① cad中怎么用filter命令查找同一种东西的数量
1、首先,打开相关图纸,进入正常窗口介面,
② js实现html简单访问量统计功能代码
这个现在好像没什么办法吧,一般都是在后台统计,因为每次打开网页都是一个新的页面,js是重新调用的,建议你在后台跳转到网页时,将那个方法设置一个统计参数,每次打开那个方法都会累计,或者创建一个数据库,在过滤器里面每次调用链接的时候在数据库update
③ JSP实现访问量的统计
用application来实现吧 如果要限定人的话从IP地址看 要判断是否是今日还是总访问量,就用时间来判断或者用任务的功能在0:00开始计算
④ hbase如何用过滤器实现项目某个求总数量的统计
HBase为筛选数据提供了一组过滤器,通过这个过滤器可以在HBase中的数据的多个维度(行,列,数据版本)上进行对数据的筛选操作,也就是说过滤器最终能够筛选的数据能够细化到具体的一个存储单元格上(由行键,列明,时间戳定位)。通常来说,通过行键,值来筛选数据的应用场景较多。
1. RowFilter:筛选出匹配的所有的行,对于这个过滤器的应用场景,是非常直观的:使用BinaryComparator可以筛选出具有某个行键的行,或者通过改变比较运算符(下面的例子中是CompareFilter.CompareOp.EQUAL)来筛选出符合某一条件的多条数据,以下就是筛选出行键为row1的一行数据:
[java] view plain
Filter rf = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("row1"))); // OK 筛选出匹配的所有的行
2. PrefixFilter:筛选出具有特定前缀的行键的数据。这个过滤器所实现的功能其实也可以由RowFilter结合RegexComparator来实现,不过这里提供了一种简便的使用方法,以下过滤器就是筛选出行键以row为前缀的所有的行:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter pf = new PrefixFilter(Bytes.toBytes("row")); // OK 筛选匹配行键的前缀成功的行
3. KeyOnlyFilter:这个过滤器唯一的功能就是只返回每行的行键,值全部为空,这对于只关注于行键的应用场景来说非常合适,这样忽略掉其值就可以减少传递到客户端的数据量,能起到一定的优化作用:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter kof = new KeyOnlyFilter(); // OK 返回所有的行,但值全是空
4. RandomRowFilter:从名字上就可以看出其大概的用法,本过滤器的作用就是按照一定的几率(<=0会过滤掉所有的行,>=1会包含所有的行)来返回随机的结果集,对于同样的数据集,多次使用同一个RandomRowFilter会返回不通的结果集,对于需要随机抽取一部分数据的应用场景,可以使用此过滤器:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter rrf = new RandomRowFilter((float) 0.8); // OK 随机选出一部分的行
5. InclusiveStopFilter:扫描的时候,我们可以设置一个开始行键和一个终止行键,默认情况下,这个行键的返回是前闭后开区间,即包含起始行,单不包含中指行,如果我们想要同时包含起始行和终止行,那么我们可以使用此过滤器:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter isf = new InclusiveStopFilter(Bytes.toBytes("row1")); // OK 包含了扫描的上限在结果之内
6. FirstKeyOnlyFilter:如果你只想返回的结果集中只包含第一列的数据,那么这个过滤器能够满足你的要求。它在找到每行的第一列之后会停止扫描,从而使扫描的性能也得到了一定的提升:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter fkof = new FirstKeyOnlyFilter(); // OK 筛选出第一个每个第一个单元格
7. ColumnPrefixFilter:顾名思义,它是按照列名的前缀来筛选单元格的,如果我们想要对返回的列的前缀加以限制的话,可以使用这个过滤器:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter cpf = new ColumnPrefixFilter(Bytes.toBytes("qual1")); // OK 筛选出前缀匹配的列
8. ValueFilter:按照具体的值来筛选单元格的过滤器,这会把一行中值不能满足的单元格过滤掉,如下面的构造器,对于每一行的一个列,如果其对应的值不包含ROW2_QUAL1,那么这个列就不会返回给客户端:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter vf = new ValueFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("ROW2_QUAL1")); // OK 筛选某个(值的条件满足的)特定的单元格
9. ColumnCountGetFilter:这个过滤器来返回每行最多返回多少列,并在遇到一行的列数超过我们所设置的限制值的时候,结束扫描操作:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter ccf = new ColumnCountGetFilter(2); // OK 如果突然发现一行中的列数超过设定的最大值时,整个扫描操作会停止
10. SingleColumnValueFilter:用一列的值决定这一行的数据是否被过滤。在它的具体对象上,可以调用setFilterIfMissing(true)或者setFilterIfMissing(false),默认的值是false,其作用是,对于咱们要使用作为条件的列,如果这一列本身就不存在,那么如果为true,这样的行将会被过滤掉,如果为false,这样的行会包含在结果集中。
[java] view plain在CODE上查看代码片派生到我的代码片
SingleColumnValueFilter scvf = new SingleColumnValueFilter(
Bytes.toBytes("colfam1"),
Bytes.toBytes("qual2"),
CompareFilter.CompareOp.NOT_EQUAL,
new SubstringComparator("BOGUS"));
scvf.setFilterIfMissing(false);
scvf.setLatestVersionOnly(true); // OK
11. :这个与10种的过滤器唯一的区别就是,作为筛选条件的列的不会包含在返回的结果中。
12. SkipFilter:这是一种附加过滤器,其与ValueFilter结合使用,如果发现一行中的某一列不符合条件,那么整行就会被过滤掉:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter skf = new SkipFilter(vf); // OK 发现某一行中的一列需要过滤时,整个行就会被过滤掉
13. WhileMatchFilter:这个过滤器的应用场景也很简单,如果你想要在遇到某种条件数据之前的数据时,就可以使用这个过滤器;当遇到不符合设定条件的数据的时候,整个扫描也就结束了:
[java] view plain在CODE上查看代码片派生到我的代码片
Filter wmf = new WhileMatchFilter(rf); // OK 类似于Python itertools中的takewhile
14. FilterList:用于综合使用多个过滤器。其有两种关系:FilterList.Operator.MUST_PASS_ONE和FilterList.Operator.MUST_PASS_ALL,默认的是FilterList.Operator.MUST_PASS_ALL,顾名思义,它们分别是AND和OR的关系,并且FilterList可以嵌套使用FilterList,使我们能够表达更多的需求:
[java] view plain在CODE上查看代码片派生到我的代码片
List<Filter> filters = new ArrayList<Filter>();
filters.add(rf);
filters.add(vf);
FilterList fl = new FilterList(FilterList.Operator.MUST_PASS_ALL, filters); // OK 综合使用多个过滤器, AND 和 OR 两种关系
以上,是对于HBase内置的过滤器的部分总结,以下代码是数据写入代码:
[java] view plain在CODE上查看代码片派生到我的代码片
package com.reyun.hbase;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;
public class HBaseDataFeeding {
private final static byte[] ROW1 = Bytes.toBytes("row1");
private final static byte[] ROW2 = Bytes.toBytes("row2");
private final static byte[] COLFAM1 = Bytes.toBytes("colfam1");
private final static byte[] COLFAM2 = Bytes.toBytes("colfam2");
private final static byte[] QUAL1 = Bytes.toBytes("qual1");
private final static byte[] QUAL2 = Bytes.toBytes("qual2");
public static void main(String[] args) throws IOException {
Configuration conf = HBaseConfiguration.create();
HTable table = new HTable(conf, "testtable");
table.setAutoFlushTo(false);
Put put_row1 = new Put(ROW1);
put_row1.add(COLFAM1, QUAL1, Bytes.toBytes("ROW1_QUAL1_VAL"));
put_row1.add(COLFAM1, QUAL2, Bytes.toBytes("ROW1_QUAL2_VAL"));
Put put_row2 = new Put(ROW2);
put_row2.add(COLFAM1, QUAL1, Bytes.toBytes("ROW2_QUAL1_VAL"));
put_row2.add(COLFAM1, QUAL2, Bytes.toBytes("ROW2_QUAL2_VAL"));
try{
table.put(put_row1);
table.put(put_row2);
}finally{
table.close();
}
}
}
以下是过滤器测试代码,可以通过修改代码,更换过滤器来看到具体的效果:
[java] view plain在CODE上查看代码片派生到我的代码片
package com.reyun.hbase;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.BinaryComparator;
import org.apache.hadoop.hbase.filter.ColumnCountGetFilter;
import org.apache.hadoop.hbase.filter.ColumnPrefixFilter;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.Filter;
import org.apache.hadoop.hbase.filter.FilterList;
import org.apache.hadoop.hbase.filter.FirstKeyOnlyFilter;
import org.apache.hadoop.hbase.filter.InclusiveStopFilter;
import org.apache.hadoop.hbase.filter.KeyOnlyFilter;
import org.apache.hadoop.hbase.filter.PageFilter;
import org.apache.hadoop.hbase.filter.PrefixFilter;
import org.apache.hadoop.hbase.filter.RandomRowFilter;
import org.apache.hadoop.hbase.filter.RowFilter;
import org.apache.hadoop.hbase.filter.SkipFilter;
import org.apache.hadoop.hbase.filter.ValueFilter;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.filter.SubstringComparator;
import org.apache.hadoop.hbase.filter.WhileMatchFilter;
import org.apache.hadoop.hbase.util.Bytes;
public class HBaseScannerTest {
public static void main(String[] args) throws IOException, IllegalAccessException {
Configuration conf = HBaseConfiguration.create();
HTable table = new HTable(conf, "testtable");
table.setAutoFlushTo(false);
Scan scan1 = new Scan();
SingleColumnValueFilter scvf = new SingleColumnValueFilter(
Bytes.toBytes("colfam1"),
Bytes.toBytes("qual2"),
CompareFilter.CompareOp.NOT_EQUAL,
new SubstringComparator("BOGUS"));
scvf.setFilterIfMissing(false);
scvf.setLatestVersionOnly(true); // OK
Filter ccf = new ColumnCountGetFilter(2); // OK 如果突然发现一行中的列数超过设定的最大值时,整个扫描操作会停止
Filter vf = new ValueFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("ROW2_QUAL1")); // OK 筛选某个(值的条件满足的)特定的单元格
Filter cpf = new ColumnPrefixFilter(Bytes.toBytes("qual2")); // OK 筛选出前缀匹配的列
Filter fkof = new FirstKeyOnlyFilter(); // OK 筛选出第一个每个第一个单元格
Filter isf = new InclusiveStopFilter(Bytes.toBytes("row1")); // OK 包含了扫描的上限在结果之内
Filter rrf = new RandomRowFilter((float) 0.8); // OK 随机选出一部分的行
Filter kof = new KeyOnlyFilter(); // OK 返回所有的行,但值全是空
Filter pf = new PrefixFilter(Bytes.toBytes("row")); // OK 筛选匹配行键的前缀成功的行
Filter rf = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes("row1"))); // OK 筛选出匹配的所有的行
Filter wmf = new WhileMatchFilter(rf); // OK 类似于Python itertools中的takewhile
Filter skf = new SkipFilter(vf); // OK 发现某一行中的一列需要过滤时,整个行就会被过滤掉
List<Filter> filters = new ArrayList<Filter>();
filters.add(rf);
filters.add(vf);
FilterList fl = new FilterList(FilterList.Operator.MUST_PASS_ALL, filters); // OK 综合使用多个过滤器, AND 和 OR 两种关系
scan1.
setStartRow(Bytes.toBytes("row1")).
setStopRow(Bytes.toBytes("row3")).
setFilter(scvf);
ResultScanner scanner1 = table.getScanner(scan1);
for(Result res : scanner1){
for(Cell cell : res.rawCells()){
System.out.println("KV: " + cell + ", Value: " + Bytes.toString(CellUtil.cloneValue(cell)));
}
System.out.println("------------------------------------------------------------");
}
scanner1.close();
table.close();
}
⑤ 过滤器注册商标属于哪一类
过滤器属于商标分类第9类0919群组;
经路标网统计,注册过滤器的商标回达96件。
注册时怎样选择其他答小项类:
1.选择注册(呼吸器,群组号:0919)类别的商标有2件,注册占比率达2.08%
2.选择注册(资产管理和跟踪系统装置,群组号:0907)类别的商标有1件,注册占比率达1.04%
3.选择注册(全息照相,群组号:0919)类别的商标有1件,注册占比率达1.04%
4.选择注册(气体和过滤器选择管理用软件,群组号:0901)类别的商标有1件,注册占比率达1.04%
5.选择注册(遮光挡板,群组号:0919)类别的商标有1件,注册占比率达1.04%
6.选择注册(呼吸面具,群组号:0919)类别的商标有1件,注册占比率达1.04%
7.选择注册(防火衣,群组号:0919)类别的商标有1件,注册占比率达1.04%
8.选择注册(自给式空气呼吸器,群组号:0919)类别的商标有1件,注册占比率达1.04%
9.选择注册(耳塞,所有上述产品均来自瑞士,群组号:0919)类别的商标有1件,注册占比率达1.04%
10.选择注册(工业安全帽,群组号:0919)类别的商标有1件,注册占比率达1.04%
⑥ CAD对象选择过滤器怎么不显示块的数量
根据你的描述,可能能确保图中肯定有你需要的块对象,无法正确过滤很可能就是过滤条件设置有误。
你可以试着选那个“添加选定对象”,将任意一个名为你需要过滤选择的块对象选中添加到过滤器中,并将唯一的特性元素如块位置、旋转角度等删除,然后过滤再看结果。
⑦ Struts2中过滤器,拦截器,监听器他们之间有什么区别
1、拦截器是基于抄java反射机制的,而过滤器是基于函数回调的。
2、过滤器依赖与servlet容器,而拦截器不依赖与servlet容器。
3、拦截器只能对Action请求起作用,而过滤器则可以对几乎所有请求起作用。
4、拦截器可以访问Action上下文、值栈里的对象,而过滤器不能。
5、在Action的生命周期中,拦截器可以多次调用,而过滤器只能在容器初始化时被调用一次。
⑧ java实现网站流量统计分析系统
通过(Filter)过滤器来做 里面做判断
对访问的页面 +1 入库
如果是总流量也是同样的原理
代码似乎没有人能发吧...
⑨ Java统计在线人数,用过滤器好还是拦截器
你好,要想知道哪个好,要说一下两者的区别,拦截器是struts的或者spring mvc框架封装的,过滤器是java ee自身的
过滤器是在java web中,你传入的request,response提前过滤掉一些信息,或者提前设置一些参数,然后再传入servlet或者struts的 action进行业务逻辑,比如过滤掉非法url。主要为了减轻服务器负载。减少压力
拦截器是在面向切面编程的就是在你的service或者一个方法,前调用一个方法,或者在方法后调用一个方法。比如可以用拦截器做一些权限管理 或者log之类的事情。
两者作用是不同的。如果单纯的统计,建议还是使用过滤器比较好
希望可以解决你的问题