸附剂对重金属元素的去除率均最高。因此,确定吸附温度为25℃。
3.颗粒吸附材料用量的影响
在常温(25℃)、累托石-水淬渣和累托石-粉煤灰颗粒吸附材料的反应时间分别为40 min和60 min的条件下,进行这两种颗粒吸附剂的用量对去除铜冶炼工业废水中重金属元素的影响试验,结果表明随着吸附剂用量的增加,重金属元素去除率逐渐增加。当累托石-水淬渣颗粒吸附剂用量大于0.03g/cm3,累托石-粉煤灰颗粒吸附剂用量大于0.05g/cm3时,重金属元素去除率增加缓慢。因此,从成本角度考虑,确定这两种颗粒吸附剂用量分别为0.03g/cm3和0.05g/cm3。
(三)正交试验结果
以上探讨了各个单因素(时间、温度、用量)条件对于累托石-水淬渣或累托石-粉煤灰颗粒吸附材料对铜冶炼工业废水中重金属元素的去除效果。为了探讨在各个单因素的交互作用下颗粒吸附材料对该废水中重金属元素的最佳去除效果,进行了三因素两水平的正交试验,结果如表1和表2所示。
,烘干后再对铜冶炼工业废水进行吸附处理,试验结果见表3和表4。由表中可以看出,1 mol/L NaCl解吸再生效果最好,处理后的废水中Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的残留浓度仍低于国家污水综合排放标准(GB8978—1996 )的一级标准,去除率同新制备的颗粒吸附材料的去除率很接近,在解吸再生6次后,去除率为新材料去除率的80%,说明所制备的颗粒吸附材料重复使用效果较好。
三、结论
1)累托石-水淬渣和累托石-粉煤灰颗粒吸附材料制备的工艺条件为:累托石与水淬渣的比例为1∶1,另加入10%的添加剂(IS)和50%的水,焙烧温度为400℃;累托石与粉煤灰的比例为1∶1,另加入15%的添加剂(IS)和50%的水,焙烧温度为500℃。所制成的颗粒吸附材料不仅吸附效果好,而且散失率较低。
2)累托石-水淬渣颗粒吸附材料去除铜冶炼工业废水中重金属元素的适宜条件为:在自然pH值的条件下,颗粒吸附剂用量为0.05g/cm3,反应时间为40 min,温度为25℃(常温)。该条件下Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.2%、96.3%、78.6%、86.2%、64.2%。累托石-粉煤灰颗粒吸附材料去除铜冶炼工业废水中重金属元素的适宜条件为:在自然pH值的条件下,颗粒吸附剂用量为0.07g/cm3,反应时间为60 min,温度为25℃(常温)。该条件下Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.9%、97.5%、96.7%、90.2%、79.1%。处理后的废水中这些重金属元素的残留浓度均低于国家污水综合排放标准(GB8978—1996)的一级标准。
3)用1 mol/L NaCl对最佳吸附条件下吸附饱和的颗粒吸附材料进行解吸再生,然后用来处理铜冶炼工业废水,处理后的废水中Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的残留浓度仍低于国家污水综合排放标准(GB8978—1996)的一级标准,去除率同用新制备的颗粒吸附材料时的去除率很接近。相对于其他吸附材料,颗粒吸附材料具有分离容易、可重复使用、成本低廉、处理效果好等优势,因而具有良好的应用前景。
参考文献
[1]江涛,刘源骏.累托石.武汉:湖北科学技术出版社,1989:1-48
[2]张小庆.累托石的改性及在废水处理中的应用.西北工业大学学报,2003
[3]孙家寿,张泽强,刘羽.累托石层孔材料处理含铬废水的研究.岩石矿物学杂志,2001,20(4):555-558
[4]孙家寿,鲍世聪,李春领等.改性累托石处理含氰电镀废水研究.非金属矿,2001,(1)
[5]王湖坤,龚文琪.黏土矿物材料在重金属废水处理中的应用.工业水处理,2006,26(4):4-7
[6]孙秀云,王连军,周学铁.凹凸棒土-粉煤灰颗粒吸附剂的制备及改性.江苏环境科技,2003,16(2):1-3
[7]吴达华,吴永革,林蓉.高炉水淬矿渣结构特性及水化机理.石油钻探技术,1997,(1)
[8]许鹏举,岳钦艳,张艳娜等.PDMDAAC改性高炉渣处理印染废水的研究.工业水处理,2006,(5),62-64
[9]李亚峰,孙凤海,牛晚扬等.粉煤灰处理废水的机理及应用.矿业安全与环保,2001,(02)
[10]李春青,普红平.粉煤灰的改性及其在废水处理中的应用.中国资源综合利用,2006,(11)
[11]程爱华,王建东,姚改焕.粉煤灰在水处理中的应用.能源与环境,2006,(01)
Preparation of clay functional materials and their application in treatment of heavy metal-containing wastewater
Gong Wenqi,Han Pei,Wang Hukun,Liu Yanju,Rao Boqiong
(School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,Hubei,China)
Abstract:The preparation technological conditions and regeneration method of two novel granulated adsorbing materials of rectorite/fly ash composite(Material 1)and rectorite/water quenched-slag composite(Material 2 ) and the use of them to remove heavy metals from copper smelting plant wastewater have been studied.The experimental results showed that under the preparation conditions with the ratio of rectorite to fly ash or water quenched slag of 1∶1,the amount of the additive(Instrial Starch,IS) of 15%(Material 1) or 10%(Material 2),the addition of 50%water,and the calcination temperature of 500℃(Material 1) or 400℃(Material 2),the efficiency of heavy metal removal with the granulated materials was the best,whereas the ra tio of disintegration loss was low.Under the treatment conditions of natural pH,and with the addition of the granulated materials of 0.07g/cm3(Material 1) or 0.05g/cm3(Material 2),a reaction time of 60 minutes(Material 1 ) or 40 minutes(Material 2 ),and the adsorption temperature of 25℃,the efficiency for the gran ulated materials to remove Cu2+,Pb2+,Zn2+,Cd2+and Ni2+from copper smelting plant wastewater was 98.9%,97.5%,96.7%,90.2%and 79.1%(Material 1 ) or 98.2%,96.3%,78.6%,86.2%and 64.2%(Material 2),respectively,and the quality indexes of the wastewater after treatment conformed with the first level of integrated wastewater discharge standard(GB8978—1996 ) .The granulated materials saturat ed with heavy metal ions on the surface could be regenerated with quite good efficiency by washing with 1 mol/L sodium chloride(NaCl) solution.The granulated adsorbing materials had the advantages of high efficiency in wastewater treatment,easy method of solid-liquid separation and regeneration,and have a broad prospect of applications.
Key words:Rectorite,water quenched-slag,fly ash;granulated adsorbing material,regeneration,copper smelting plant wastewater.
Ⅳ 土壤化学指标
一、土壤酸碱度(pH值)
土壤酸碱度对土壤肥力及植物生长影响很大,我国西北、北方不少土壤pH值大,南方红壤pH值小。因此可以种植和土壤酸碱度相适应的作物和植物。如红壤地区可种植喜酸的茶树,而苜蓿的抗碱能力强等。土壤酸碱度对养分的有效性影响也很大,如中性土壤中磷的有效性大;碱性土壤中微量元素(锰、铜、锌等)有效性差。在农业生产中应该注意土壤的酸碱度,积极采取措施,加以调节。
1.电位法
土壤实验室基本上都采用电位法测定土壤pH值,电位法有准确、快速、方便等优点。其基本原理是:用pH计测定土壤悬浊液的pH值时,由于玻璃电极内外溶液H+离子活度的不同产生电位差。
2.比色法
取土壤少许(约黄豆大),弄碎后放在白磁盘中,滴入土壤混合指示剂数滴,到土壤全部湿润,并有少量剩余。震荡磁盘,使指示剂与土壤充分作用,静置1min,和标准比色卡比色,即得出土壤的酸碱度。
3.原位酸碱度传感器法
土壤原位pH测定仪可直接埋入土壤测试,直接读数,非常方便,在指导农业科研及农业生产中起到了非常重要的作用。
二、土壤氧化还原电位(Eh)
土壤氧化还原电位是以电位反映土壤溶液中氧化还原状况的一项指标,用Eh表示,单位为mV。
土壤氧化还原电位的高低,取决于土壤溶液中氧化态和还原态物质的相对浓度,一般采用铂电极和饱和甘汞电极电位差法进行测定。影响土壤氧化还原电位的主要因素有:①土壤通气性;②土壤水分状况;③植物根系的代谢作用;④土壤中易分解的有机质含量。
旱地土壤的正常Eh为200~750mV,若Eh﹥750mV,则土壤完全处于氧化状态,有机质消耗过快,有些养料由此丧失有效性,应灌水适当降低Eh。若Eh﹤200mV,则表明土壤水分过多,通气不良,应排水或松土以提高其Eh值。
水田土壤Eh变动较大,在淹水期间Eh值可低至-150mV,甚至更低;在排水晒田期间,土壤通气性改善,Eh值可增至500mV以上。一般地说,稻田适宜的Eh值在200~400mV之间,若Eh经常在180mV以下或低于100mV,则水稻分蘖或生长发育受阻。若长期处于-100mV以下,水稻会严重受害甚至死亡,此时应及时排水晒田以提高其Eh值。
1.二电极法
测定氧化还原电位的常用方法是铂电极直接测定法,方法是基于铂电极本身难以腐蚀、溶解,可作为一种电子传导体。当铂电极与介质(土壤、水)接触时,土壤或水中的可溶性氧化剂或还原剂,将从铂电极上接受电子或给予电子,直至在铂电极上建立起一个平衡电位,即该体系的氧化还原电位。由于单个电极电位是无法测得的,故须与另一个电极电位固定的参比电极(饱和甘汞电极)构成电池,用电位计测量电池电动势,然后计算出铂电极上建立的平衡电位,即氧化还原电位Eh值。
2.去极化测定仪法
对复杂的介质,可采用去极化法测定氧化还原电位。可以在较短时间内得到较为精确的结果,用去极化法测得的平衡Eh值,与直接电位法平衡48h后测得的稳定Eh值,差数一般﹤10mV。所以去极化法能缩短测定时间,并有较高的测定精度。
将铂电极接到极化电压的正端(极化电压为600mV或750mV),以银-氯化银电极作为辅助电极,接到电源的负端,阳极极化10 s以上(自由选择)。接着切断极化电源,进行去极,时间在20 s以上(视极化曲线而定),在去极化后监测铂电极的电位(对甘汞电极),对于大多数的测试样品,电极电位E(mV)和去极化时间的对数log t间存在直线关系。以相同的方法进行阴极极化和随后的去极化和监测电位。阳极去极化曲线与阴极去极化曲线的延长线的交点相当于平衡电位。
三、土壤阳离子交换量(CEC)
CEC的大小,基本上代表了土壤可能保持的养分数量,即保肥性的高低。阳离子交换量的大小,可作为评价土壤保肥能力的指标。阳离子交换量是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。
1.乙酸铵交换法
适用于酸性与中性土壤阳离子交换量的测定。原理:用1mol/L乙酸铵溶液(pH7.0)反复处理土壤,使土壤成为铵离子饱和土。过量的乙酸铵用95%乙醇洗去,然后加氧化镁,用定氮蒸馏方法进行蒸馏,蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定,根据铵离子的量计算土壤阳离子交换量。
2.EDTA——铵盐法
铵盐法不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量的测定。采用0.005mol/L EDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换配合剂可以与2价钙离子、镁离子和3价铁离子、铝离子进行交换,并在瞬间即形成电离度极小而稳定性较大的配合物,不会破坏土壤胶体,加快了2价以上金属离子的交换速度。同时由于醋酸缓冲剂的存在,对于交换性氢和1价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。
3.氯化钡-硫酸强迫交换法
土壤中存在的各种阳离子可被氯化钡(BaCl2)水溶液中的阳离子(Ba2+)等价交换。土壤用BaCl2溶液处理,使之和Ba2+饱和,洗去剩余的BaCl2溶液后,再用强电解质硫酸溶液把交换到土壤中的Ba2+交换下来,由于形成了硫酸钡(BaSO4)沉淀,而且氢离子(H+)的交换吸附能力很强,使交换反应基本趋于完全。这样可以通过计算消耗硫酸的量,计算出阳离子交换量。
四、土壤碱化度(ESP)
土壤的碱化度是用Na+的饱和度来表示,它是指土壤胶体上吸附的交换性Na+占阳离子交换量的百分率。当碱化度达到一定程度时,土壤的理化性质会发生一系列的变化,土壤呈极强的碱性反应pH﹥8.5甚至超过10.0,且土粒分散、湿时泥泞、不透气、不透水、干时硬结、耕性极差,土壤理化性质所发生的这一系列变化称为碱化作用。碱化度是盐碱土分类、利用、改良的重要指标。一般把碱化度﹥20%定为碱土,5%~20%定为碱化土(15%~20%为强碱化土,10%~15%为中度碱化土,5%~10%为轻度碱化土)。
计算公式:
碱化度=(交换性钠/阳离子交换量)× 100%
式中:交换性钠[cmol(Na+)/kg]用乙酸铵-氢氧化钠铵交换-火焰光度法测得;阳离子交换量[cmol(+)/kg]用氯化铵-乙酸铵交换法测得。
五、土壤水溶性全盐量(易溶盐)
土壤水溶性盐是盐碱土的一个重要属性,是限制作物生长的障碍因素。我国的盐碱土分布广,面积大,类型多。在干旱、半干旱地区盐渍化土壤,以水溶性的氯化物和硫酸盐为主。滨海地区由于受海水浸渍,生成滨海盐土,所含盐分以氯化物为主。在我国南方(福建、广东、广西等省区)沿海还分布着一种反酸盐土。盐土中含有大量水溶性盐类,影响作物生长,同一浓度的不同盐分危害作物的程度也不一样。盐分中以碳酸钠的危害最大,增加土壤碱度和恶化土壤物理性质,使作物受害。其次是氯化物,氯化物又以MgCl2的毒害作用较大,另外,氯离子和钠离子的作用也不一样。
土壤(及地下水)中水溶性盐的分析,是研究盐渍土盐分动态的重要方法之一,对于了解盐分对种子发芽和作物生长的影响以及拟订改良措施都是十分必要的。
1.电导法
土壤中的水溶性盐是强电介质,其水溶液具有导电作用,导电能力的强弱可用电导率表示。在一定浓度范围内,溶液的含盐量与电导率呈正相关,含盐量愈高,溶液的渗透压愈大,电导率也愈大。土壤水浸出液的电导率用电导仪测定,直接用电导率数值表示土壤的含盐量。
2.质量法
吸取一定量的土壤浸出液放在瓷蒸发皿中,在水浴上蒸干,用过氧化氢(H2O2)氧化有机质,然后在105~110℃烘箱中烘干,称重,即得烘干残渣质量。
六、土壤养分元素
土壤养分元素是指由土壤提供的植物生长所必需的营养元素,能被植物直接或者转化后吸收。土壤养分可大致分为大量元素、中量元素和微量元素,包括氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、硼(B)、钼(Mo)、锌(Zn)、锰(Mn)、铜(Cu)和氯(Cl)等13种。在自然土壤中,土壤养分主要来源于土壤矿物质和土壤有机质,其次是大气降水、坡渗水和地下水。在耕作土壤中,还来源于施肥和灌溉。
根据在土壤中存在的化学形态,土壤养分的形态分为:①水溶态养分,土壤溶液中溶解的离子和少量的低分子有机化合物;②代换态养分,水溶态养分的来源之一;③矿物态养分,大多数是难溶性养分,有少量是弱酸溶性的(对植物有效);④有机态养分,矿质化过程的难易强度不同。
根据植物对营养元素吸收利用的难易程度,土壤养分又分为速效性养分和迟效性养分。一般来说,速效养分仅占很少部分,不足全量的1%。应该注意的是速效养分和迟效养分的划分是相对的,两者是处于动态平衡之中。
土壤养分的总储量中,有很小一部分能为当季作物根系迅速吸收同化的养分,称速效性养分;其余绝大部分必须经过生物的或化学的转化作用方能为植物所吸收的养分,称迟效性养分。一般而言,土壤有效养分含量约占土壤养分总储量的百分之几至千分之几或更少。故在农业生产中,作物经常出现因某些有效养分供应不足而发生缺素症的现象。
1.全氮测定法
(1)开氏定氮法。土壤、植株和其他有机体中全氮的测定通常都采用开氏消煮法,用硫酸钾-硫酸铜-硒粉做加速剂。此法虽然消煮时间长,但控制好加速剂的用量,不易导致氮素损失,消化程度容易掌握,测定结果稳定,准确度较高,适用于常规分析。
土壤中的含氮有机化合物在加速剂的参与下,经浓硫酸消煮分解,有机氮转化为铵态氮,碱化后把氨蒸馏出来,用硼酸吸收,标准酸滴定,求出全氮含量。硫酸钾起提高硫酸溶液沸点的作用,硫酸铜起催化剂作用,加速有机氮的转化,硒粉是一种高效催化剂,用量不宜过多,否则会引起氮素损失。
(2)半微量开氏法。样品在加速剂的参与下,用浓硫酸消煮时,各种含氮有机化合物,经过复杂的高温分解反应,转化为铵态氮。碱化后蒸馏出来的氨用硼酸吸收,以标准酸溶液滴定,求出土壤全氮含量(不包括全部硝态氮)。
包括硝态和亚硝态氮的全氮测定,在样品消煮前,需先用高锰酸钾将样品中的亚硝态氮氧化为硝态氮后,再用还原铁粉使全部硝态氮还原,转化为铵态氮。
2.全磷硫酸-高氯酸消煮测定法
在高温条件下,土壤中含磷矿物及有机磷化合物与高沸点的硫酸和强氧化剂高氯酸作用,使之完全分解,全部转化为正磷酸盐而进入溶液,然后用钼锑抗比色法测定。
3.全钾测定法
土壤中的有机物先用硝酸和高氯酸加热氧化,然后用氢氟酸分解硅酸盐等矿物,硅与氟形成四氟化硅逸去。继续加热至剩余的酸被赶尽,使矿质元素变成金属氧化物或盐类。用盐酸溶液溶解残渣,使钾转变为钾离子。经适当稀释后用火焰光度法或原子吸收分光光度法测定溶液中的钾离子浓度,再换算为土壤全钾含量。
4.碱解氮测定法
土壤水解性氮或称碱解氮包括无机态氮(铵态氮、硝态氮)及易水解的有机态氮(氨基酸、酰铵和易水解蛋白质)。用碱液处理土壤时,易水解的有机氮及铵态氮转化为氨,硝态氮则先经硫酸亚铁转化为铵。以硼酸吸收氨,再用标准酸滴定,计算水解性氮含量。
5.速效磷测定法
(1)碳酸氢钠法。石灰性土壤由于存在大量的游离碳酸钙,不能用酸溶液来提取速效磷,可用碳酸盐的碱溶液。由于碳酸根的同离子效应,碳酸盐的碱溶液降低了碳酸钙的溶解度,也就降低了溶液中钙的浓度,这样就有利于磷酸钙盐的提取。同时由于碳酸盐的碱溶液也降低了铝和铁离子的活性,有利于磷酸铝和磷酸铁的提取。此外,碳酸氢钠碱溶液中存在着OH-,
(2)钼锑抗比色法。酸性土壤中的磷主要是以Fe—P、Al—P的形态存在,利用氟离子在酸性溶液中有配合Fe3+,Al3+的能力,可使这类土壤中比较活性的磷酸铁铝盐被陆续活化释放,同时由于H+的作用,也能溶解出部分活性较大的Ca—P,然后用钼锑抗比色法进行测定。
6.速效钾测定法
用1mol/L NH4OAc浸提土壤,可将胶体表面吸附的钾离子全部浸提出来,而与黏土矿物晶格固定的钾截然分开。
7.有机质重铬酸钾容量测定法
在加热的条件下,用过量的重铬酸钾-硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,
七、土壤重金属
土壤的重金属主要包括汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)和类金属砷(As)等生物毒性显著的元素,以及有一定毒性的锌(Zn)、铜(Cu)、镍(Ni)等元素。主要来自农药、废水、污泥和大气沉降等,如汞主要来自含汞废水,镉、铅污染主要来自冶炼排放和汽车废气沉降,砷则被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂。过量重金属可引起植物生理功能紊乱、营养失调,镉、汞等元素在作物子实中富集系数较高,即使超过食品卫生标准,也不影响作物生长、发育和产量,此外汞、砷能减弱和抑制土壤中硝化、氨化细菌活动,影响氮素供应。重金属污染物在土壤中移动性很小,不易随水淋滤,不为微生物降解,通过食物链进入人体后,潜在危害极大,应特别注意防止重金属对土壤的污染。一些矿山在开采中尚未建立石排场和尾矿库,废石和尾矿随意堆放,致使尾矿中富含难降解的重金属进入土壤,加之矿石加工后余下的金属废渣随雨水进入地下水系统,造成严重的土壤重金属污染。
1.原子吸收分光光度法
原子吸收分光光度法的测量对象是呈原子状态的金属元素和部分非金属元素,是由待测元素灯发出的特征谱线通过供试品经原子化产生的原子蒸气时,被蒸气中待测元素的基态原子所吸收,通过测定辐射光强度减弱的程度,求出供试品中待测元素的含量。原子吸收一般遵循分光光度法的吸收定律,通常借比较对照品溶液和供试品溶液的吸光度,求得供试品中待测元素的含量。所用仪器为原子吸收分光光度计,它由光源、原子化器、单色器、背景校正系统、自动进样系统和检测系统等组成。
2.X射线荧光光谱(XRF)法
XRF法是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术。它的基本原理是基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。该方法可定量分析测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,经10~8 s,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收波长相同,称为共振荧光;若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比。该法的优点是灵敏度高,谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳。主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用。
3.电感耦合等离子光谱(ICP)法
高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有3个同轴氢气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始工作时启动高压放电装置让工作气体发生电离,被电离的气体经过环绕石英管顶部的高频感应圈时,线圈产生的巨大热能和交变磁场,使电离气体的电子、离子和处于基态的氖原子发生反复猛烈的碰撞,各种粒子的高速运动,导致气体完全电离形成一个类似线圈状的等离子体炬区面,此处温度高达6000~10 000℃。样品经处理制成溶液后,由超雾化装置变成全溶胶由底部导入管内,经轴心的石英管从喷嘴喷入等离子体炬内。样品气溶胶进入等离子体焰时,绝大部分立即分解成激发态的原子、离子状态。当这些激发态的粒子回收到稳定的基态时要放出一定的能量(表现为一定波长的光谱),测定每种元素特有的谱线和强度,和标准溶液相比,就可以知道样品中所含元素的种类和含量。
发射光谱分析方法只要将待测原子处于激发状态,便可同时发射出各自特征谱线同时进行测定。ICP-AES仪器,不论是多道直读还是单道扫描仪器,均可以在同一试样溶液中同时测定大量元素(30~50个,甚至更多)。已有文献报道的分析元素可达78个,即除He,Ne,Ar,Kr,Xe惰性气体外,自然界存在的所有元素,都已有用ICP-AES法测定的报告。
Ⅵ 氨基酸自动检测仪和高速液相色谱仪有什么差别具体的
氨基酸自动测定仪基本原理就是高效液相的原理,只是加了柱前衍生化功能,对氨基酸进行衍生化,以便检测器可以识别氨基酸。
Ⅶ im是什么病
医学? 糖化血红蛋白的临床意义是 1.糖化血红蛋白(GHb)是红细胞中血红蛋白与葡萄糖缓慢、持续且不可逆地进行非酶促蛋白糖化反应的产物。形成两周后不易分开。当血液中葡萄糖浓度较高时,人体所形成的糖化血红蛋白含量也会相对较高.
2.正常生理条件下,非酶促糖化反应产物的生成量与反应物的浓度成正比。由于蛋白质浓度保持稳定相对稳定,糖化水平主要决定于葡萄糖浓度,也与蛋白质与葡萄糖接触的时间长短有关。
人体内红细胞的寿命一般为120天,在红细胞死亡前,血液中糖化血红蛋白含量也会保持相对不变。因此糖化血红蛋白水平反映的是在检测前120天内的平均血糖水平,而与抽血时间,病人是否空腹,是否使用胰岛素等因素无关,是判定糖尿病长期控制的良好指标。
3. 正常值:糖化血红蛋白的测定结果以百分率表示,指的是和葡萄糖结合的血红蛋白占全部血红蛋白的比例。
HbA1C是评价血糖控制好坏的重要标准
4%~6%:正常值
<6%:控制偏低,患者容易出现低血糖。
6%~7%:控制理想。
7%~8%:可以接受。
8%~9%:控制不好
>9%:控制很差,慢性并发症发生发展的危险因素。糖尿病性肾病,动脉硬化,白内障等并发症,并有可能出现酮症酸中毒等急性合并症。
4. 监测时间
有条件的患者应该每3个月检查一次,以了解一段较长时间内血糖控制的总体情况如何。
建议那些使用胰岛素治疗的病友,由于血糖波动较大,至少每3月~半年到检查一次。
5. 糖化血红蛋白如何反映血糖的控制情况。
如果空腹血糖为130mg/dl,但是糖化血红蛋白测定时为11%,这意味着在过去的2-3个月的时间内,平均血糖水平已经接近270mg/dl,糖化血红蛋白检查结果提示将来发生糖尿病并发症的危险性非常高。尽管早前血糖结果尚满意,但是一天其它时间的血糖水平却严重超标,因此需要对饮食、运动以及药物治疗做出重新评估,并做出相应调整,此外还需要较现在更为频繁地测定血糖水平。
例子:
A、Bob.D 49岁,七年前患有2型糖尿病,通过饮食和药物来控制血糖,最近血糖控制不好,医生建议他胰岛素治疗,并要加强锻炼。Bob坚持他的锻炼计划,四个月后他的血糖接近正常,但这只是瞬间的血糖水平,并不能说明有关Bob总的血糖控制情况。
于是医生测定他的糖化血红蛋白,这一结果将要说明过去数月中Bob的平均血糖水平。测定结果Bob的血糖控制有所改善,说明Bob的锻炼计划发挥了作用。使Bob了解到可通过不同的方法来控制血糖。
Lisa.J 9岁,1型糖尿病。他的父母引以为荣的是他能自己注射胰岛素和测定血糖。Lisa的全部测定结果都接近理想范围。为了下一步的治疗。医生测定了她的血糖,显示血糖 过高。医生又测定了她的糖化血红蛋白也高,结果表明,在过去的数月中Lisa的血糖控制并不好。后来医生终于发现Lisa的测血糖的方法不对而导致了血糖每次都正常的误差。
6. 与空腹血糖、尿糖的关系
HbAlc反映过去2-3个月的血糖水平
空腹血糖或餐后血糖反映的是抽血瞬时的血糖浓度。
尿糖定量则反映24小时血糖总水平。
因此这三个指标从不同时间反映糖尿病的控制情况和糖尿病本身的严重程度。
糖尿病人GHb水平显著高于正常人,随病情严重程度而升高。
Ⅰ型糖尿病较Ⅱ型糖尿病水平偏高。
7. 检测方法:
常用的有微柱法离子交换层析,亲和层析,高压液相,免疫凝集,离子捕获法,电泳法等
A、离子交换层析,分手工和仪器两种。
层析法是采用阳离子交换树脂装柱,用两种不同缓冲液洗脱HbA和HbA1。分光光度计比色后计算HbA1百分比。
手工微柱有Bio-Rad和西班牙BIOSYSYEMS等多家公司产品,手工微柱操作会受到人工因素影响,可能会洗脱不完全或过度洗脱,并受外界环境温度的影响,而某些血红蛋白如HbF异常增加时,也会与糖化血红蛋白同时洗脱,从而使结果产生偏差。
相应的仪器以英国DREW SCIENTIFIC公司DS5糖化血红蛋白仪为例(BIO-RAD公司DIASTA亦为同一产品),采用微柱法离子交换层析和梯度洗脱技术可全自动分离血红蛋白的变异体与亚型,除可测定糖化血红蛋白外,还可同时检测出HbS与HbC的存在与否,在计算糖化血红蛋白值时会自动扣除变异体产生的影响,从而使结果更为准确,可靠,CV值小于2%。同时该仪器配有专门的稀释溶血器,可直接进行全血操作,5分钟即可报告结果,并自动储存样品检测结果,层析柱价格也较为低廉,适合于较多标本的医院检测。更大型的仪器有DREW SCIENTIFIC公司的Hb-Gold,除可全自动测定糖化血红蛋白外,还可分离检测血红蛋白的600多种变异体和亚型,用于地中海贫血等疾病的诊断。
B、硼酸亲和层析法:用于分离糖化与非糖化血红蛋白的亲和层析凝胶柱是交联了间氨基苯硼酸(maminophenylboronic acid)的琼脂糖珠。硼酸具有与整合在血红蛋白分子上葡萄糖的顺位二醇基做可逆结合反应的性质,致使GHb选择性地结合在柱上,而非糖化血红蛋白被洗脱而分离测定。该方法是目前糖化血红蛋白检测的新方法,该方法特异性强,不受异常血红蛋白的干扰。使用该方法的英国DREW SCIENTIFIC公司的DSI糖化血红蛋白分析仪获得美国食品药品管理署(FDA)的认可获准上市,作为目前世界唯一的快速床边糖化血红蛋白仪,它采用硼酸亲和层析法,只需10ul全血即可在4分钟内快速分离检测糖化血红蛋白,为临床提供即时的化验结果,从而使医生在患者就诊的第一时间明确诊断并制定相应的治疗方案,特别适合于临床科室使用,尤其对于小儿患者而言更有优势。其检测结果也完全达到并超过临床要求,CV值在5%以内。
C、离子捕获法亦是新近发展起来硼酸亲和层析法的一种,代表仪器有Abbott的IMX,其原理是糖化血红蛋白与相应抗体结合后,联以荧光标记物,形成一反应复合物,再联结带负电荷的多聚阴离子复合物,而在IMX反应孔中的玻璃纤维预先包被了高分子的四胺合物,使纤维表面带正电,使前述的反应复合物吸附在纤维表面,经过一系列清洗后测定其荧光强度,从而得到糖化血红蛋白的浓度,该方法适用于成批糖化血红蛋白标本的检测。
D、高压液相色谱法(HPLC) : 用弱酸性阳离子交换树脂,在高压和选定低浓度洗脱液的离子强度及PH条件下,由于Hb中各组分蛋白所带电荷不同而分离。GHb几乎不带正电荷首先被洗脱;HbA带正电荷,再用高浓度洗脱液洗出HbA,得到相应的Hb层析谱,其横坐标是时间,其纵坐标百分比。HbA1c值是以 HbA1c的部分面积在全Hb面积的百分率来表示,现在都用全自动测定仪来测定,如日本SYSMEX公司推出的全自动糖化血红蛋白分析仪曾应用于美国DCCT研究,其离子交换HPLC法是HbA1c检测的金标准,当前推出的最新型糖化血红蛋白分析仪—HLC-723 G7。报告结果仅需1.2分钟,标本无需前处理,操作维护都非常方便。
HPLC的仪器还有Bio-Rad公司的Variant等,可全自动分离测定糖化血红蛋白及血红蛋白的变异体和亚型,但仪器的操作保养要求均较高。
E、免疫凝集法的原理是糖化血红蛋白与相应的单抗结合进而发生凝集反应,通过测定吸光要求对样品成批试验,每次试验均应使用一个新试剂盒,操作前应注意混匀试剂。需要指出的是免疫凝集法测定糖化血红蛋白,精密度较差,CV值一般大于6%。
F、电泳方法如毛细管电泳也能分离检测糖化血红蛋白和血红蛋白的变异体,但目前尚无商品化、具有批量样本通过能力的仪器面世,相当程度地限制了该方法的临床应用。普通电泳法对HbA和HbA1分离效果不理想,而等电聚焦电泳因设备昂贵难以推广。
G、目前多采用比色法,其原理是,具有酮胺键的GHb在酸性环境中加热,其已糖化部分脱水生成5-羟甲糖醛(5-HMF),后者可与a-硫代巴比妥酸(TBA)起显色反应。此有色物质在443mm处有吸收峰,可用于GHb定量。操作步骤为:加冷蒸馏水于压积的红细胞中制备溶血液并由甲苯他离红细胞膜碎片;取该溶血液加入草酸混合后置100℃水浴水解;水解液中加入三氯醋酸混和、离心;吸出上清液加入TBA混和保温,用分光光度计在443mm处比色。
此法不受其他血红蛋白干扰,无需特殊设备,操作方便,成本低廉。
据统计,目前市售HbA1c测定试剂盒约半数以上采用硼酸盐亲和层析法,采用离子交换层析法的约30%,采用免疫学方法的约15%,采用电泳法的不及5%。采用硼酸盐亲和层析法的试剂盒有Abbot Imx、Primus公司的CLC 330和CLC 385等,采用离子交换层析法的有SYSMEX公司的723 G-7、Bio-Rad公司的DiaSTAT和Diamat等,采用免疫学方法的有Bayer公司的DCA-2000,罗氏公司的TinaQuant Ⅱ和Unimate系统等。
8. 血红蛋白测定的局限性
A、糖化血红蛋白的测定是监测血糖的一个重要方法,但并不能替代日常的血糖测定。糖化血红蛋白测定不能衡量每日的血糖控制情况。不能根据糖化血红蛋白的测定来调节胰岛素,这就是你的血糖测定和测定记录对于有效控制血糖的重要依据。
B、糖化血红蛋白要在实验室内进行测定,不同的实验室可能有不同的测定方法,不同的方法测定则有不同的测定结果。其化验值的临床意义要取决于实验室所用的实验方法。
C、仅测定糖化血红蛋白一项,不足以衡量血糖控制的好坏,但它是一种很有用的资料,结合你的日常血糖测定,可在控制血糖中发挥作用。
9. 在糖尿病的监测中的意义:
A、 与血糖值相平行:血糖越高,糖化血红蛋白就越高,所以能反映血糖控制水平;
B、 生成缓慢:大家知道,血糖是不断波动的,每次抽血只反映当时的血糖水平,而糖化血红蛋白则是逐渐生成的,短暂的血糖升高,不会引起糖化血红蛋白的升高,反过来,短暂的血糖降低,也不会造成糖化血红蛋白的下降,吃饭也不影响其测定,可以在餐后进行测定;
C、 一旦生成,就不再分解:糖化血红蛋白相当稳定,不易分解,所以它虽然不能反映短期内的血糖波动,却能更好地反映较长时间的血糖控制程度,糖化血红蛋白能反映采血前两个月的平均血糖水平;
D、 糖化血红蛋白是指其在总血红蛋白中的比例,所以不怎么受血红蛋白水平的影响。
E、 HbA1C的监测目的在于消除血糖波动对病情控制的影响。特别是对于血糖波动较大的1型糖尿病,是一个极有价值的控制指标。
F、 判定医生或自我测定血糖的结果是否正确。
G、 检验治疗计划是否有效。
H、 能鉴定选择控制血糖的不同方法
血流变的临床意义
1、血液流变学介于基础医学、预防医学与临床医学之间,血液流变学是主要研究血液在血管中流动的规律,血液中有形成分(细胞)的变形性和无形成分(血浆)的流动性对血液流动的影响,以及血管和心脏之间相互作用的学科。是一门新兴的医学技术,其中一些资料尚未齐全,有待补足。
2、血液流变学测定的方法是一种物理学方法,其中一些参数可能会与用其他方法测定的参数有出入,检查流变学时以流变学的测定结果为准。
3、在测定流变学时最好加做血脂(主要是甘油三脂和胆固醇),因这两项对流变学影响很大。
4、可用于血液流变学检查的疾病
( 一)、 血管性疾病
1 高血压,
2 脑卒中(一过性脑缺血发作,脑血栓,脑出血),
3 冠心病(心绞痛,急性心肌梗塞),
4 周围血管病(下肢深静脉血栓,脉管炎,眼视网膜血管病等)。
(二 )、代谢性疾病
1 糖尿病,
2 高脂蛋白血症,
3 高纤维蛋白血症,
4 高球蛋白血症。
(三) 、血液病
1 原发性和继发性红细胞增多症,
2 原发性和继发性血小板增多症,
3 白血病,
4 多发性骨髓瘤。
(四)、 其他
1 休克,脏器衰竭,器官移植,慢性肝炎,肺心病,抑郁性精神病。
2 中医范围中的血瘀症等。
二、测定时间:每周一至周五,用肝素钠抗疑管采血,标本量不得低于4毫升。
三、临床意义:
1,全血粘度:
在低切变率时,血液形成红细胞聚集体,红细胞聚集体越多,红细胞聚集越强,血液粘度越高,低切变率下的全血粘度值,可以反映红细胞的聚集程度。高 切变率下可反映红细胞的变形程度,高切粘度高,红细胞变形性差; 高切粘度低,红细胞变形性好。中切粘度值为低切到高切粘 度变化的 过渡点,其临床意义不十分明显。 全血粘度测定对判别、诊断有一定意义。真性红细胞 增多症、肺 原性心脏病、充血性心力衰竭、先天性心脏病、高山病、烧伤、脱水 均可使红细胞压积增加、使全血粘度升高。冠心病、缺血性中风、急性心肌梗塞、血栓闭塞性脉管炎、糖尿病、创 伤等使红细胞聚集性增 加而使全血粘度升高。镰状红细胞病、球形红细胞病症、酸中毒、缺氧等使 红细胞变形能力降低,也在某种程度上影响全血粘度升高。而 各种贫血、尿毒症、肝硬化腹水、晚期肿瘤、急性白血病、妇女妊娠期则全血粘度降低。
什么是全血高切、中切、低切粘度?
当切变率在200/s时的全血粘度为高切粘度:当切变率在30/s时的全血粘度称中切 粘度: 当切变率在3/s时的全血粘度称低切粘度。
2,血浆粘度
血浆粘度的特点是不随着切变率的变化而变化,是一个常数,是 影响全血粘度的重要因素之一,血浆粘度的高低主要取决于血浆蛋 白,尤其是纤维蛋白浓度。
测定血浆粘度什么临床意义?
增高:见于肿瘤、风湿、结核、感染、放射治疗、自身免疫性疾病。此外,也可见于 高热、大
量出汗、腹泻、烧伤、糖尿病、高脂血症、部分尿毒症。
降低:过量补液,肝、肾、心脏或不明原因引起的浮肿,肾病,长期营养不良均可 降低。
3,全血还原粘度
在血流变学中,还原粘度是一个标准化指标,指全血粘度与血细胞容积浓度之比含意是当细胞容积浓度为1时的全血粘度值。这样使 血液粘度都校正到相同血细胞容积浓度的基础上,以利于比较。
4,全血流阻
流阻是血液在血管中流动的阻力。流阻取决于两个方面,一是粘度因素,即流经圆管中液体 自身的粘度,粘度增大流阻增大,流阻与粘度成正比。二是几何因素,由于血管半径可变,血管的 流阻就随着血管两端压强差的增减而变化,压强差增大时,流阻减小,流量增大。
5, 红细胞压积(HCT)
红细胞压积又称红细胞比积,即为一定体积血液中红细胞总体积除以血液体积。红细胞压积增高则血液粘度增加。
6, 红细胞电泳时间
是反映红细胞聚集性的又一参数,红细胞表面带负电荷,电泳时在电场作用下总是向正极移动,移动速度与其表面所带的负电荷密度成正比.当表面负电荷减少时,红细胞间静电排斥力减少, 红细胞电泳时间增长,红细胞聚集性增强,反之则降低。
7,血沉
即红细胞在单位时间内下沉的速度。红细胞沉降率与血浆粘度、 红细胞聚集、红细胞比积有关。
在血液流变学测定中常作为红细胞聚集、红细胞表面电荷、红细胞电泳的通用指标。因受红细胞压积的影响,测定血沉方程K值更有价值。
病理性增高多见于活动性结核病、风湿热、严重贫血、白血病、 肿瘤、甲亢、肾炎、全身和局部性感染。心肌梗塞时常于发病后三到四天血沉增快,并持续一到三周;心绞痛时血沉正常,故可借血沉结果加以鉴别。
8,血沉方程K值
计算血沉方程K值的目的是排除红细胞压积干扰的影响,客观地反映红细胞的聚集性。K值的
计算公式如下: K=ESR/-[1-H+InA]
式中: ESR为血沉;H为压积,计算时化为小数(例如:H为40%时可化为0.40): 1一H为血浆的比值: In指 以e为底数的自然对数(即Ig2.71828)。
9,相对粘度
相对粘度是两种液体粘度的比值。血液的相对粘度是全血粘度与血浆粘度的比值。
10,红细胞刚性指数(IK)
血液在高切变率下的粘度低于中切变率下的粘度,这主要是由于红细胞并非刚性粘子,它在高切变率下沿剪切力的方向运动,并发生变形。这使得流动阻力就小,表现为粘度的下降,因此,在特定的高切变率下测定血液的粘度,可以度量红细胞的变形能力。 红细胞刚性指数与高切变率下的全血表观粘度、血浆粘度及红细胞压积等指标有关。
11,红细胞变形指数(TK)
正常红细胞由于形状、细胞膜及细胞内容物结构上的特点,决定了红细胞很容易变 形。红细胞的可变形性决定了血液的流动性,对红细胞寿命以及微循环有效灌注方面起着十分重要的作用。其测量公式是: TK=(ηγ0.4-1)/ηγ0.4H
公式中: ηγ为相对粘度;H为红细胞压积;
TK值可用来估计红细胞硬度,TK值大,红细胞硬化程度高,红细胞变形性差。
12, 红细胞内粘度
红细胞的内粘度系指红细胞内含物成分或内含物作为一种高分子胶体溶液所显示的粘度。内粘度的高低与血红蛋白含量有重要关系。红细胞内粘度增高时,其变形能力减弱。红细胞平均血红蛋白浓度增加时内粘度呈指数增加,所以,内粘度在红细胞变形性方面起着重要的作用。红细胞内ATP(三磷酸腺苷)含量的多与少直接影响细胞的变形性,ATP含量降低时,变形性也降低。
13,卡森粘度
卡森粘度与全血粘度是相对应的。卡森粘度是全血表观粘度降低的极限值。随着剪切率的增加,红细胞缗钱状聚集逐渐瓦解直至完全分散.血液表观粘度降低,剪切率继续增大,细胞可被拉长,顺着流线运动,血液粘度进一步降低,但降低不是无止境的,达到一个极限值就不再降低了,这个表观粘度的极限值或最低值,就是卡森粘度。
14,卡森屈服应力
对于人体全血而言,只有施加于血液的切应力达到一定值时,才能消除其内部对抗,并开始流动。此切应力临界值Iy称为屈服应力,也称卡森应力.血液流动时,其内部切应力低于Iy时,血液就如固体;只会变形而不能流动。
15,红细胞聚集指数
静止血液中由于血浆大分子的桥联作用,使红细胞聚集成缗钱状,甚至连接成三维空间的网状结构。当机体处于疾病状态时,血浆中纤 雄蛋白原和球蛋白浓度增加,红细胞聚集体增多,红细胞聚集性增强, 血液流动性减弱,使微循环血液量灌注不足,导致组织或器官缺血、缺氧。聚集指数是由低切粘度比高切粘度计算而来,聚集指数的代表符号是RE。
RE=低切粘度/高切粘度
它是反映红细胞聚集性及程度的一个客观指标,增高表示聚集性增强。
红细胞聚集指数的临床意义是什么?
在下述疾病状态,如异常蛋白症、感染性胶原病、恶性肿瘤、合并微血管障碍、糖尿病、心肌梗塞、外伤、手术及烧伤等所致组织溃疡都会发生血管内红细胞聚集,在小静脉或小动脉中也可发现血管内红细胞聚集。然而,对于健康人的小动脉,则不会发生血管内红细胞聚集,小动脉血管内红细胞聚集会引起血流障碍、组织供氧障碍、血管内皮细胞的低氧障碍等。
16,纤维蛋白原临床意义
临床意义:
(1)纤维蛋白原增多。高血压、高血脂、动脉粥样硬化、冠心痛,脑卒中、周围血管病、糖尿病、肿瘤、结核、风湿病、肾脏病及肝脏病、感染及放射性疾病。
(2)纤维蛋白原减少。先天性纤维蛋白原缺乏症、各种原因引起的弥漫性血管内凝血(DIC)、纤溶酶所致严重肝病及肝硬化、肝坏死等。
(3)血液流变学认识
①对血浆粘度的影响:纤维蛋白原在血浆中能形成网状结构,从而影响血液流动.使血浆流速变低、粘度增高,这种由于高分子链状化合物在血浆中形成网状结构而构成的血浆粘度称为“结构粘度”。一般血浆粘度与纤维蛋白原含量成正比相关。但这并不是说凡是纤维蛋白原增高的病例血浆粘度都一定增高,虽然纤维蛋白原含量增高能提高血浆粘度,但并不一定与血浆粘度同步。因为构成血浆粘度的高分了化合物并非纤维蛋白原一种,还有其它原因的影响:血清粘度低于正常,二者粘度差别由纤维蛋白原引起。
②对全血粘度的影响:纤维蛋白原增多时,特别是其活性增强时,能直接提高血浆粘度,而血浆粘度增高又直接影响到全血粘度。另外,纤维蛋白原的高分子链状结构可使红细胞发生缗钱状聚集,从而也使血粘度升高,这些作用都在低切变范围内较明显。
③对血栓形成的影响:血液能在人体内正常流动,其中原因之一是同时存在着凝血因素和抗凝血因素,只有这两种因素保持动态下衡时,才使得血液流动不会发生异常。纤维蛋白原是重要的凝血因子,无论是体内血栓形成还是人为模拟的体外血栓形成,都离不开纤维蛋白原的作用。
④与高粘滞血疗的关系:确定高粘滞血症时是以血粘度增高为准则,而粘度则是各种粘滞因子的综合。
⑤与中风预报结果的关系:纤维蛋白原含量,随着中风预报结果异常程度的加重有所增高。
17,中风预报和JB检测值
JB检测值为一综合分析结果,超过100分报警,越低越好。所谓预报就是对多项血液流变学检测指标的综合分析,它既无特异性,又无必然性,缺血性脑中风常呈高粘状态,和其它许多疾病存在广泛交*。 因此为慎重起见,许多医疗单位只将血液流变学各项指标回报,而不作预报回报。
18,高粘血症诊断标准
对于高粘血症目的还难以确立统一的诊断标准,建议按以下几点确立珍断标准:
①全血高切粘度、低切粘度及血浆粘度有一项增高即叫可诊断。
②高粘血症程度的轻重,以超出上限值的标准差数将高粘血症分为以下3度:
轻度:上限+<2SD;
中度:上限+<4SD;
重度:上限+>4SD。
高粘血症:通过各型流变仪检测血液流变学各项指标,含血小板和红细胞聚集指标超出正常参考值范围。
高凝血症:通过各型凝血仪测定血液凝血各项指标,最少两项高于正常参考范围。
高脂血症:通过各种方法测定血液胆固醇,甘油三脂,高、低密度脂蛋白超出正常参考值范围。
高粘、高凝、高脂血症的诊断一定要密切结合临床,目前国内尚无统一标准。
血液高粘滞综合症:
1.定义:
由某种血液粘滞因素的升高所造成,即血浆粘度升高,红细胞内粘度与刚性升高等。 可能伴有全血粘度升高,但不一定。血液高粘滞性的决定性套作用表现在微循环方面, 血细胞刚性增加、微血栓与微栓子的形成或其他凝血产物的出观所造成影响均通过逆转现象而扩大。
2.分类:(五个亚型)
高浓稠型、高粘滞型、高凝固型、红细胞聚集型、红细胞刚性升高型。
3.分型诊断
(1)高浓稠型:Hct增高。
(2)高粘滞型:全血粘度增高、血浆粘度增高,全血还原粘度增高、纤维蛋原含量增高、Hct增高。
(3)红细胞聚集型:红细胞沉降率变快,血沉方程K值增高,红细胞电泳变慢。
(4)红细胞刚性升高型:红细胞刚性指数增高、TK值增高、变形。
(5)高凝固型:纤维蛋白原含量增高、血小板粘附率增高、血小板聚集增高,体外血栓形成三指标增高。
4.说明:各项指标根据相互关系,在各型血症中可兼项,可同时存在一个或多个血症。 满意。
Ⅷ 水泥厂化验设备有哪些
统一试验小磨 台 1
型号:3M05
规格:φ500×500mm
给料尺寸:<7mm
转速:48r/min
一次装料量:5kg
研磨体量:100kg
齿轮减速电动机 台 1
型号:YTC503
功率:1.5kW
电压:380V
电流:3.7A
密封锤式破碎缩分机 台 1 订货
型号:KERS-180×150
给料粒度<50mm
出料粒度<6-1mm
缩分比:1/8
生产率:600~300kg/h
外形尺寸:900×760×1300
电机 台 1 随主机订货
型号:Y90L-4 1.5kW
电机 台 1 随主机订货
型号:Y90S-6 0.75kW
颚式破碎机 台 1 订货
型号:SP-100×100
进料口:100×100mm
三相异步电动机 台 1 随主机订货
型号:YS100L24
台秤 台 1
最大称量:10kg 订货
最小称量:500g
分度值:1g
排气扇 台 4 订货
功率:370W
电压:220V
样盘
规格:1100×610×100mm 个 2 订货
规格:500×500×60mm 个 2
瓷盘 个 3 订货
规格:350×250×40mm
二、物理检验部分
微机控制电液式压力实验机 台 2 订货
型号:YAW-300B
最大压力:300kN
抗压夹具 副 2 随主机订货
规格:40×40mm
电动抗折试验机 台 2 订货
型号:DKZ-5000
最大出力:单杠杆1000N,双杠杆5000N
电机 台 2 随主机订货
型号:SD-75
电压:220V
盘式研磨机 台 1 订货
Φ175
行星式胶砂搅拌机 台 2 订货
型号:JJ-5
搅拌叶转速:低速140±5(自转)
62±5(公转)
高速285±5(自转)
125±10(自转)
电机 台 2 随主机订货
功率:0.55/0.37kW
电压:380V
水泥胶砂试体成型振实台 台 2 订货
型号:ZS-15
电机 台 2 随主机订货
型号:90TDY4
功率:70W
电压:220V
水泥净浆搅拌机 台 2 订货
型号:NJ-160A
电机 台 2 随主机订货
型号:AOD712-4/8
电流:0.9/1.05A
功率:370/180W
电压:380V
水泥恒温恒湿标准养护箱 台 1 订货
型号:YH-6OB
控制温度:20±1℃
控制湿度:≥90%
试验组数:60
加热功率:600W
制冷功率:185W
电压:220V
水泥恒温恒湿标准养护箱 台 1 订货
型号:YH-40B
控制温度:20±1℃
控制湿度:>90%
试验组数:40
加热功率:600W
制冷功率:102W
电压:220V
雷氏夹测定仪 套 1 订货
雷氏夹测定夹具 合 3
符合GB146-89
成型试模 套 50 订货
规格:40×40×160mm
标准稠度及凝结时间测定仪 套 2 订货
沸煮箱 台 1 订货
型号:FZ-31A
最高煮沸温度:100℃
煮箱名义容积:31L
功率:4kW
电压:220V
水泥透气比表面积仪 套 1 订货
型号:DBT-127
电子天平 台 1 订货
最大称量:4100g
分度值:0.1g
水泥胶砂流动度测定仪 台 1 订货
型号:NLD-3
电流:0.12
电压:220V
负压筛析仪 台 1 订货
型号:FSY150-A
规格:φ150×25mm
负压可调范围:4000~6000Pa
负压功率:强620W弱600W
电压:220V
自动比表面测定仪 台 1 订货
型号:SBT-127
电子天平 台 1 订货
最大称量:100g
分度值:1mg
秒表 只 2 订货
李氏比重瓶 只 3 订货
规格:250CC
防噪防溅护罩(水泥胶砂试体成型振实台用) 台 2 订货
型号:ZT-95
干湿温度计 支 5 订货
型号WSB-F1
量程:100℃
养护槽漂浮温度计(50℃) 支 40 订货
不锈钢直尺 把 1 订货
规格:30mm
游标卡尺(精度0.02mm) 把 1 订货
时钟 部 3 订货
油膏刀 把 5 订货
计算器 台 3 订货
滴定架 个 2 订货
钢丝刷 个 5 订货
玻璃量筒
规格:5ml 个 5 订货
规格:250ml 个 5 订货
玻璃加水器 个 5 订货
塑料烧杯 个 8 订货
规格:250ml
龙头瓶
规格:3000ml 个 2 订货
规格:5000ml 个 2 订货
玻璃片
规格:100×100mm 块 200 订货
规格:50×50mm 100 订货
凝结时间稠度量水器(玻璃) 个 6 订货
规格:150ml
刮平直尺 把 3 订货
标准稠度及凝结时间测定仪圆模 个 10 订货
取样桶(带盖) 个 10 订货
规格:φ200×300mm
水泥取样筒 只 10 订货
塑料桶
规格:10升 只 2 订货
拨料器
大、小拨料器 个 6 订货
试验套模三联漏斗 只 2 订货
ISO标准砂 吨 3 订货
不锈钢盆 个 20
容量:500g
试样勺 个 5 订货
镊子 把 5 订货
试样刷 只 10 订货
彩色笔 只 20 订货
乳胶管 米 20 订货
规格:φ8mm
存样桶(带盖) 个 400 订货
规格:φ200×300mm
瓷蒸发皿
规格:φ100mm 个 10 订货
规格:φ150mm 个 10 订货
瓷盘 只 2 订货
规格:520×370×40mm
筛样机 台 1 订货
混样机 台 1 订货
混样桶 个 1 订货
干燥器 个 1 订货
瓷坩锅 个 40 订货
规格:50 ml
瓷坩锅 个 40 订货
规格:30 ml
水银 瓶 1 订货
三、化学分析和生产控制部分
(一)主要仪器设备
激光粒度分布仪 套 1 订货
LS-C(II)
红外快速煤质分析仪 台 1 订货
型号:MAG6600
符合GB/T483-1998《煤炭分析试验方法一般规定》、GB/T212-2001《煤的工业分析方法》、美国ASTM D5142标准
电脑测硫仪 台 1 订货
型号:5E-S3100
功率:≤3.5KW
电压:220V
自动量热仪 台 1 订货
型号:5E-AC
功率:≥500W
电压:220V
标准型实验室纯水机 台 1 订货
型号:WP-UP-II-20
能力:20L/h
功率:30w
电压:220v
电热恒温水浴锅 台 1 订货
型号:HH.S21-4
规格:双例四孔
控温范围:0~3℃
灵敏度:0.3℃
功率:1.5kW
电压:220V
电热板 个 1 订货
工作尺寸:450×350mm
功率:2.4kW
电压:220V
箱式电阻炉 台 2 订货
型号:SX2-5-12
炉膛尺寸:300×200×120mm
温度:1200℃
功率:5kW
电压:220V
高温箱式电阻炉(带烟道) 台 1 订货
型号:SX2-4-10
炉膛尺寸:300×200×120mm
温度:1000℃
功率:4kW
电压:220V
电热鼓风干燥箱 台 1 订货
型号:101A-2ET
工作室尺寸:450×550×550mm
温度调节范围:50℃~300℃
功率:4kW
电压:220V
电热鼓风干燥箱 台 2 订货
型号:101A-2E
内部尺寸:450×550×550mm
温度:≤300℃
功率:3.3kW
电压:220V
火焰光度计 台 1 订货
型号:FP-640
外形尺寸:450×550×550mm
环境温度:10~35℃
电压:220V
氯离子测定仪 台 1 订货
型号:CCQTC2006-4
电机功率:~500 w
电压:220 V
水泥游离钙快速测定仪 台 2 订货
型号:FC-4
平均升温速度:60℃/分
最大消耗功率:300W
电压:220V
精密PH计 台 1 订货
型号:PHS-3C
测量范围:PH:0~14.00PH
mv:0~±1999mv
最小显示单位:0.01PH,1mv
电压:220V
恒温磁力搅拌机 台 2 订货
型号:78HW-1
功率:25W
电压:220V
电子天平 台 2 订货
最大称量:220g
分度值:0.1mg
电子天平 台 1 订货
最大称量:2000g
分度值:0.1g
电子天平 台 2 订货
型号:TE412-L
最大称量:410g
分度值:0.01g
水泥组分测定仪 台 1 订货
负压筛析仪 台 2 订货
型号:FSY150-A
规格:φ150×25mm
负压可调范围:4000~6000Pa
负压功率:强620W弱600W
电压:220V
0.045mm筛子 个 2 订货
0.08 mm筛子 个 10 订货
0.2mm筛子 个 2 订货
定时电动搅拌机 台 1 订货
型号:JJ-1
永磁直流电机 台 1 订货
功率:100W
电压:12V
调速:50~3000转/分
立升重筛 套 1 订货
规格:φ225孔径5mm
规格:φ225孔径7mm
可调万用电炉(三联) 台 3 订货
型号:KD-1
功率:1~3kW
电压:220V
胶塞打孔器 套 1 订货
酒精喷灯 只 1 订货
(二)器皿
普通计算器 个 6 订货
保险柜 个 1 订货
型号
坩埚架 个 10 订货
塑料下口瓶
规格:5000mL 个 5 订货
玛瑙研钵
规格:φ110mm 个 1 订货
瓷乳钵
规格:φ110mm 个 3 订货
规格:φ90mm 个 2 订货
铂金坩埚(带盖) 个 1 订货
容量:40ml
纯度:99.9%
铂金蒸发皿 个 1 订货
规格(口径):φ75mm
容量:100ml
纯度:99.9%
铂金坩埚钳 把 1 订货
规格:600mm(钳端镶铂金)
坩埚钳
规格:26寸 把 3 订货
规格:18寸 把 5 订货
银坩埚 个 10 订货
容量:30ml
瓷坩埚(带盖)
容量:30ml 个 40 订货
容量:25ml 个 40 订货
挥发份坩埚 只 30 订货
灰皿 个 30 订货
水银温度计
量程:100℃ 5寸长 只 20 订货
量程:300℃ 只 3 订货
干燥器
规格:φ210mm 只 6 订货
规格:φ240mm 只 5 订货
真空干燥器规格:φ300mm 只 5 订货
干燥管(球形) 只 10 订货
骨制药勺 套 10 订货
橡胶塞 个 20 订货
规格:φ20mm~50mm
洗耳球 个 10 订货
弹簧止水夹 个 30 订货
漏斗架
规格:6孔 个 3 订货
规格:4孔 个 3 订货
乳胶管
规格:φ6mm 米 50 订货
规格:φ8mm 米 50 订货
玻璃管
规格:φ6mm 公斤 3 订货
规格:φ8mm 公斤 2 订货
烧杯刷 个 20 订货
滴定台(大理石面) 个 10 订货
玻璃棒
规格:φ7×300mm 只 30 订货
大肚吸管
规格:25ml 只 10 订货
规格:50ml 只 10 订货
酸式滴定管
规格:25ml 只 10 订货
规格:50ml 只 10 订货
碱式滴定管(兰白线)
规格:25ml 只 10 订货
规格:50ml 只 10 订货
表面皿
规格:φ70mm 只 20 订货
规格:φ100mm 只 30 订货
玻璃漏斗
规格:φ70mm(长颈) 只 5 订货
有机玻璃漏斗
规格:φ70mm(长颈) 只 20 订货
塑料量杯
规格:50ml 只 10 订货
规格:100ml 只 5 订货
玻璃量杯
规格:10ml 只 20 订货
规格:15ml 只 20 订货
规格:25ml 只 20 订货
规格:50ml 只 10 订货
规格:100ml 只 5 订货
规格:250ml 只 10 订货
规格:1000ml 只 5 订货
滴定瓶
规格:60m(白色、棕色) 只 40 订货
规格:125ml 只 30 订货
容量瓶
规格:100ml 只 20 订货
规格:250ml 只 30 订货
规格:1000ml 只 10 订货
称量瓶
规格:φ40×25mm 只 10 订货
规格:φ25×40mm 只 30 订货
大口磨口瓶
容量:50ml 只 20 订货
容量:125ml(大部分用于控制组留样) 只 200 订货
下口瓶
容量:5000ml 只 10 订货
容量:20000ml 只 2 订货
小口瓶(棕色)
容量:5000ml 只 5 订货
小口磨口瓶
容量:500ml 只 10 订货
容量:1000ml 只 20 订货
容量:20000ml 只 4 订货
大口棕色磨口瓶
容量:500ml 只 5 订货
容量:1000ml 只 5 订货
平底三角烧瓶
规格:500ml 只 20 订货
规格:1000ml 只 10 订货
玻璃洗瓶
规格:500ml 只 5 订货
塑料洗瓶
规格:500ml 只 20 订货
烧杯
规格:50ml 只 10 订货
规格:100ml 只 10 订货
规格:250ml 只 40 订货
规格:300ml 只 60 订货
规格:500ml 只 80 订货
规格:1000ml 只 5 订货
规格:2000ml 只 5 订货
磨口三角瓶 只 50 订货
规格:250ml 订货
称样刷 只 20 订货
镊子 把 10 订货
烧杯夹 个 5 订货
快速定性滤纸 盒 30 订货
规格:φ125mm
中速定量滤纸 盒 30 订货
规格:φ125mm
慢速定量滤纸 盒 30 订货
规格:φ125mm
塑料搅拌棒 只 20 订货
精密PH试纸0.5~5.0 本 10 订货
精密PH试纸1-14 本 5 订货
自动量液器 个 10 订货
规格:500ml
每次取液量:10ml
离子交换柱 个 2 订货
规格:φ50×700mm
万能换药车 个 1 订货
移液管架 个 4 订货
SB勃氏透气仪专用圆形滤纸片 袋 10 订货
规格:φ12.7mm
每袋:500片
试样瓷盘
规格:300×200×50mm(带盖) 个 8 订货
规格:360×250×30mm 个 4 订货
规格:400×350×30mm 个 10 订货
塑料混样桶 个 1 订货
规格:φ16.5×300mm
电子秤 台 1 订货
型号:
最大称量:100kg
不干胶标签 张 10 订货
石棉网 张 5 订货
规格:200×200mm
锥形瓶75ml 只 10 订货
锥形瓶刷 只 5 订货
试剂瓶刷 只 5 订货
滴定管刷 只 5 订货
医用纱布 卷 1 订货
塑料盆 只 5 订货
塑料壶15L 6 订货
自动取样器QY6-F 台 5 订货
自动取样器NG8-4006(高温 用于取分解炉等样) 台 1 订货
恒温恒湿空调机(南京天格) 台 1 订货
X荧光硫钙铁测定仪DM1240 台 1 订货
药品柜1200×450×1800mm 外观颜色与仪器柜一致 个 3 订货
仪器柜1200×450×1800mm 外观颜色与药品柜一致 个 1 订货
通风柜(带风机)1800×750×2350 1.威盛亚进口理化板台面耐酸碱和耐高温800℃ 2.台面不要水池 3.顶部通风 套 1 订货
通风柜(带风机)1200×750×2350 1.威盛亚进口理化板台面,抗冲击磨损 2.台面不要水池,有清灰孔。 3.顶部通风 套 1 订货
中央实验台3600×1500×1550 含:洗手池,对称4盏日光灯,白色威盛亚进口理化板台面,防酸碱 套 1 订货
实验凳440×380×560 把 4 订货
无水碳酸钠 瓶 20
纯度:分析纯
规格:500克/瓶
硝酸 瓶 20
密度:1.39~1.41g/cm3 或 65%~68%
规格:500毫升/瓶
氯化铵 瓶 20
纯度:分析纯
规格:500克/瓶
盐酸 瓶 40
密度:1.18~1.19g/cm3 或36%~38%
规格:2500毫升/瓶
硫酸 瓶 40
密度:1.84g/cm3 或95%~98%
规格:500毫升/瓶
氢氟酸
密度:1.13g/cm3 或40% 瓶 20
规格:500毫升/瓶
抗坏血酸 瓶 1
纯度:分析纯
规格:25毫升/瓶
邻菲罗啉 瓶 1
纯度:分析纯
规格:500克/瓶
溴甲酚绿指示剂 瓶 2
规格:5克/瓶
溴酚蓝指示剂 瓶 2
规格:25毫升/瓶
氨水 瓶 20
密度:0.90~0.91g/cm3 或25%~28%
规格:2500毫升/瓶
乙二氨四乙酸二钠 瓶 20
纯度:分析纯
规格:500克/瓶
PAN指示剂 瓶 5
规格:5克/瓶
三乙醇胺 瓶 20
纯度:分析纯
规格:500ml/瓶
钙黄绿素指示剂 瓶 3
规格:25克/瓶
氢氧化钾 瓶 50
纯度:分析纯
规格:500克/瓶
酒石酸钾钠 瓶 10
纯度:分析纯
规格:500克/瓶
二苯胺磺酸钠 瓶 3
纯度:分析纯
规格:25克/瓶
甲基红指示剂 瓶 2
规格:25克/瓶
碳酸铵 瓶 2
纯度:分析纯
规格:500克/瓶
二胺替比林甲烷 瓶 1
纯度:分析纯
规格:500克/瓶
磺基水杨酸钠指示剂 瓶 2
规格:10克/瓶
硫酸铜 瓶 10
纯度:分析纯
规格:500克/瓶
冰乙酸 瓶 40
纯度:分析纯
规格:500毫升/瓶
乙酸钠 瓶 20
纯度:分析纯
规格:500克/瓶
氟化钾 瓶 20
纯度:分析纯
规格:500克/瓶
氢氧化钠 瓶 20
纯度:分析纯
规格:500克/瓶
氯化钾 瓶 1
纯度:优级纯
规格:10克/瓶
氯化钾 瓶 20
纯度:分析纯
规格:500克/瓶
乙醇 瓶 30
浓度:95%
规格:500ml/瓶
无水乙醇 瓶 20
浓度:99.5%
规格:500ml/瓶
酚酞 瓶 2
规格:25克/瓶
半二甲酚橙指示剂 瓶 1
规格:5克/瓶
硝酸铋 瓶 1
纯度:分析纯
规格:500克/瓶
二氧化锰 瓶 5
纯度:分析纯
规格:500克/瓶
硝酸银 瓶 1
纯度:分析纯
规格:500克/瓶
苯甲酸 瓶 20
纯度:分析纯
规格:500克/瓶
磷酸 瓶 20
密度:1.68g/cm或85%
规格:500毫升/瓶
磷酸二氢钾 瓶 1
纯度:分析纯
规格:500克/瓶
乙二醇 瓶 20
纯度:分析纯
规格:500克/瓶
钠石灰 瓶 4
规格:500克/瓶
碳酸钙 瓶 2
纯度:分析纯
规格:100克/瓶
甘油 瓶 10
纯度:分析纯
规格:500毫升/瓶
阳离子交换树脂 公斤 5
型号:732苯乙稀强酸性
水银 瓶 1
规格:500克/瓶
变色硅胶 瓶 15
规格:500克/瓶
KB 指示剂 瓶 5
规格:25克/瓶
CMP指示剂 瓶 5
规格:25克/瓶
苯二甲酸氢钾 瓶 2
纯度:优级纯
规格:100克/瓶
切片石蜡 公斤 0.5
凡士林油 瓶 1
规格:500克/瓶
生料标样 瓶 4
规格:20克/瓶
熟料标样 瓶 4
规格:20克/瓶
石膏标样 瓶 2
规格:20克/瓶
石灰石标样 瓶 2
规格:20克/瓶
水泥细度标样
规格:200克/瓶(0.080mm) 瓶 4
规格:100克/瓶(0.045mm) 瓶 4
烟煤标样 瓶 2
无烟煤标样 瓶 1
Ⅸ 糖化血红蛋白的检测方法
1、阳离子交换色谱法
原理:糖化导致血红蛋白分子表面阳离子丢失。在弱的阳离子交换剂中,例如Biorex70,伴有增加的离子浓度和(或)pH下降,糖化血红蛋白在非糖化血红蛋白前先洗脱。这现象产生了糖化血红蛋白最初的术语“快速血红蛋白”。阳离子交换色谱法可用于小型、微型或大型柱层析方法或部分或全自动的PHLC/FPLC方法。因为,其他翻译后修饰血红蛋白,例如醛亚胺型、甲酰化、乙酰化、乙醛加合物、降解物、老化人工物品和异常血红蛋白电荷交换也不同于正常的HbA0,所以已经列出了许多阳离子交换层析法的干扰因素。使用常规HPLC的方法。分离糖化血红蛋白亚组分是能达到满足需求的临床精密度。然而,已知HbA1c的峰不是均一的而是包含一重要的非糖化血红蛋白部分。少数糖化血红蛋白也整合到HbA0主峰中。通过使用特殊的柱原料(poly-CATA)和30~40 min分离时间可以改善分离效果。这些方法可以作为参考步骤但不适合常规使用。所有的阳离子交换色谱法对pH和温度的变化敏感,因此要控制pH和温度。
说明:根据红细胞代谢动力学推测初始HbA1c值大约每日破坏1/120(≈0.83%)。因为糖化在合适的治疗下甚至健康人也产生,故这个理论值在体外不能达到。控制不理想的糖尿病患者通过加强治疗而达到血糖量正常,可以发现HbA1c值最大下降率以大约每10 d下降正常血糖的1%(绝对的)。由于测定糖化血红蛋白方法的精确性,两次测定值HbA1c的差异大约1%就可认为具有临床相关性。因为这些原因,在HbA1c两次测定间至少有2周的时间,推荐4~6周的间隔。
因为升高的糖化血红蛋白值是长期高糖血症的糖尿病患者相当可靠的指示剂,因而是可能诊断糖尿病的。在未治疗的个体,正常的糖化血红蛋白值临床上可以排除明显的糖尿病。但由于它不能检测糖耐量受损,所以作为诊断和(或)筛选目的唯一的参数,使用糖化血红蛋白是存在问题的。
2、电泳法
原理:相比于非糖化血红蛋白,因糖化而变化的总电荷和糖化血红蛋白的等电点变化是琼脂糖凝胶或者pH梯度5.0~6.5的凝胶等电聚焦电泳分离的基础。琼脂糖凝胶电泳的血红蛋白亚组分分辨率很小,而等电聚焦可以更好地使亚组分分离。可能由于试验的自动化程度不足,重要性已经下降。
3、亲和层析法
原理:硼酸结合顺式-羟基。商品化的m-氨基苯硼酸琼脂糖共价结合的亲和柱已可用于微柱分析检测。将血样本中的血红蛋白加到层析柱后,所有的糖化血红蛋白(HbA1和旁链糖化的血红蛋白;总糖化血红蛋白)与硼酸结合而非糖化血红蛋白通过层析柱可被测量。在加入高浓度也包含顺式-羟基的多羟基复合物,例如山梨醇后,糖化血红蛋白与硼酸的结合被替换而从柱子上洗脱下来。亲和层析法对经翻译以后修饰的血红蛋白和病理血红蛋白的影响相对不敏感。利用亲和层析法,仅能测定总糖化血红蛋白。广泛使用的亲和层析方法,允许用经验算法从总糖化血红蛋白值计算出“标准的HbA1c”。
4、免疫分析法
在缬氨酸β-N-末端糖化的血红蛋白提供了一个容易被抗体识别的抗原表位。可以用单克隆抗体或多克隆抗体进行放射免疫分析和免疫酶学分析测定,抗体特异识别β链N-末端糖化的血红蛋白最后4~8个氨基酸组成的抗原表位。异常的血红蛋白或翻译后经修饰的血红蛋白无干扰。
目前的免疫化学试验不仅检测HbA1c,通常也同时检测HbA2c,因为血红蛋白A2糖化δ链的表位是相同的。抗体直接抗β-链的最后四个氨基酸的糖化表位的免疫化学试验也可用进行检测,例如HbS1c。在大多数情况下HbA2c意义不大,虽然镰刀细胞病时可以准确地测定缬氨酸β-N-氨基末端糖化程度,但它仍不能100%代表HbA1c。
5、离子层析法
离子层析法精密度高、重复性好且操作简单, 被临床广泛采用。检测原理由于血红蛋白β-链N 末端缬氨酸糖化后所带电荷不同, 在偏酸溶液中总糖化血红蛋白( GH b) 及H bA 均具有阳离子的特性, 因此经过阳离子交换层析柱时可被偏酸的缓冲液平衡过的树脂来吸附, 但二者吸附率不同, GH b正电荷较少吸附率较低, H bA 正电荷较多吸附率较高。用不同pH 的磷酸盐缓冲液可以分次洗脱出GH b 和H bA, 用KCN 可将H b转化为高铁氰化血红蛋白, 用分光光度计测定。或者得到相应的H b层析谱, 其横坐标是时间, 纵坐标是百分比。HbA1c值以百分率来表示。现在大部分都用全自动测定仪测定。
6、等电点聚集法
是测定GH b的新技术, 它是在聚丙烯酞凝胶中加人载体两性介质的薄板上形成一个由阳极到阴极逐渐增加的pH 梯度, 溶血液中各个组份将移动到各自的等电点的pH 位置上, 这样就得到比一般电泳法更好的分划效果和比较集中的色带, 通过分辨率高的微量光密度仪扫描, 可以准确地测定出各自组份的含量。由于它能够分辨出一级结构不同的HbA、HbAc、HbF、HbS 及HbC等, 可完全避开各种物质的干扰。
7、化学发光法
采用离子捕捉免疫分析法, 应用抗原抗体反应原理, 联以荧光标记物, 通过连接带负电的多阴离子复合物, 吸附到带正电的纤维表面, 经过一系列彻底清洗等步骤后, 测定荧光强度变化率, 计算浓度。采用专用试剂包和免疫发光分析仪,其检测系统易于规范和重复, 可减少操作技术误差, 检测的灵敏度和特异性高, 批内、批间变异系数小, 回收率高, 准确度高, 交叉污染率小, 影响因素少。
8、酶法
原理为用特殊蛋白酶分解Hb, 3~ 5 min内果糖基氨基酸从H b分离, 果糖基氨基酸氧化酶( FAOD )从果糖基氨基酸产生H2O2, H2O2经POD与DA- 64反应, 选择751 nm 测吸光度改变求得GHb浓度。
Ⅹ 甲醛测试仪中的tvoc的正常值是多少
甲醛测试仪中的tvoc的正常值:6,是居家环境健康最低的标准,标准值是甲醛0.1mg/m ,苯0.11mg/m ,氨0.2mg/m ,TVOC0.6mg/m。
GB50325《民用建筑工程室内环境污染控制规范》甲醛的标准
Ⅰ类建筑 ≤0.08mg/m3
Ⅱ类建筑 ≤0.12mg/m3;
Ⅰ类民用建筑工程:住宅、医院、老年建筑、幼儿园、学校教室等民用建筑工程;
Ⅱ类民用建筑工程:办公楼、商店、旅馆、文化娱乐场所、书店、图书馆、展览馆、体育馆、公共交通等候室、餐厅、理发店等民用建筑工程。
(10)阳离子交换测定仪扩展阅读:
快速去除甲苯的方法
1、开窗通风:将刚刚装修完的房子所有的窗户打开,空气流通了,这样室内空气的有害物质的含量就会降低。
2、活性炭去味法:活性炭包价格低廉而且实用,适合于广大用户。活性炭的物理吸附,能够吸附彻底甲苯,且不会造成二次污染。
3、凉水食醋去味法:将塑料盆盛满凉水,然后加入适量的食醋,放在通风的房间,这样页可以清除残留的有毒气体了。
4、果皮去味法:在房间的各个角落放一些橘皮,柠檬皮也可以去除甲苯,但此方法去除甲苯的速度相较于其他方法较慢。
5、植物去味法:在房间里摆上一些合适的花草,这样也能去除房间中的甲醛味。