(东营市禾成化学科技有限公司的离子交换树脂 )
离子交换树脂是高分子化合物,所以它们的结构和性能因制造工艺的不同而不同,为此,对于商品离子交换树脂的性能,必须用一系列指标加以说明。
同一类型的离子交换树脂,其交联剂加入量的多少,对产品的物理化学性能有很大的影响,一般加交联剂多(即交联度大)的树脂,由于许多苯乙烯链都被交联成网状,所以其产品有网孔小、机械强度大和稳定性较好等特点,其特点是交换容量较小。
一、物理性能
1、外观
⑴ 颜色。离子交换树脂是一种透明或半透明的物质,依其组成的不同,呈现的颜色也各异,苯乙烯系均呈黄色,其他也有黑色及赤褐色的。树脂的颜色稍深。树脂在使用中,由于可交换离子的转换或受杂质的污染等原因,其颜色会发生变化,但这种变化不能确切表明它发生了什么改变,所以只可以作为参考。
⑵ 形状。离子交换树脂一般均呈球形。树脂呈球状颗粒数占颗粒总数的百分率,称为圆球率。对于交换柱水处理工艺来说,圆球率愈大愈好,它一般应达90%以上。
树脂圆球率的测定方法,是先将树脂在60℃烘干、称重,然后慢慢倒在倾斜10°的玻璃上端,让树脂分散地向下自由滚动,将滚动下来的树脂再称重,后者与前者比值的百分数即为圆球率。
2、粒度
树脂颗粒的大小对水处理的工艺过程有较大的影响。颗粒大,交换速度就慢;颗粒小,水通过树脂层的压力损失就大。如果各个颗粒的大小相差很大,则对水处理的工艺过程是不利的。这首先是因为小颗粒堵塞了大颗粒间的孔隙,水流不匀和阻力增大;其次,在反洗时流速过大会冲走小颗粒树脂,而流速过小,又不能松动大颗粒。用于水处理的树脂颗粒粒径一般为0.3~1.2mm。树脂粒度的表示法和过滤介质的粒度一样,可以用有效粒径和不匀系数表示。
3、密度
离子交换树脂的密度是水处理工艺中的实用数据。例如在估算设备中树脂的装载量,需要知道它的密度。离子交换树脂的密度有以下几种表示法。
(1)干真密度。干真密度即在干燥状态下树脂本身的密度:
干真密度 = g/mL
此值一般为1.6左右,在实用意义不大,常用在研究树脂性能方面。
(2)湿真密度。湿真密度是指树脂在水中经过充分膨胀后,树脂颗粒的密度:
湿真密度 = g/mL
(3)湿视密度.湿视密度是指树脂在水中充分膨胀后的堆积密度:
湿视密度 = g/mL
湿视密度用来计算交换器中装载树脂时所需湿树脂的质量,此值一般在0.60~0.85之间。阴树脂较轻,偏于下限;阳树脂较重,偏于上限。
4、含水率
离子交换树脂的含水率是指它在潮湿空气中所保持的水量,它可以反映交联度和网眼中的孔隙率。树脂的含水率愈大,表示它的孔隙率愈大,并联度愈小。
5、溶胀性
当将干的离子交换树脂浸入水中时,其体积常常要变大,这种现象称为溶胀。
影响溶胀率大小的因素有以下几种:
(1)溶剂。树脂在极性溶剂中的溶胀性,通常比在非极性溶剂中强。
(2)交联度。高交联度树脂的溶胀能力较低。
(3)活性基团。此基团愈易电离,树脂的溶胀性愈强。
(4)交换容量。高交换容量离子交换树脂的溶胀性要比低交换容量的强。
(5)溶液深度。溶液中电解质浓度愈大,由于树脂内外溶液的渗透压差减小,树脂的溶胀率愈小。
(6)可交换离子的本质。可交换的水合离子半径愈大,其溶胀率愈大,故对于强酸和强碱性离子交换树脂,溶胀率大小的次序为:
H+>Na+>NH4+>K+>Ag+
OH->HCO3≈CO32->SO42->Cl-
一般,强酸性阳离子交换树脂由Na转变成H型,强碱性阴离子交换树脂由Cl型转变成OH型,其体积均增加约5%。
由于离子交换树脂具有这样的性能,因而在其交换和再生的过程中会发生胀缩现象,多次的胀缩就容易促使树脂颗粒碎裂。
6、耐磨性
交换树脂颗粒在运行中,由于相互磨轧和胀缩作用,会发生碎裂现象,所以其耐磨性是一个影响其实用性能的指标。一般,其机械强度应能保证每年的树脂耗损量不超过3%~7%。
7、 溶解性
离子交换树脂是一种不溶于水的高分子化合物,但在产品中免不了会含有少量低聚物。因这些低聚物较易溶解,所以其应用的最初阶段。这些物质会逐渐溶解。
离子交换树脂在使用中,有时也会发生转变成胶体渐渐溶入水中的现象,即所谓胶溶。促使胶溶的因素有:树脂的交联度小、电离能力大、离子的水合半径大,有时还有受高温或被氧化的影响。特别是强碱性阴树脂,它会因化学降解而产生胶溶现象。
所以在运行中要密切注意其运行条件:如离子交换树脂处于蒸馏水中要比在盐溶液中易胶溶,Na型比Ca型易胶溶。离子交换器备用后刚投入运行时,有时发生出水带色的现象,就是胶溶的缘故。
8、 耐热性
各种树脂所能承受的温度都有限度,超过此温度,树脂热分解的现象就很严重。由于各种树脂的耐热性能不一,所以对每种树脂能承受的最高温度,应由鉴定试验来确定。一般阳树脂可耐100℃或更高的温度;阴树脂,强碱性的约可耐60℃,弱碱性的可耐80℃以上。通常,盐型要比酸型或碱型稳定。
9、 抗冻性
根据对各种树脂在-20℃的抗冻性试验,发现大孔型树脂的搞冻性优于凝胶型树脂,实际上冰对大孔型树脂没有影响。凝胶型阳树脂的抗冻性不如阴树脂。无论阴、阳树脂,机械强度好的(磨后圆球率高),抗冻性能也好。进行滤干外部水分的001×7阳树脂10周期(冻干24h,再完全解冻24h为1周期)的测定,发现磨后圆球率有所下降,裂球率提高,冰冻对浸在水中的001×7阳树脂的磨后圆球率几乎无影响;201×7阴树脂不管滤干外部水分、还是浸在水中冰冻,磨后圆球率和裂球率均变化不大,表明阴树脂韧性较强。
10、 耐辐射性能
在有核反应堆的企业中,所用离子交换剂的抗辐射性是很重要的。一般而论,无机离子交换剂的耐辐射性能较好,而树脂均易降解,其中又以阴树脂为严重。
11、导电性
干燥的离子交换树脂不导电,纯水也不导电,但用纯水润湿的离子交换树脂可以导电,所以这种导电属于离子型导电。这种导电在离子交换膜及树脂的催化作用上很重要。
二、化学性能
❷ 衡量电渗析离子交换膜性能的指标有哪些
衡量电渗析离子交换膜性能的指标有哪些?
电渗析法的关键在于电渗析器的性能,而电渗析器性能的关键又取决于离子交换膜的性能。离子交换膜性能的具体衡量指标有以下几方面。
(1)膜的选择透过性指标膜的选择透过性是离子交换膜最重要的性能,可用迁移数和膜电λ来表征膜的选择透过性。极端情况下,理想膜只允许反离子通过,不允许同离子通过,即此时反离子的迁移数为1,同离子的迁移数为零。因此可用迁移数定量地表示膜的选择透过性。
用离子交换膜分隔两种浓度不同的电解质溶液,横跨膜的电λ差就是膜电λ。膜电λ的大小取决于膜的离子选择透过性和膜两侧溶液的浓度差。因此,在一定的浓差及温度下,可以用膜电λ表征膜的选择透过性。
(2)交换容量 指单λ膜样品中所含活性基团的数量。通常以单λ干重(g)的膜所含可交换离子的物质的量(mm01)表示。膜的选择透过性及导电性能均与膜的交换容量大小相关。膜的交换容量一般在1~3mmol/g干膜。
(3)导电性膜的导电性可以用电阻率、电导率或面电阻表示。面电阻是指单λ膜面积所具有的电阻,单λa/cm2膜。完全干燥的膜基本不导电,膜的导电性能是由含水膜中的电解质溶液实现的,因此膜的导电性与溶液及膜中的离子种类、浓度以及溶液温度、膜自身的特性等相关,通常要求膜的导电能力应大于溶液的导电能力。
(4)含水率它表示湿膜中所含水的百分数(可以单λ质量干膜或湿膜计)。含水率与膜的活性基团数量、交联度以及电解质溶液的离子种类、平衡浓度相关。其数值通常在30 9/6~50%范Χ。
(5)厚度膜的厚度与膜电阻和机械强度相关。在保证一定机械强度的前提下,膜越薄,其电阻就越小,导电性能也就越好。通常异相膜的厚度约1mm,均相膜厚度约0.2~0.6mm,最薄的为O.015mm。
(6)破裂强度 膜在实际应用中所能承受的最大垂直压力。破裂强度是衡量膜的机械强度的重要指标之一。在电渗析器操作中,膜两侧所受到的流体压力不可能相等,因此膜必须具备足够的机械强度,以免因膜的破裂造成浓室和淡室贯通而使电渗析器无法运行。国产膜的破裂强度为0.3~1.0MPa。
❸ 离子交换膜基本原理及应用的内容简介
离子交换膜是膜技术的一种,主要用于电渗析技术处理水、电解隔膜、回分离等,在食品工答业、电子工业、化工、环境保护等领域有广泛的应用。
本书适用于从事化工、环保、医药、食品、电力、膜研究、电子半导体等技术人员及科研工作者参考。
❹ 氯碱工业中阳离子交换膜的作用是什么
阳离子交换膜是对阳离子有选择作用的膜,通常是磺酸型的,带有固定基团和可解离的离子,如钠型磺酸型固定基团是磺酸根,解离离子是钠离子。
阳离子交换膜可以看作是一种高分子电解质,由于阳膜带负电荷,虽然原来的解离正离子受水分子作用解离到水中,但在膜外通电通过电场作用,带有正电荷的阳离子就可以通过阳膜,而阴离子因为同性排斥而不能通过,所以具有选择透过性。
(4)离子交换膜的基本指标扩展阅读
性质
均相膜的电化学性能较为优良,但力学性能较差,常需其他纤维来增强。非均相膜的电化学性能比均相膜差,而力学性能较优,由于疏水性的高分子成膜材料和亲水性的离子交换树脂之间粘结力弱,常存在缝隙而影响离子选择透过性。
离子交换膜的膜电阻和选择透过性是膜的电化学性能的重要指标。阳离子在阳膜中透过性次序为: Li+>Na+>NH4+>K+>Rb+>Cs+>Ag+> Tl+>UO卂(这是什么?)>Mg2+>Zn2+>Co2+>Cd2+> Ni2+>Ca2+>Sr2+>Pb2+>Ba2+
阴离子在阴膜中透过性次序为: F->CH3COO->HCOO->Cl->SCN->Br-> CrO娸>NO婣>I->(COO)卆(草酸根)>SO娸膜电阻是与离子在膜中的淌度有关的一个数值,根据不同测定和计算方法可分成体积电阻和表面电阻。
水在膜中的渗透率就是离子在透过膜时带过去的水量。实用上水渗透率是膜的一个性能,其值愈大,在电渗析时水损失愈大,通常疏水性高分子材料膜中水渗透率远低于亲水性高分子材料膜。
参考资料来源:网络-阳离子交换膜
参考资料来源:网络-离子交换膜
❺ 原电池中阳离子交换膜指的是全部阳离子吗
单质锌失电子生成锌离子吧?阳离子是可以透过阳离子交换膜的。这是离子膜的基本性质。
但是通过是有顺序的,一般来说,电性强、“个头”小的离子会优先通过。
欢迎与我沟通。
❻ 离子交换膜的特点是什么
1)离子交换膜是一种含离子基团的、对溶液里的离子具有选择透过能力的高分子膜。2)离子交换膜按功能及结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合物膜五种类型。3)离子交换膜的膜电阻和选择透过性是膜的电化学性能的重要指标。阳离子在阳膜中透过性次序为: Li+>Na+>NH4+>K+>Rb+>Cs+>Ag+> Tl+>Mg2+>Zn2+>Co2+>Cd2+> Ni2+>Ca2+>Sr2+>Pb2+>Ba2+ 阴离子在阴膜中透过性次序为: F->CH3COO->HCOO->Cl->SCN->Br-> CrO4->NO3->I->(COO)2-(草酸根)>SO42-4)离子交换膜可装配成电渗析器而用于苦咸水的淡化和盐溶液的浓缩。
❼ 离子交换膜基本原理及应用的介绍
《离子交换膜基本原理及应用》是一本书籍,该书全面系统地介绍了离子交换膜的制备、性能测定及其应用。全书分为基本原理卷和应用卷,内容新颖、翔实。基本原理卷部分概念清晰,图文并茂,易于理解;应用卷借助大量已成功应用的工业规模化的实例,介绍了离子交换膜特别是双极膜的应用。
❽ 离子交换膜与离子交换树脂这两者有什么区别
离子交换膜与离子交换树脂
离子交换膜又称“离子交换树脂膜”或“离子选择透过膜”。这是因为离子交换膜与用于水处理领域的粒状离子交换膜树脂,具有基本相同的结构,而且早期的离子交换膜就是使用离子交换树脂,通过加入粘合剂混炼拉片,然后加网热压成为膜状物的,所以,有“离子交换树脂漠”之称。
但是,离子交换膜和离子交换树脂之间,除形状之差而外,还有着根本不同的作用原理:离子交换树脂是通过离子的吸附、药品溶离和再生的离子交换机能进行脱盐,但离子交换膜不是通过离子交换的机能,而是以选择透过为其主要机理,将离子作为一种选择性通过的媒介物。
此外,在应用方法上也不相同,例如,离子交换树脂的使用过程包含着处理、交换、再生等步骤,而离子交换膜在应用过程中,可以连续作用,不必再生。由此看来,与其称为离子交换膜,不如称为“离子选择透过膜”更为确切。不过,根据长期的习惯,人们还是沿称“离子交换膜”。
离子交换膜可制成均相膜和非均相膜两类。
而离子交换树脂就属于非均相膜
①均相膜。先用高分子材料如丁苯橡胶、纤维素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等制成膜,然后引入单体如苯乙烯、甲基丙烯酸甲酯等,在膜内聚合成高分子,再通过化学反应引入所需功能基。也可通过甲醛、苯酚等单体聚合制得。
②非均相膜。用粒度为200400目的离子交换树脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合后加工成膜制得。
❾ 关于阳离子交换膜
电解饱和食盐水时用到了阳离子交换膜,只允许钠离子和水通过,但是阳内极室和阴极室溶液容不一样。阳极室中是食盐水溶液,阴极室中是氢氧化钠溶液(而且阳极室和阴极室的溶液都是高纯度的,基本上不含其他杂质,这一点就能保证阴极中没有杂质),而阴极由于电解,水越来越少,是通过补充纯水(也就是去离子水)来保证其水的来源的。
❿ 离子交换膜基本原理及应用的目录
基本原理卷
第章离子交换膜的制备方法
1.1离子交换膜的发明
1.2夹层法
1.3胶乳法
1.4块状聚合法
1.5涂浆法
1.6辐照接枝聚合法
1.7非均相膜
参考文献
第2章膜性能的测定
2.1膜的取样和预处理
2.2电阻
2.3离子交换容量和含水量
2.4迁移数
2.5溶质透过系数
2.6电渗透系数
2.7水透过系数
2.8溶胀比
2.9机械强度
2.10电渗析
参考文献
第3章膜的特性和迁移现象
3.1具有不同电荷符号离子之间的选择透过性
3.2具有相同电荷符号离子之间的选择透过性
3.3电导
3.4膜电位
3.5浓差扩散
3.6降低两价离子透过性的机理
3.7关于膜处理对降低两价离子透过性的研究
参考文献
第4章Teorell、Meyer和Sievers理论(TMS理论)
4.1膜电位
4.2扩散系数
4.3电导
4.4迁移数
参考文献
第5章不可逆过程热力学
5.1唯象方程和唯象系数
5.2反射系数
5.3电渗析现象
5.4电渗析法分离盐和水
参考文献
第6章总传质过程
6.1总膜对的特性和通过膜对的传质
6.2总传质方程和唯象方程
6.3反射系数σ、水力传导度LP和溶质透过率ω
6.4压力反射系数和浓度反射系数:切断电流概念
6.5不可逆过程热力学的膜对特性
参考文献
第7章浓差极化现象
7.1电流?电压关系
7.2浓差极化电位
7.3计时电位法
7.4折射率
7.5自然对流
7.6波动
7.7超极限电流
7.8边界层的传质
7.9在离子交换膜浓缩表面上的浓差极化
参考文献
第8章水解离
8.1电流?pH关系
8.2扩散模型
8.3排斥区
8.4膜表面电位
8.5Wien效应
8.6质子化和去质子化反应
8.7镁离子的水解
8.8关于水解离的实验研究
8.9在海水电渗析中出现的水解离
8.10水解离的机理
参考文献
第9章电流密度分布
9.1在电渗析器中电流密度的分布
9.2环绕绝缘体和电流屏蔽的电流密度分布
参考文献
第10章水力学
10.1溶液流动和I-V曲线
10.2隔板对溶液流动的影响(理论的)
10.3隔板对溶液流动的影响(实验的)
10.4在流道内的局部流动分布
10.5溶液流动对极限电流密度和在流道内静压头损失的影响
10.6空气泡清洁法
10.7隔板的摩擦因子和每个脱盐室的溶液分布
10.8电渗析器中管道内的压力分布
参考文献
第11章极限电流密度
11.1浓差极化、水解离和极限电流密度
11.2扩散层和边界层
11.3由Nernst-Planck方程推得的极限电流密度方程
11.4极限电流密度对电解质浓度和溶液速度的依赖性
11.5基于脱盐室中传质的极限电流密度分析
11.6在膜堆中脱盐室之间溶液速度分布
11.7电渗析器的极限电流密度
参考文献
第12章泄漏
12.1漏电
12.2漏液
参考文献
第13章能耗
13.1在电渗析系统中的能量要求
13.2在膜堆中的能耗
参考文献
第14章膜恶化
14.1膜的性能随着运行时间而变化
14.2表面污染
14.3有机污染
参考文献
应用卷
第15章电渗析
15.1技术概览
15.2电渗析器
15.3电渗析流程
15.4能耗和最佳电流密度
15.5周边的技术
15.6实践
参考文献
第16章倒极电渗析
16.1技术概览
16.2隔板
16.3水的回收率
16.4垢形成的防止
16.5抗有机污染
16.6在膜面上胶体沉积的形成及其除去
16.7硝酸盐和亚硝酸盐的除去
16.8实践
参考文献
第17章双极膜电渗析
17.1技术概览
17.2双极膜的制备
17.3双极膜的性能
17.4实践
参考文献
第18章电去离子
18.1技术概览
18.2EDI系统中的传质
18.3EDI装置的结构和能耗
18.4在EDI过程中的水解离
18.5在EDI过程中弱电离组分的除去
18.6实践
参考文献
第19章电解
19.1技术概览
19.2离子交换膜
19.3在电解系统中的物料流动和电极反应
19.4电解器及其性能
19.5在电解过程中盐水的纯化
参考文献
第20章扩散渗析
20.1技术概览
20.2在扩散渗析中的迁移现象
20.3扩散渗析器及其运行
20.4实践
参考文献
第21章Donnan渗析
21.1技术概览
21.2在Donnan渗析中的质量迁移
21.3实践
参考文献
第22章能量转换
22.1渗析电池
22.2氧化还原流动电池
22.3燃料电池
参考文献