① 如何对Kafka进行监控
Jafka/Kafka Kafka是Apache下的一个子项目,是一个高性能跨语言分布式Publish/Subscribe消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:快速持久化,可以在O(1)的系统开销下进行消息持久化;高吞吐,在一台
② spark读取kafka数据,之后进行过滤,过滤后计算有多少条数据怎么写
spark读取kafka数据,之后进行过滤,过滤后计算有多少条数据怎么写
前面应该还有个数据生产者,比如flume. flume负责生产数据,发送至kafka。 spark streaming作为消费者,实时的从kafka中获取数据进行计算。 计算结果保存至redis,供实时推荐使用。 flume+kafka+spark+redis是实时数据收集与计算的一套经典架构
③ 怎么对kafka中消费者拉取的数据进行过滤筛选
在消费端,对特定主题数据进行分组获取,然后在获取过程中对符合业务条件的数据进行处理,否则跳过,但还是会告诉kafka我已经消费过了。 示例代码: 生产端: public...
④ kafka实现的是消息队列的什么协议
Kafka 分布式消息队列 类似产品有JBoss、MQ 一、由Linkedln 开源,使用scala开发,有如下几个特点: (1)高吞吐 (2)分布式 (3)支持多语言客户端 (C++、Java) 二、组成: 客户端是 procer 和 consumer,提供一些API,服务器端是Broker,...
⑤ 如何实现kafka高并发发送消息
几点需要注意: 尽量使用缓存,包括用户缓存,信息缓存等,多花点内存来做缓存,可以大量减少与数据库的交互,提高性能。 用jprofiler等工具找出性能瓶颈,减少额外的开销。 优化数据库查询语句,减少直接使用hibernate等工具的直接生成语句(仅
⑥ 要怎么处理才可以让所有的节点并行处理kafka数据
首先,broker按照请求被发送的顺序处理请求,并且按照同样的顺序发送响应。因为Kafka对消息的顺序性有如下的保证:
Messages sent by a procer to a particular topic partition will be appended in the order they are sent. That is, if a message M1 is sent by the same procer as a message M2, and M1 is sent first, then M1 will have a lower offset than M2 and appear earlier in the log.
⑦ rabbitmq与kafka到底用哪个好
Kafka和RabbitMq一样是通用意图消息代理,他们都是以分布式部署为目的。但是他们对消息语义模型的定义的假设是非常不同的。我对"AMQP 更成熟"这个论点是持怀疑态度的。让我们用事实说话来看看用什么解决方案来解决你的问题。
a) 以下场景你比较适合使用Kafka。你有大量的事件(10万以上/秒)、你需要以分区的,顺序的,至少传递成功一次到混杂了在线和打包消费的消费者、你希望能重读消息、你能接受目前是有限的节点级别高可用或则说你并不介意通过论坛/IRC工具得到还在幼儿阶段的软件的支持。
b) 以下场景你比较适合使用RabbitMQ。你有较少的事件(2万以上/秒)并且需要通过复杂的路由逻辑去找到消费者、你希望消息传递是可靠的、你并不关心消息传递的顺序、你需要现在就支持集群-节点级别的高可用或则说你需要7*24小时的付费支持(当然也可以通过论坛/IRC工具)。
⑧ Kafka有个什么参数可以让consumer阻塞知道新消息到达
)的方式从broker中获取消息,但Pull有个缺
⑨ linux 怎样查看kafka的某 topic数据
1、创建一个需要增加备份因子的topic列表的文件,文件格式是json格式的。
注意事项:
Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。
⑩ 如何保证kafka 的消息机制 ack-fail 源码跟踪
Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.(Kafka布式、区(partitioned)、基于备份(replicated)commit-log存储服务.提供类似于messaging system特性,设计实现完全同)kafka种高吞吐量布式发布订阅消息系统特性:
(1)、通O(1)磁盘数据结构提供消息持久化种结构于即使数TB消息存储能够保持间稳定性能
(2)、高吞吐量:即使非普通硬件kafka支持每秒数十万消息
(3)、支持通kafka服务器消费机集群区消息
(4)、支持Hadoop并行数据加载
、用Kafka面自带脚本进行编译
载Kafka源码面自带gradlew脚本我利用编译Kafka源码:
1 # wget
2 # tar -zxf kafka-0.8.1.1-src.tgz
3 # cd kafka-0.8.1.1-src
4 # ./gradlew releaseTarGz
运行面命令进行编译现异信息:
01 :core:signArchives FAILED
02
03 FAILURE: Build failed with an exception.
04
05 * What went wrong:
06 Execution failed for task ':core:signArchives'.
07 > Cannot perform signing task ':core:signArchives' because it
08 has no configured signatory
09
10 * Try:
11 Run with --stacktrace option to get the stack trace. Run with
12 --info or --debug option to get more log output.
13
14 BUILD FAILED
bug()用面命令进行编译
1 ./gradlew releaseTarGzAll -x signArchives
候编译功(编译程现)编译程我指定应Scala版本进行编译:
1 ./gradlew -PscalaVersion=2.10.3 releaseTarGz -x signArchives
编译完core/build/distributions/面kafka_2.10-0.8.1.1.tgz文件网载直接用
二、利用sbt进行编译
我同用sbt编译Kafka步骤:
01 # git clone
02 # cd kafka
03 # git checkout -b 0.8 remotes/origin/0.8
04 # ./sbt update
05 [info] [SUCCESSFUL ] org.eclipse.jdt#core;3.1.1!core.jar (2243ms)
06 [info] downloading ...
07 [info] [SUCCESSFUL ] ant#ant;1.6.5!ant.jar (1150ms)
08 [info] Done updating.
09 [info] Resolving org.apache.hadoop#hadoop-core;0.20.2 ...
10 [info] Done updating.
11 [info] Resolving com.yammer.metrics#metrics-annotation;2.2.0 ...
12 [info] Done updating.
13 [info] Resolving com.yammer.metrics#metrics-annotation;2.2.0 ...
14 [info] Done updating.
15 [success] Total time: 168 s, completed Jun 18, 2014 6:51:38 PM
16
17 # ./sbt package
18 [info] Set current project to Kafka (in build file:/export1/spark/kafka/)
19 Getting Scala 2.8.0 ...
20 :: retrieving :: org.scala-sbt#boot-scala
21 confs: [default]
22 3 artifacts copied, 0 already retrieved (14544kB/27ms)
23 [success] Total time: 1 s, completed Jun 18, 2014 6:52:37 PM
于Kafka 0.8及版本需要运行命令:
01 # ./sbt assembly-package-dependency
02 [info] Loading project definition from /export1/spark/kafka/project
03 [warn] Multiple resolvers having different access mechanism configured with
04 same name 'sbt-plugin-releases'. To avoid conflict, Remove plicate project
05 resolvers (`resolvers`) or rename publishing resolver (`publishTo`).
06 [info] Set current project to Kafka (in build file:/export1/spark/kafka/)
07 [warn] Credentials file /home/wyp/.m2/.credentials does not exist
08 [info] Including slf4j-api-1.7.2.jar
09 [info] Including metrics-annotation-2.2.0.jar
10 [info] Including scala-compiler.jar
11 [info] Including scala-library.jar
12 [info] Including slf4j-simple-1.6.4.jar
13 [info] Including metrics-core-2.2.0.jar
14 [info] Including snappy-java-1.0.4.1.jar
15 [info] Including zookeeper-3.3.4.jar
16 [info] Including log4j-1.2.15.jar
17 [info] Including zkclient-0.3.jar
18 [info] Including jopt-simple-3.2.jar
19 [warn] Merging 'META-INF/NOTICE' with strategy 'rename'
20 [warn] Merging 'org/xerial/snappy/native/README' with strategy 'rename'
21 [warn] Merging 'META-INF/maven/org.xerial.snappy/snappy-java/LICENSE'
22 with strategy 'rename'
23 [warn] Merging 'LICENSE.txt' with strategy 'rename'
24 [warn] Merging 'META-INF/LICENSE' with strategy 'rename'
25 [warn] Merging 'META-INF/MANIFEST.MF' with strategy 'discard'
26 [warn] Strategy 'discard' was applied to a file
27 [warn] Strategy 'rename' was applied to 5 files
28 [success] Total time: 3 s, completed Jun 18, 2014 6:53:41 PM
我sbt面指定scala版本:
01 <!--
02 User: 往记忆
03 Date: 14-6-18
04 Time: 20:20
05 bolg:
06 本文址:/archives/1044
07 往记忆博客专注于hadoop、hive、spark、shark、flume技术博客量干货
08 往记忆博客微信公共帐号:iteblog_hadoop
09 -->
10 sbt "++2.10.3 update"
11 sbt "++2.10.3 package"
12 sbt "++2.10.3 assembly-package-dependency"