『壹』 水解清洗炉怎么制造以及制作要求
给你一个公司作为参考了解吧 水解清洗系统,是专门用于聚酯生产过程中,对过滤芯进行清洗的装置。这项技术取代了传统的三甘醇清洗方式,在2000年在天津石化20万吨聚酯项目建设中,中国纺织设计院和我公司及德国吉玛公司分项合作,为天津石化制作了二台水解清洗炉。在分项合作中,我公司承担了水解清洗炉的设计与设备加工。为水解清洗炉技术的国产化奠定了基础。
近年我公司加大了研发力度、不断改进技术、完善性能,使设备在智能化和节能、环保等方面更加符合市场的需求。由于设备技术含量高、技术成熟、性能稳定以及良好的售后服务体系;中国纺织部设计院将我公司的高温水解清洗装置列为国内推荐产品!自2001年开始美国康泰斯的在国内聚酯项目,已有多家采用了我公司的水解清洗系统。近几年完成了中国纺织部设计院、美国康泰斯公司、德国吉玛公司在国内的数十个聚酯项目的供货;同时有多台装置出口国外。随着人们对水解清洗认识的逐步加深,国内多家知名企业已采用了我公司生产的水解清洗系统。一些使用三甘醇清洗系统的企业,已有协议要求我公司帮助更换成水解清洗系统。目前,我公司生产的水解清洗设备市场看好,并占有重要份额。有较高的社会信誉度和较好的经济效益。
公司名称 北京先导技控设备有限公司
『贰』 什么是不锈钢液体过滤器
过滤器是输送介质来管道上不可源缺少的一种装置,通常安装在减压阀、泄压阀、定水位阀 ,方工过滤器其它设备的进口端设备。过滤器由筒体、不锈钢滤网、排污部分、传动装置及电气控制部分组成。待处理的水经过过滤器滤网的滤筒后,其杂质被阻挡,当需要清洗时,只要将可拆卸的滤筒取出,处理后重新装入即可,因此,使用维护极为方便。
不锈钢滤芯过滤器的选择方法按其过滤精度(滤去杂质的颗粒大小)的不同,有粗过滤器、普通过滤器、精密过滤器和特精过滤器四种,它们分别能滤去大于100μm、10~100μm、5~10μm和1~5μm大小的杂质。选用不锈钢滤芯过滤器时,要考虑下列几点: (1)过滤精度应满足预定要求。 (2)能在较长时间内保持足够的通流能力。 (3)滤心具有足够的强度,不因液压的作用而损坏。 (4)滤心抗腐蚀性能好,能在规定的温度下持久地工作。 (5)滤心清洗或更换简便。因此,不锈钢滤芯过滤器应根据液压系统的技术要求,按过滤精度、通流能力、工作压力、油液粘度、工作温度等条件选定其型号。
『叁』 熔体过滤器应该怎么清洗
熔体过滤器清洗的目的是使脏的烛式滤芯上聚合物的残留物尽可能的少,以便进行下一步的TEG清洗和碱洗。熔体过滤器的自清洗分为3个大的步骤。水解、预氧化、氧化。
清洗的步骤:
第1个阶段一水解阶段。启动过热加热器E01,并打开蒸汽阀EV2,用经过过热处理的高温蒸汽作为热载体促进滤芯表面的聚合物进行裂解,将聚合物的分子链打断,使之成为小分子的结构,使其黏度下降。在该过程中,蒸汽同时还有一个作用,就是作为输送载体,将裂解产生的裂解气体和裂解产生聚合物颗粒从滤芯上带走,这时蒸汽同时起了输送介质的作用。该阶段主要目的是将高黏度的熔体进行降黏处理,使包在滤芯上的熔体尽可能地变成小颗粒结构,使后面的预氧化、氧化阶段进行的更充分。
第2个阶段——预氧化阶段。此阶段过热加热器E01温度继续升高,蒸汽阀EV2保持打开状态蒸汽继续加入。在此阶段的第1个小步骤中,打开1个小空气阀EV6;在第2个小步骤中,2个小空气阀EV6、EV5都打开,温度继续升高。在水解阶段完成了基本的裂解反应,在经过了长时间的反应后,滤芯表面的熔体形成了有颗粒特性的蜂窝状结构,继续使用蒸汽难以更彻底地将它们清洗干净,在这种情况下。在蒸汽中加入少量的空气可以使颗粒的表面进行微量的氧化反应,由于要控制氧化反应的过程,所以只能少量的增加氧气的数量。减少进入反应的氧气的浓度,在第1和第2阶段分别开了1个和2个8 mm的小空气阀。
第3个阶段——氧化阶段。将蒸汽阀EV2关闭,2个8 mm的小空气阀EV6、EV5也关闭,开通了2O mm的大空气阀EV1。这时,比较容易反应的熔体小颗粒已经进行比较完全的氧化反应,部分颗粒较大的在表面已经进行了初步的氧化反应,在氧气的浓度加大后,使氧化反应进行的更为完全。众所周知,化学反应的剧烈程度是和反应物质的浓度密切相关的,自清洗的基本原理就是让包在滤芯上的熔体在水解过程中尽可能地变成小颗粒状的结构,在通入氧气后进行氧化反应,使熔体颗粒在滤芯上进行微量的燃烧,从而达到清洗的目的。第2个阶段——预氧化阶段和第3个阶段—— 氧化阶段其实主要的反应都是氧化反应,只是氧化反应的环境有所区别,氧气的浓度有所不同。
实践证明,在增加了第2个阶段一预氧化阶段后,清洗过程的安全性就变得更加可靠了。清洗过程中有一点要特别注意:氧化阶段就是熔体颗粒在滤芯上进行微量燃烧的阶段!在这个阶段中如果控制稍微出现一点偏差,熔体颗粒在滤芯上进行的燃烧就会失控,变成剧烈的燃烧,而剧烈的燃烧的结果就是滤芯的损坏。常州华源蕾迪斯聚合物有限公司1998年引进的第一套熔体过滤器装置在2000年的一次清洗中就发生了这样的意外情况,共损坏滤芯37根,直接经济损失就达2O多万元。通过事故的分析认识到,当时是刚进入氧化阶段,氧化反应剧烈地发生并失去控制,而当时又未能及时实施应急措施从而导致了严重的后果。在2001年和2003年引进的装置中就增加了预氧化阶段,使安全性大大提高。在2003年对老装置进行技术改造时,增加了预氧化阶段的控制,到目前为止使用一直正常。
『肆』 在RO膜反冲洗时电导率和PH值都升高是什么原因影响PH值的因素有哪些
系统故障概述产水量和脱盐率是反渗透、纳滤系统的基本性能参数,如果这两项指标达不到系统原设计要求,产水量小或者脱盐率低,就需要找到问题发生的原因。由于进水TDS和温度的波动以及系统机械性能等原因,即使完全没有污染倾向的系统,基本性能指标也会在小范围波动。下面是我们判别系统运行出现故障的参考标准值。1 参考指标反渗透、纳滤系统的主要性能参数变化达到以下指标范围时,要及时进行故障分析,并进行相应的处理。● 在正常给水压力下,产水量较正常值下降10~15%;● 为维持正常的产水量,经温度校正后的给水压力增加10~15%;● 产水水质降低10~15%(产水电导率增加10~15%;)● 给水压力增加10~15%;● 系统各段之间压力降明显增加。
2 设计提示远离故障最好的办法是从开始就消灭发生故障的可能,在进行系统设计时尽量考虑做到:● 设计系统时要依据完整的水质分析。对于地表水源要考虑到季节变化的影响,对于普通市政水源要考虑到原水变化的影响,要确认拿到的报告是最新的有效数据。● 测定RO进水的SDI值,确定胶体污染的可能性。● 保证预处理的效果。● 存在污染的可能时,一定要选择较为保守的系统通量。水质洁净的地下水的设计通量可以高一些,地表水的设计通量一定不要超过设计导则规定的数值。降低单位面积的膜通量可以减少污染物在膜面上的沉积。● 选择较为保守的系统回收率。回收率较低时浓水的污染物浓度也相应较低。● 膜元件的错流速率要尽量大。较高的错流速率能增加盐分和污染物向进水水流的扩散,降低膜面的浓度。● 选择适当的膜元件类型。
3 故障原因基本类型系统发生产水量减少和水质下降问题的原因比较复杂,可以简单归纳出几种类型:1)进水TDS增加、水温波动、运行参数调整等原因造成的性能变化不属于故障范围。2)系统硬件故障:O型圈密封泄漏、膜氧化、机械故障等;需要更换或修理故障元器件。如果是膜氧化,要找到氧化的原因,消除氧化剂来源,更换膜元件。3)膜污染:膜污染是处理系统故障的核心工作,需要确定污染物类型、污染程度和污染分布,在此基础上进行清洗恢复。4)系统设计失误,系统设计问题可能与前面的几项都有关。对于有设计失误的系统,在恢复系统元器件性能之后,一定要对系统进行改造,纠正原有错误设计或运行参数。
运行参数对系统性能的影响在系统发生问题时,首先要做的是确认问题的性质,消除温度、进水TDS、产水量和回收率的影响,获得标准化性能参数。依据上述标准判断系统是否处于故障状态,是不是发生了膜污染。系统操作参数的变化对与系统的性能有影响。比如, TDS每增加100ppm,由于渗透压增加了,进水压力要增加0.07bar,产水电导也会相应上升。进水温度增加6.6℃,进水压力降低15%。提高回收率会提高浓水浓度和产水电导(回收率为50%、75%和90%时,浓水的浓度分别为进水的2倍、4倍和10倍)。在回收率相同时,降低产水量会提高产水电导,原因是用来稀释透过盐分的水量少了。要通过数据的标准化来确定系统是否有问题。可以借助海德能的系统数据标准化软件ROdata.xls,来求得标准化的产水量、脱盐率和进水—浓水压力降。通过标准化消除了温度、进水TDS、回收率和进水压力的影响。将系统目前的标准化性能参数与与运行第一日的标准化数据进行对比,就可以确定系统性能的变化情况。以下将列举的是运行参数对膜的性能有正常影响,这些影响可能会导致产水流量和水质的下降。1 产水量下降下列运行参数的变化将降低系统中膜的实际产水量:● 进水泵压力不变时进水温度下降;● 用节流阀降低RO进水压力;● 进水泵压力不变时增加产水背压;● 进水TDS(或电导率)增加,这会增加产水通过膜时所必须克服的渗透压;● 系统回收率增加,这会增加系统的平均进水/浓水的TDS,从而增加渗透压;● 膜表面发生污染;● 进水流道网格的污染导致进水-浓水压力降(ΔP)增加,从而降低了元件末端的NDP(净驱动压力)。2 产水品质下降下列运行参数变化会导致实际产水水质劣化,即产水的TDS和电导率增加:● 进水温度上升时通过调节运行参数保持系统产水量不变;● 系统产水量下降,这会降低膜通量,导致原来稀释透过膜的盐分所需的纯水量减少;● 进水TDS(或电导率)增加,脱盐率不变,但产水盐度随之增加;● 系统回收率增加,这会增加系统的进水/浓水TDS浓度;● 膜面污染;● O型圈密封损坏;● 望远镜现象,进水—浓水压力降过大,膜元件外皮脱落;● 膜面损坏(比如受到氯的影响)致使膜的透盐率增加。
发生故障的常见原因 系统故障可以划分为两个类型:产水量小,脱盐率低。回答以下问题会有助于找到发生故障的原因。1 产水量下降时膜污染会造成产水量下降,检查以下提问来寻找发生问题的原因。● 是否正常关闭系统?在一些情况下,要在装置关闭之前要用反渗透产水冲洗系统浓水,否则无机污染物会在膜面上沉积。● 停机保护是否得当?在系统停机期间没有采取适当的保护措施,会导致严重的微生物生长(特别是在温暖的环境中)。● 加酸或阻垢剂是否达到了要求的pH值或饱和指数?● 进水和浓水之间的压力降是否超过了15%?压力降增加标志着进水流道受到了污染,膜面水流被限制。检查各段的压力降情况,确定发生问题的位置。● 在海水系统中,关机时是否对系统进行了产水冲洗?快速冲走膜面的高浓度盐分,可以防止离子从溶液中沉淀出来。● 保安过滤器是否污染?2 脱盐率低● 低脱盐率时,产水电导率高。可能的原因有膜污染、膜降解和O型圈损坏。确认产水电导增加是否超过了15%。● 各段膜组件的产水电导率一样吗?逐段测试产水电导,尽可能对每个膜组件测试产水电导率。产水电导率明显高的组件可能有O型圈或膜元件损坏。要对该组件进行探测和检查。● 膜元件是否与氯或其它强氧化剂有接触?任何氧化物质的接触都会损坏膜元件。● 仪器经过校准了吗?确认所有的仪器都经过校准。● 膜元件的外观有变色或损坏吗?观察膜元件污染物及损坏物理情况。● 进水的实际电导率和温度与原设计指标有差别吗?如果实际进水的TDS或温度高于原设计指标,产水水质达不到设计值是正常的。要对进水、浓水和产水进行取样分析,与海德能设计数件的结果标进行对比。● 发生过产水压力超过进水压力的情况(产水背压)吗?如果产水要提升到较高位置,管道上又没有安装逆止阀,停机时产水压力会超过进水,膜叶会膨胀破裂。● O型圈有问题吗?O型圈会因老化而失去弹性或破裂,导致泄漏。周期性更换O型圈,或者定期探测膜组件。3 膜污染 如果以上问题都解决了,而系统依然没有恢复,还要考虑以下提问:● 一旦排除了所有机械故障,就需要确定污染物并实施清洗。● 分析清洗出来的污染物及清洗液的颜色和pH的变化。重新投运系统可以确认清洗效果。● 如果不知道是什么污染物又缺乏现场经验,可以委托专用清洗剂供应商对膜元件进行分析并提出清洗方案。● 如果所有尝试都没有结果,就需要对膜元件进行解剖。打开膜元件进行膜面分析和污染物分析,以确定发生问题的原因和解决方案。● 一些污染物影响系统的前端,一些污染物在后端更为严重。
故障诊断一览表(表-1)对于判断污染物的性质非常有用。表-1 膜系统故障诊断一览表污染种类可能污染位置 压降 进水压力 脱盐率下降 金属氧化物污染(Fe,Mn,Cu,Ni,Zn)一段,最前端膜元件 迅速增加 迅速增加 迅速增加 胶体污染(有机和无机混合物)一段,最前端膜元件 逐渐增加 逐渐增加 轻度增加 矿物垢(Ca,Mg,Ba,Sr)末段,最末端膜元件 适度增加 轻度增加 一般增加 聚合硅沉积物末段,最末端膜元件 一般增加 增加 一般增加 生物污染任何位置,通常前端膜元件 明显增加 明显增加 一般增加 有机物污染(难溶NOM)所有段 逐渐增加 增加 降低 阻垢剂污染二段最严重 一般增加 增加 一般增加 氧化损坏(Cl2,Ozone,KMnO4)一段最严重 一般增加 降低 增加 水解损坏(超出pH范围)所有段 一般降低 降低 增加 磨蚀损坏(碳粉等)一段最严重 一般降低 降低 增加 O型圈渗漏(内连接管或适配器)无规则(通常在给水适配器处) 一般降低 一般降低 增加 胶圈渗漏(由于产水背压造成)一段最严重 一般降低 一般降低 增加 胶圈渗漏(在清洗或冲洗时由关闭产水阀而造成)最末端元件 增加(污染初期和压差升高) 增加(污染初期和压差升高)增加
探针法——压力容器内脱盐率下降原因的诊断RO装置的产水是由装置内所有压力容器产水汇集而成的。RO装置脱盐率下降有时是由于个别压力容器脱盐率下降引起的,故而应首先检查各个压力容器的出水电导,找出产水水质异常的压力容器,然后对这些压力容器进一步检查确定原因。一支压力容器内串联有若干支膜元件,两端的膜元件由适配器与压力容器端板连接,中间各支膜元件由产水连接管连接,适配器与连接管均装有橡胶O型圈密封。故一支压力容器出水水质异常的原因有以下几种:1.膜元件损坏、渗漏;2.适配器损坏或O型圈泄漏;3.连接管损坏或O型圈泄漏;为确定上述原因,可用探针法进行探测,所谓探测是将一支塑料软管插入位于压力容器端板中心的产水管口,在不同插入长度处引出产水并测量电导率,以确定电导偏高的位置。以8英寸压力容器为例,探测步骤如下:1.停止RO装置的运行,2.拆除被测压力容器端板上产水管口的堵头,3.在原来堵头的位置上安装一个球阀,4.准备一根外径8~12mm,有足够长的塑料软管,并在软管沿长度方向上,每隔0.5m作一刻度标记,5.启动RO装置,低压运行15分钟后打开球阀,插入塑料软管,一直插到压力容器另一端的端板处,6.一分钟后测量软管中流出的产水电导,7.将软管拔出0.5m,等待一分钟后再次测量产水电导并记录软管插入长度,8.重复步骤7直至测量完压力容器全长,9.比较全长度方向上电导值,找出电导异常的位置。9.5 膜元件分析
系统故障处理一般步骤1)数据分析、现场调查数据分析和现场调查工作是进行诊断、排除系统故障的基础,要对系统运行实际数据进行全面分析,跟踪系统性能指标变化的细微过程,掌握现场运行过程中所有相关事件的具体情况。● 开始变化的时间点及相关事件,查阅系统运行日志或记录。● 进水水质或水源的变化:TDS、温度、SDI、余氯、个别离子浓度、pH。● 系统运行参数的调整及结果。● 系统性能变化时相关的特殊事件,比如开关机、关机保护措施(关机系统快冲、停机保护、高压泵前中间水箱停留时间等)、更换保安过滤器滤芯、产水用水量变化及操作人员变化等。● 系统加药的变化:阻垢剂、分散剂、还原剂、加酸、预处理系统加药,包括药剂供应商的变化。● 变化的方式,比如缓慢的平稳变化,较快的但均匀的变化,加速的变化和突变。2)数据标准化 确认系统性能参数下降的实际值,排除水质及运行参数变化对系统性能的影响。3)运用海德能RO设计软件进行模拟计算核查系统设计的合理性,检查系统预置参数可能存在的问题。膜元件选型、膜元件排列方式、泵配置、系统运行参数、结垢倾向、浓差极化、预测产水水质等。4)压力容器探测发现问题膜元件,绘制系统脱盐率分布图,了解系统脱盐率下降的规律性,为污染性质判断提供依据。5)O型圈检察更换损坏O型圈。6)膜元件污染观察分析 首末端膜元件端头目测观察,膜元件称重,污染物化学分析和仪器分析,确定污染物的物理化学特性。7)污染原因分析 查明系统污染的原因,尽量从源头控制膜污染。8)清洗方案根据污染物及污染状况分析,制定化学清洗方案。9)清洗试验对于大系统或污染严重的膜系统,需要在实施系统清洗之前进行试验清洗,清洗试验结果作为系统清洗方案的直接依据。10)系统清洗注意事项● 注意控制清洗流量,化学清洗初期应低流量,然后逐步增加流量。化学清洗后期特别是水漂洗时应保证足够大的流量,应达到8英寸膜6~9 m3/h,4英寸膜1.3~2.3 m3/h。● 提高清洗温度(如35℃)可加快化学反应速度,保证清洗效率。● 在一般情况下,首先使用低pH清洗液,并优先选用柠檬酸。● 在局部污染明显时可以采用分段清洗。● 为了提高清洗效果,可以适当延长浸泡时间,必要时可浸泡过夜。
其它常见故障1)膜元件安装蹿动:膜元件与压力容器的安装尺寸可能会有一定误差,如果膜元件之间或膜元件与适配器之间留有间隙,会造成膜元件蹿动,导致O型圈及连接部位损伤。润滑剂使用不当:使用凡士林或油质润滑剂会导致严重的负面影响。使用警告:任何时候不允许使用石油类(如化学溶剂、凡士林、润滑油及润滑脂等)的润滑剂用于O 型圈、 连接管、接头密封圈及浓水密封圈的润滑!!允许使用的润滑剂为水溶性润滑剂,如丙三醇(甘油)等。2)系统调试初期冲洗时间不够海德能膜元件出厂时使用亚硫酸氢钠保护液,如果冲洗时间不够,残留保护液成份会致使产水电导率高于设计指标。正常情况下应冲洗30分钟以上。3)预处理故障漏砂、漏碳、铁锰超标、絮凝剂残余、SDI高。 4)产水染菌由于RO产水中没有任何抑菌性成份,如果产水与染菌空气接触,便会在产水管道、膜元件中心管内及产水流道中形成感染。在产水中会发现不明丝状悬浮物。产水染菌现象一般发生在不规则间歇运行的小型系统中。处理方法:产水系统消毒。用反渗透产水配置1%食品级亚硫酸氢钠溶液,灌满产水系统管道,包括膜元件产水流道。浸泡过夜后排放,运行冲洗2小时以上,直到产水电导率达标。
膜污染物及清洗对策无论反渗透系统设计的如何完美,以及所采取的措施如何完善,膜污染都是不可避免的。当反渗透系统性能下降至已不能接受,且已排除其它影响因素,则可以断定膜已受到了污染,需要清洗以恢复其性能。目前,依靠经验确定膜污染,以及选择不同的清洗剂进行反复尝试,这种方法通常隐含着较多主观的内容,其结果对膜均有不同程度的损坏。众所周知,膜污染物一般为泥砂、微粒、胶体、脂肪、油、蛋白质、难溶盐、高分子多聚糖以及胞外聚合物等等。从实际情况分析,膜污染物往往不是单一性的,而是多元性的复杂沉积物,那种将膜污染物进行各种各样的归类分析,是一种理想化的做法。成功的实践表明:不仅依靠经验简单判断膜污染物,而且还需要科学的检测技术,如采用原子吸收光谱、电镜扫描、傅里叶红外光谱、X-Ray衍射、色谱质谱联用以及DNA检测等,来准确鉴别实际的膜污染物,从而正确地选择膜清洗剂以及清洗过程。同济公司承诺能为你做到这一切。
超滤工艺与传统工艺的比较超滤工艺 传统过滤工艺工艺适应性强,原水浊度为15-20度均可采用。膜过滤精度高于传统,可去除大于0.1微米的胶体和颗粒物,对大分子有机物有较好的去除效果,受原水波动小,出水水质稳定(产水SDI小于2)设备占地空间小,仅为传统工艺的1/5-1/3,可全自动运行,可显著提高反渗透产水通量,节省反渗透用膜量大幅度降低反渗透清洗频率,提高反渗透的效率及稳定性工艺占地空间大,操作强度大,运行管理不便。出水水质受原水波动大。特别处理高浊度,高污染水源时,SDI很难满足反渗透进水要求(SDI小于5)。该工艺系统为模块设计,各组件互相独立,可单独拆卸而不影响整个系统其他组件。该工艺采用一般钢制设备,滤料密封其中,填装及更换难度大系统模块采用塑料材质,设备拆卸,更换方便该工艺系统设备庞大,金属管道多,管径大,检修维护难度大完全实现自动控制,工人只需要在控制室监控操作即可,劳动强度大大降低。一般采用人工操作,工人劳动强度大,人员配置多。新兴水处理技术,发展迅速,技术日趋成熟,是反渗透处理的首选工艺水处理传统工艺,从目前反渗透系统处理工艺的应用来看,传统工艺将逐渐被超滤工艺所取代。
『伍』 高中有机化学在线等、分离纤维素及其水解产物应用的方法答案竟然是过滤、求解释啊~~
纤维素是啥?那是类似于餐巾纸一样的固态物质,而它水解后是葡萄糖等糖类物质,是可溶于水的.
『陆』 pp纺丝模具清理最高多少度温度
过去最高温度达800℃,
现在先进的方法500℃就可以了。
--------------------
合纤融纺的纺丝组件、纺丝泵、板、螺杆、过滤器滤芯及静态混合器等,经过一段时间的使用,由于聚合物熔体中的杂质,必需定期进行更换和清洗。五十年代尼龙生产的发展,首先采用电加热煅烧使纺丝组件和计量泵上附着的聚合物焦化,随之再进行清洗,目前仍有许多工厂尚沿用该设备。该法加热温度高达800℃,且很不均匀,时间稍久使泵、板严重变形、机件精密度下降。改良的煅烧炉是以蒸汽喷给法控制温度,使温度均匀。
-----------------
从事纺织行业的人员都清楚,纺丝组件、计量泵和熔体过滤器在使用一定时间后,均会被脏物堵塞,纺丝组件的压力以及进出熔体过滤器的压差上升,故需切换清洗后,才能重新使用。日常清洗主要是用物理、化学的方法,将粘附的聚酯在高温下煅烧、溶解、氧化或水解除去,再进行水洗、碱(酸)洗和超声波清洗。
使用环保型真空清洗炉清洗是其中高效节能的办法,行业中又称之为真空高温分解法或真空煅烧法。真空清洗炉的真空清洗吸收了煅烧法最简便、不需要任何溶剂和辅助材料的优点,克服了煅烧法在空气中煅烧处理喷丝板不易干净和产生明火导致被处理件退火变形的缺点,是近年来发展起来的一种新型处理方法。它特别适用于处理异形、细旦等喷丝板,亦可处理过滤器滤芯、计量泵和其他纺丝部件。
真空清洗炉工作原理是先升温到300℃,并保温一定的时间,使被处理件上的聚酯(或其他高聚物)熔化。熔化的物料流下集中到炉体底部的废料收集罐中。待基本流完以后,开始第二阶段的升温。大约在350℃左右,残留的聚酯开始分解,此时打开真空泵抽真空,升温到500℃左右,进行第二阶段的保温。同时通入少量空气,对残留物进行氧化。在真空状态(-0.8~-0.7MPa)下,残留聚酯的热分解和氧化分解较快,产生的气体和灰分微粒可被抽走。整个过程大约6~8h即可完成。
以往真空清洗炉依赖进口,从国外引进,成本极高,现在国内巨益机电公司已研制成功并批量生产。国产环保型真空清洗炉包括炉体和控制台两部分。炉体采用电热管加热和辐射加热,真空泵与炉体连在一起。炉盖密封圈用水冷却保护。炉底部有废料收集罐。控制柜上装有微机温度和程序控制仪、记录仪。清洗温度和时间等程序输入电脑以后,升温、保温、降温、开关真空泵等均可自动进行。真空清洗炉清洗效果较好,对环境无污染,操作方便,近年来推广很快。
--------------------
纺丝组件、计量泵和熔体过滤器的清洗
纺丝组件、计量泵和熔体过滤器在使用一定时间后,均会被脏物堵塞,纺丝组件的压力以及进出熔体过滤器的压差上升,故需切换清洗后,才能重新使用。清洗主要是用物理、化学的方法,将粘附的聚酯在高温下煅烧、溶解、氧化或水解除去,再进行水洗、碱(酸)洗和超声波清洗。
一、煅烧法和水蒸气保护煅烧法 煅烧法是用耐火材料砌成炉膛,采用电热棒加热,用白金电阻或热电偶温度计控制和指示温度。煅烧时,将被清洗物放入炉内,在400~450℃,煅烧约6h后,除去灰尘即可。清洗喷丝板时,则再用酒精清洗、压缩空气吹干,镜检合格后备用。本法简单易行,但劳动条件差,不易清洗干净,组件等被清洗物易烧坏变形。因此,目前已逐步被其他清洗方法取代。为防止煅烧时,超过规定温度而起火,损坏被清洗物,采用过热蒸气喷淋的方法,使整个煅烧炉内不出现明火,这就是水蒸汽保护煅烧法。 煅烧法具有以下特点:(1)清洁效率较差,处理周期6~10h,甚至更长,煅烧时很难除尽碳的残渣,这样就会增加后道补充清洁的要求;(2)设备投资费用对于碳钢结构的较低,其运行费用属低或中等;(3)环境保护差,大量废气发散污染空气,炭黑粘附室内墙壁机具,恶化环境;(4)应用范围最广,对所有的高聚物几乎都能采用煅烧处理;(5)对组件有损伤,由于煅烧炉内的工况不规律,产生明火时对其温度控制困难,会导致组件的过热,伴随着产生变形和损伤,甚至使喷丝板微孔处产生金相结构的破坏与腐蚀。二、盐浴法 该法是将纺丝组件、计量泵、熔体过滤器在温度为250~350℃分解炉内燃烧1~3h,再放入盐浴中清洗。盐浴是由亚硝酸钠、硝酸钠和苛性钠组成的溶液。高温时,硝酸钠产生氧化能力较强的活性氧,将聚酯氧化分解成二氧化碳和水。它的清洗条件如下。1分解炉工艺条件 煅烧纺丝组件:350±10℃,3±20h; 煅烧计量泵:250±10℃,1±0.1h; 煅烧熔体过滤器滤芯:350±10℃,3±20h。2盐浴的组成和清洗条件 组成:45%(重量)硝酸钠,45%(重量)亚硝酸钠,10%(重量)氢氧化钠; 清洗温度:410±5℃,时间:1±0.02h。3盐浴清洗后的工序 ①喷丝板:盐浴洗→热水洗→酸洗→热水洗→盐浴洗→热水洗→酸洗→热水洗→盐浴洗→热水洗→酸洗→热水洗; ②纺丝组件:盐浴洗→热水洗→碱洗→热水洗→酸洗→热水洗; ⑧纺丝计量泵:盐浴洗→空气中冷却90min→热水洗; ④熔体过滤器滤芯:盐浴洗→热水洗→碱洗→热水洗→超声波洗→热水洗。4盐浴清洗后各工序的工艺条件 热水洗:温度90±5℃,时间5±1min; 碱洗:温度90±1℃,时间10±1min; 热水洗:温度60±5℃,时间3+lmin; 酸洗:温度20+5℃,时间2±0.5min。 盐浴法清洗效果好、成本低,但清洗物表面的氧化膜会逐步被锈蚀,亚硝酸盐腐蚀设备,并对人体有害。 盐浴法的特点为:(1)清洁效率高,快速的热量传递能达到最短的清洗时间;(2)基建投资中等,运行费用最高。除非是长期停车,盐浴平常需供给热源,每清洁1kg高聚物要耗用2kg盐类,盐的残渣处理需要附加费用,在处理完毕后还要补充后清洗,整个系统维护费用高;(3)对环境保护不利,因为废气中混有无机盐的蒸发气体,通常需经淋洗,但不能达到清洁空气标准的规定,且系统里还有一定数量的固体废物;(4)应用范围广,可以清洗各种高聚物;(5)对组件损伤较大,大多数部件在盐浴处理后,在冷水中快速冷却,以便除去剩余的盐分,由于复杂结构的零部件会因热冲击而开裂或产生内应力,易使焊接点腐蚀开裂,尤其在过滤器中表现较严重。三、三甘醇法 三甘醇(TEG)清洗法具有温度低、安全、无毒、清洗效果好、对设备无损坏等特点,它尤其适用于熔体过滤器滤芯的清洗,是目前世界上广泛采用的清洗方法之一。它是利用在三甘醇沸点时(常压时,为285℃)聚酯能被三甘醇溶解的原理达到清洗目的。清洗步骤是将被清洗物放入有加热系统的三甘醇槽内,从室温升至265±5℃,保温约6h,再让其自然冷却到约100℃。取出被清洗物,放入95℃左右的热水槽中清洗约20min,再在温度为60~70℃的10%NaOH溶液中浸12h后,用热水清热。若是喷丝板和熔体过滤器滤芯,则要求进行超声波清洗,清洗介质为温度60~70℃的纯水,清洗时间15~20min(过滤器滤芯须1~2h),最后用压缩空气吹干。 本法可省去酸洗,清洗后的喷丝板光泽明亮、对喷丝孔的损伤小,有利于延长喷丝板、计量泵、齿轮泵和过滤器滤芯的使用寿命。本法缺点为成本高,约为盐浴法的6~7倍;无法清除TiO2凝聚粒子。但若在清洗时加上强还原剂,使TIO2还原成低价的钛,可达到使其溶解而被除去的目的。这时,可省去超声波清洗,并可使清洗后的熔体过滤器滤芯的使用寿命延长1倍以上。 三甘醇清洗法,属于溶剂法,它的特点为:(1)清洁周期长需6~2h,清洁工序较多;(2)基建与设备投资高,溶剂清洗罐及其溶剂回收的费用是各种方法中成本最高的。其运行费用也高,三甘醇类溶剂价格较贵,按现代的规范还要求支付高昂的废物处理费用;(3)环境保护难,三甘醇残渣对人体有害,要集中专门处理;(4)对组件的损伤较小,一般溶剂的工作温度低于315℃,对金属组件不起化学反应,是各种方法中对组件、喷丝板损伤最小的方式,它特别适用于熔体过滤器滤芯的清洗。四、高温水解法 该法是利用聚酯在高温下易水解和碱解生成低分子物,达到被除去之目的。它是将被清洗物置于高压釜内,通入0.3~0.6MPa的蒸汽,温度约为130~160℃,时间为2~8h。在高压釜内,若添加少量NaOH,则可缩短清洗时间。此后,被清洗物再经与三甘醇法相似的清洗(即水洗、碱洗、超声波洗等)即可。本法的优点是成本比三甘醇法低;但需要高压釜,TiO2凝聚粒子不能被除去。五、三氧化铝流动床法 它是将被清洗物放入清洗炉内,用压缩空气吹动经电加热的三氧化铝微小粒子,使炉内形成一个温度均匀的浴床,被清洗物件上的聚酯、油污和有机物等迅速高温分解,达到清洗之目的。1清洗炉结构 清洗炉结构如图12-1所示,炉膛外壁用电阻丝加热,底部装有气体分配板,分配板上均布着小气帽,下方设有气帽风室,压缩空气由此进入。废气从炉膛上部侧向排风道排出。炉顶装有盖子,被清洗物体放在吊篮内,炉口靠组件及盖子的自重封闭,以防止介质的飞溅及废气的泄漏。2清洗条件的选择 (1)三氧化铝清洗介质:最好粒径为φ0.1~0.15mm,由30%α和70%γ型组成的实心氧化铝颗粒。这种介质对被清洗物的磨损最小,且控温效果好。粒径和堆积密度较小的介质不但有利于流化,而且节约能量;但为避免介质嵌入喷丝孔内,选用的粒径应远小于孔径;而过细的介质(如粉状)因粘附力大,易产生沟流、腾涌现象,不利于热的传导,故应综合考虑。 (2)清洗温度和时间:由实验得知,炉温为470℃时的清洗时间比450℃时可缩短5~6h。温度愈高,则清洗时间愈短。但温度升高到一定程度,清洗时间近于平衡。如温度从470℃增加到5lO℃,清洗时间仅缩短1~2h。此外,当清洗温度低于430℃时,即使延长清洗时间,也达不到良好的清洗效果,所以一般温度选择在470~480℃。 (3)气体流量:清洗效果除与上述因素有关外,还与流化床内的热交换速度及聚合物的分解物是否完全排净等因素有关,这些因素又主要决定流化床内气体流量。当气体流量增加时,气体传热速度增快。传热速度愈快,被清洗组件与炉温达到平衡的时间也愈短,分解物便能迅速排出。但气体流量不能过大或过小。过大,热量损耗大,且在外壁加热温度相同时,达到平衡的中心温度偏低;而过小,热交换效果差。一般气体流量在8~10m3/h为宜。在气体流量恒定时,其压力对流化质量无明显影响。 上述各种清洗方法的工艺比较如表12-1所示。六、真空清洗法 真空清洗法又称真空高温分解法或真空煅烧法。它吸收了煅烧法最简便、不需要任何溶剂和辅助材料的优点,克服了煅烧法在空气中煅烧处理喷丝板不易干净和产生明火导致被处理件退火变形的缺点,是近年来发展起来的一种新型处理方法。它特别适用于处理异形、细旦等喷丝板,亦可处理过滤器滤芯、计量泵和其他纺丝部件。 其工作原理是先升温到300℃,并保温一定的时间,使被处理件上的聚酯(或其他高聚物)熔化。熔化的物料流下集中到炉体底部的废料收集罐中。待基本流完以后,开始第二阶段的升温。大约在350℃左右,残留的聚酯开始分解,此时打开真空泵抽真空,升温到500℃左右,进行第二阶段的保温。同时通入少量空气,对残留物进行氧化。在真空状态(-0.8~-0.7MPa)下,残留聚酯的热分解和氧化分解较快,产生的气体和灰分微粒可被抽走。整个过程大约6~8h即可完成。 真空清洗炉过去依赖进口,现在国内太原自动化仪表厂已研制成功并批量生产。国产真空清洗炉包括炉体和控制台两部分。炉体采用辐射加热,真空泵与炉体连在一起。炉盖密封圈用水冷却保护。炉底部有废料收集罐。控制柜上装有微机温度和程序控制仪、记录仪。清洗温度和时间等程序输入电脑以后,升温、保温、降温、开关真空泵等均可自动进行。该设备清洗效果较好,对环境无污染,操作方便,近年来推广很快。七、超声波清洗法 超声波清洗器是一种对液体浴发出充分而强有力的机械振动的设备,这种设备以声波来达到清洗的目的。声波通过水浴运动引起空穴,因而起到对被清洗物表面的洗涤作用,释放出103350kPa(1500—Upsi)级的能量,以便松散、消除污物的污垢及杂质。 起初,用含水或有机溶剂的新鲜清洁液浴激发超声波清洗器时,首先必须排除多余的气体,称之为脱气。当气泡生长变得十分大之前气泡并不显著,直到它们凝集在一起后,肉眼才能见到。 当压力或超声波把一个气泡压入液体中时,气泡的尺寸就缩小,起到轻微的洗涤作用。紧接着液体收缩,使气泡膨胀得比它的周围尺寸大得多。这样的伸缩作用每秒反复20000次,对液体提供相当可观的运动,从而产生洗涤的效应。此时,同样的作用将膨胀的气泡并合,它们就变得很大足以上升到顶端。 一旦外加气体从液体内排出,就会发生蒸发气穴,这样一来压力波将蒸发气泡压缩,直到压碎。这种气穴现象或称负真空能够清除表面污垢,还可冲刷壳体或凹陷金属表面的污垢。可以想象,在气泡压碎的瞬间将产生冲击而释放出核心,这核心又形成新的蒸发气泡,替代原来气泡的作用。只要能量充足,每分钟能诱发百万次气穴发生,提供一种不均匀的洗涤作用是有效的。这种洗涤作用的有效性是决定超声波浴成功的主要因素之一。清洁系统中超声波部分的特性受两方面的制约。一是荷载的变化对超声波作用的影响。在这方面要考虑的因素是荷载本身,例如合适的大小、材料和几何形状;吊篮和固定夹,以及在浴中或清洗罐底部污垢的积聚等。其二是超声波洗涤作用的递减率。超声波源可以是振荡器或转变器,随着容器的荷载,其空气穴效力递减;对于这种气穴效力只能凭经验而无测定的设备及方法。为了确定它的存在,使用者凭它产生的超声,判断它工作是否正常。 相反,一些优质的超声波清洗器,必将产生一种听得到而又无害的咝咝声。由气穴效应造成的咝咝声,说明容器中有荷载存在;否则它将难以通过荷载而失去清洁能力。 使声波产生阻尼的主要原因如下: ①添加剂中含过多的非正常去垢剂。 ②太多量的添加剂。 ③浴中产生的杂质、悬浮的固体、容器底部的固体、乳化和皂化生成的“肥皂”的积聚物。 ④频率的变化。 ⑤容器或荷载,比如吊篮或支架的特性,不锈钢和其它金属不吸收大部分的声波,荷载将反射或散失声波。八、喷丝板检验的新方法 在长丝成形工艺中,喷丝孔的形状是关键,单丝是在孔中形成的。尤其在纺制异形丝时要求更高,所形成的异形度完全取决于截面的完整;但在纺异形丝时,喷丝孔堵塞的机率最大。所以在喷丝头长期使用时,检查喷丝孔的形状大小以及状态是极重要的。 光学法是评价喷丝头截面的十分快速的方法,但这些方法有局限性,也就是不能测得孔内部的某些变化情况。即是不能胜任测定棱侧面的磨损和扯裂。而气压法对孔毛细管长度的变化以及孔棱侧面的磨损也没有反应。 近来有人提出了一种详细检验纺丝组件的新方法,它是利用油贯穿喷丝孔的通道来检测的。它能够给出毛细管的长度和截面的情况,以及毛细管通道的磨耗、损伤或沾污的详细情况。 在油流试验中,一股稳定的油流通过各个喷丝孔,测定所需的压力。这时在平底扩孔中压力的减小,与毛细管通道上的特殊压力损失相比较,前者是可以忽略的。孔毛细管压力的变化是毛细管截面和长度的函数。尽管它们在流速和粘度上都存在很大差异,但仍有相似之处。它们都是用低雷诺数流动来表征。因为加速的压力损失是可以忽略的。油流的初程与毛细管总长度相比要短。其主要差别是聚合物熔体不是牛顿流体,而油流并不能真正代表通过喷丝孔的聚合物熔体流。 检验开始前,喷丝板先冷却到室温,以减小油流过喷丝孔运动时油温的变化。由于硅油的粘度受温度影响最小,因而常采用硅油。喷丝板安装在带有对孔精确定位的坐标移动台上,用计量泵把油注入连接套头,并使油高出喷丝孔口。因为压力正比于油在毛细管流动中的阻力,所以通过压力值的变化可直接反映出毛细管截面或长度的变化。 细心观察所得结果,就得到有关毛细管可能变形的情况以及这种变化对纺丝可能产生的影响。例如,随平均值轻微变化而变化的高偏差系数反映出毛细管尺寸不够精密,这将导致纤度不匀长丝的产生。如果某些特殊数值超出范围,在偏差系数和平均值上又无任何迹象,就可断定,毛细管尺寸的偏差导致粗细不匀长丝的形成。若油流试验结果,给出带有高偏差系数平均值的递减,就可能是因为毛细管截面严重磨损,因而在产生纤度不匀长丝的同时又引起截面的变化。 根据各喷丝板的压力值读数能画出频率分布图,标准情况下,这些数值的分布类似于正态分布曲线。在高公差水平的情况下,将出现带低范围的分布。然而,即使用标准公差制造的喷丝板,也将观察到稍宽范围的分布。如果分布偏左边,而CV%较高,表明喷丝孔边沿极度损伤,若分布偏右,而CV%较高,表明喷丝孔严重堵塞。 典型情况下,若用新的和已磨损的两种喷丝板纺制纤维,通过油流测试,很方便就能检测问题。油流试验能反映喷丝板的喷丝孔的不同压力降,据此就得到长丝原始纤度的高偏差系数,如果画出该系统的油压力降值,就得到一条双系数曲线,表明两种不同喷丝板中喷丝孔有差异。
『柒』 聚合物有机玻璃可以水解吗
其全称是聚甲基丙烯酸甲酯,可水解成对应的酸和酯。
『捌』 聚酯酸性水解法在什么时候结束
饱聚酯饱二元羧酸(或酸酐)或与饱二元羧酸(或酸酐)组混合酸与元醇缩聚具酯键饱双键线型高化合物通聚酯化缩聚反应190~220℃进行直至达预期酸值(或粘度)聚酯化缩反应结束趁热加入定量乙烯基单体配粘稠液体聚合物溶液称饱聚酯树脂
■ 饱各聚酯树脂物理化性质
1、物理性质 饱聚酯树脂相密度1.11~1.20左右固化体积收缩率较固化树脂些物理性质:
⑴耐热性绝数饱聚酯树脂热变形温度都50~60℃些耐热性树脂则达120℃红热膨胀系数α1(130~150)×10-6℃
⑵力性能饱聚酯树脂具较高拉伸、弯曲、压缩等强度
⑶耐化腐蚀性能饱聚酯树脂耐水、稀酸、稀碱性能较耐机溶剂性能差同树脂耐化腐蚀性能随其化结构几何关同差异
⑷介电性能饱聚酸树脂介电性能良
2、化性质 饱聚酯具功能团线型高化合物其骨架主链具聚酯链键饱双键链两端各带羧基羟基
主链双键乙烯基单体发共聚交联反应使饱聚酯树脂溶、熔状态转变溶、熔状态
主链酯键发水解反应酸或碱加速该反应若与苯乙烯共聚交联则降低水解反应发
酸性介质水解逆完全所聚酯能耐酸性介质侵蚀;碱性介质由于形共振稳定羧酸根阴离水解逆所聚酯耐碱性较差
聚酯链末端羧基碱土金属氧化物或氢氧化物[例MgOCaOCa(OH)2等]反应使饱聚酯链扩展终能形络合物链扩展使起始粘度0.1~1.0Pa·s粘性液体状树脂短间内粘度剧增至103Pa·s直至能流、粘手类似凝胶状物树脂处于状态并未交联合适溶剂仍溶解加热良流性
■ 饱聚酯树脂结构与性能关系
迄今内外用作复合材料基体饱聚酯(树脂)基体基本邻苯二甲酸型(简称邻苯型)、间苯二甲酸型(简称间苯型)、双酚A型乙烯基酯型、卤代饱聚酯树脂等
1、 邻苯型饱聚酯间苯型饱聚酯
邻苯二甲酸间苯二甲酸互异构体由合饱聚酯链别邻苯型间苯型虽链化结构相似间苯型饱聚酯邻苯型饱聚酯相比具述些特性:①用间苯型二甲酸制较高量间苯二甲酸饱致辞酯使固化制品较力性能、坚韧性、耐热性耐腐蚀性能;②间苯二甲酸聚酯纯度度树脂残留间苯二甲酸低量间苯二甲酸酯杂质;③间苯二甲酸聚酯链酯键受间苯二甲酸立体位阻效应保护邻苯二甲酸聚酯链酯键更易受水其各种腐蚀介质侵袭用间苯二甲酸聚酯树脂制玻璃纤维增强塑料71℃饱氯化钠溶液浸泡仍具相高性能
2、 双酚A型饱聚酯
双酚A型饱聚酯与邻苯型饱聚酸及间苯型饱聚酯链化结构相比链易水解遭受破坏酯键间间距增降低酯键密度;双酚A饱聚酯与苯乙烯等交联剂共聚固化空间效应酯基起屏蔽保护作用阻碍酯键水解;结构新戊基连接着两苯环保持化瓜稳定性所类树脂较耐酸、耐碱及耐水解性能
3、 乙烯基树脂
乙烯基树脂称环氧丙烯酸树脂60代发展起类新型树脂其特点聚合物具端基饱双键
乙烯基树脂具较综合性能:①由于饱双键位于聚合物链端部双键非泼固化受空间障碍影响机氧化物引发通相邻链间进行交联固化与单体苯乙烯其聚固化;②树脂链R基团屏蔽酯键提高酯键耐化性能耐水解稳定性;③乙烯基树脂每单位相质量酯键比普通饱聚酯少35%~50%左右提高该树脂酸、碱溶液水解稳定性;④树脂链仲羟基与玻璃纤维或其纤维浸润性粘结性提高复合材料强度;⑤环氧树脂主链赋与乙烯基树脂韧性主链醚键使树脂具优异耐酸性
乙烯基树脂品种性能随着所用原料同广泛变化按复合材料树脂性能要求设计结构
4、 卤代饱聚酯
卤代饱聚酯指由氯茵酸酐(HET酸酐)作饱二元酸(酐)合种氯代饱聚酯
氯代饱聚酯树脂直作具优良自熄性能树脂使用近研究表明氯代饱聚酯树脂亦具相耐腐蚀性能些介质耐腐蚀性能与双酚A饱聚酯树脂乙烯基树脂基本相某些例(例湿氯)耐腐蚀性能则优于乙烯基树脂双酚A饱聚酯树脂
热湿氯饱聚酯树脂接触发反应产氯代饱聚酯树脂或称"氯奶油"由双酚A饱聚酯 树脂乙烯基酯树脂产"氯奶油"性状柔软湿氯通该"氯奶油"层进步(腐蚀)渗透由氯代饱聚酯产"氯奶油"性状坚硬阻止湿氯进步(腐蚀)渗透
数树脂都含苯环由于苯环取代基进入体内容易代谢所体伤害相于苯说降低低毒性另外卤代烃定毒性体跟环境定危害
『玖』 泥水澄清的主要方法
自然干燥法:主要结构是污泥干燥场,一块由土堤包围和分隔的地面。如果土壤的渗透性很差,可以铺一层薄薄的砾石和沙子,并设置排水管。输送到田间的污泥通过渗透和蒸发降低了水分含量。经过2 ~ 3天的渗透,水分含量可降低到85%左右。在此之后,主要依靠蒸发,几周后蒸发可减少到75%左右。污泥干燥场的脱水效果受当地降雨、蒸发、温度、湿度等因素的影响。一般适用于干旱、少雨、沙土地区。
机械脱水法:通常对污泥进行预处理,提高脱水性能,再进行脱水。目前,最常用的预处理方法是加入无机盐或聚合物混凝剂。此外,还有洗涤和热处理。机械脱水方法包括过滤和离心。过滤是用滤层(滤布、丝网等多孔材料)过滤湿式污泥,使水(滤液)过滤层、脱水污泥(滤饼)拦截在滤层中。离心法是利用污泥中固液比重差产生的不同离心倾向来实现泥浆与水的分离。过滤方法中使用的设备包括真空过滤机、板框压滤机和带式过滤机。真空过滤机连续入泥、连续出泥,运行平稳,但配套设施较多。板式框压滤机是化工行业中常用的设备。过滤驱动力大,泥饼含水率低,泥浆进入和出泥间歇,生产率低。
『拾』 部分水解聚丙烯酰胺在油田化学中的应用及作用机理
一、 PAM用作钻井液添加剂
钻井液在石油开采中用作钻井泥浆性能调整剂。PAM的作用是调节钻井液的流变性,携带岩屑,润滑钻头,有利钻进。此外,还可大大减少卡钻事故,减轻设备磨损,并能防止发生井漏和坍塌,使井径规则。在这方面经常使用的是部分水解聚丙烯酰胺、聚丙烯酰胺钾盐,它由 PAM或聚丙烯睛水解而得。
二、PAM用作聚合物驱油
在提高石油采收率的诸方法中,聚合物驱油技术占有重要地位。聚合物的作用是调节注入水的流变性,增加驱动液的粘度,改善水驱波及效率,降低地层中水相渗透率,使水与油能匀速地向前流动。
聚合物驱油是通过在注入水中加入一定量的高分子聚丙烯酰胺,来增加注入水的粘度,改善油水流度比。由于油层对聚丙烯酰胺分子的吸附、捕集作用,而降低了高、中渗透层或高、中水淹层的渗透性,增加了注入水的渗流阻力,使低渗透层或低而未水淹层的吸水量增加,扩大了注入水在油层平面上的波及范围和油层纵向上的水淹厚度,从而扩大水淹体积,将水驱时未动用的原油驱替出来,达到提高原油采收率的目的。
聚合物驱油提高石油采收率的概念和技术方法从提出到初步形成经历了约15年时间(1949一1964)。1964年美国开始了聚合物驱油的现场试验和工业规模的使用试验。美国国家石油与能源研究中心(NIPER)认为:最终采收率ET决定于驱油效率Ed、波及效率Es和经济因素Ee,ET=Ed×Es×Ee。聚合物的主要贡献是提高驱替工作液的粘度、降低油水流度比及调整渗透率剖面,通过提高波及效率而提高最终采收率。Phillips石油公司对聚合物的作用作了进一步说明:①高分子使水相粘度增高,有些聚合物流经孔隙介质后尚可降低水相的相对渗透率;②降低水油流度比,水油流度比的降低可减少指进现象;③水相粘度增高和水相的相对渗透率下降使以后注人的流体可转入未波及的条带,从而提高波及系数。
三、 PAM用作堵水剂、调剖剂
在油田生产过程中,由于地层的非均质性,常产生水浸问题,需要进行堵水。其实质是改变水在地层中的渗透状态,以达到减少油田产水,保持地层能量,提高最终采收率的目的。PAM类化学堵水剂对油和水的渗透能力的作用具有选择性,对油的渗透性降低少,对水的渗透性降低多。使用时可不交联使用,也可与铝盐、铬盐、锆盐等交联生成凝胶使用,还可增加某些树脂以形成互穿聚合物网络(IPN)使之具有更高耐温性。如采用 W/O型PAM胶乳和改性氨基树脂经过化学交联可以形成互穿聚合物网络堵水剂,已在油田堵水中应用,并取得了明显的效果。采用 PAM还可调整地层内吸水剖面及封堵大孔道,实践中已见到良好效果。
四、 PAM用作压裂液添加剂
压裂工艺是油田开发致密层的重要增产措施,其作用是开通岩石的通道,让油流过。亚甲基聚丙烯酰胺交联而成的压裂液,由于具有高粘度、低摩阻、良好的悬砂能力以及配制方便和成本低等优点而被广泛应用。