① 氨氮怎么去除可以用pac、pam处理吗
一般生活污水主要通过培养硝化细菌及反硝化细菌来去除水中的氨氮及总氮,PAC主要是除磷的,PAM一般在脱泥时使用。
② 如何去除水中氨氮
以下是去除水中氨氮的一些措施,供参考:
硝化和脱氮
氨(NH3)被亚硝化细菌氧化成亚硝酸,亚硝酸再被硝化细菌氧化成硝酸,称为硝化作用,硝化作用需要消耗氧气,当水中溶氧浓度低于1~2毫克/升时硝化作用速度明显降低。在水中溶氧缺乏的情况下,反硝化细菌能将硝酸还原为亚硝酸、次硝酸、羟胺或氮时,这种过程称为硝酸还原,当形成的气态氮作为代谢物释放并从系统中流失时,就称之为脱氮作用。
③ 处理氨氮废水的方法
氨氮废水处理方法:
处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。
氨氮废水处理方法以及各种方法的优缺点:
1、化学沉淀法。又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg²﹢、PO4³﹣在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。
影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg²﹢):n(NH4﹢):n(P04³-))等。
化学沉淀法的缺点:由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用;药剂使用量大,产生的污泥较多,处理成本偏高;投加药剂时引人的氯离子和余磷易造成二次污染。
2、吹脱法。去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。
影响吹脱效率的因素主要有pH值、温度、气液比、气体流速、初始浓度等。
吹脱法去除氨氮效果较好,操作简便,易于控制。对于吹脱的氨氮可以用硫酸做吸收剂,生成的硫酸钱制成化肥使用。吹脱法是目前常用的物化脱氮技术。但吹脱法存在一些缺点,如吹脱塔内经常结垢,低温时氨氮去除效率低,吹脱的气体形成二次污染等。吹脱法一般与其它氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水预处理。
3、化学氧化法包含:折点氯化法、催化氧化法、电化学氧化法;
4、生物法包含:传统生物脱氮技术、新型生物脱氮技术(同时硝化反硝化(SND)、短程消化反硝化、厌氧氨氧化)
5、膜分离法。利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透、纳滤和电渗析等。影响膜分离法的因素有膜特性、压力或电压、pH值、温度以及氨氮浓度等。
膜分离法的优点是氨氮回收率高,操作简便,处理效果稳定,无二次污染等。但在处理高浓度氨氮废水时,所使用的薄膜易结垢堵塞,再生、反洗频繁,增加处理成本,故该法较适用于经过预处理的或中低浓度的氨氮废水。
6、离子交换法。通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。
离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。
7、土壤灌溉。是将低浓度氨氮废水直接作为肥料使用的方法。对于有些含有病菌、重金属、有机及无机等有害物质的氨氮废水需经预处理将其去除后再进行灌溉。土壤灌溉要求氨氮浓度一般为几十毫克每升。
④ 请问臭氧是否对去除氨氮有效
看到过一篇《低温下MgO催化臭氧化降解氨氮效果研究》,结论如下,可以参考下!
1) pH是影响臭氧除氨和催化臭氧化除氨的重要因素, 不仅会影响溶液中NH3与NH4+的比例和O3氧化氨氮的速率, 还会影响氧化产物的种类, 从而影响脱氮效果.
2) MgO具备很强的催化臭氧化降解氨氮的能力.氨氮被催化降解的主要途径为O3直接氧化NH3, 仅一部分通过O3氧化Cl-而生成的ClOx-(x=1、3)氧化NH4+, 进而生成气态产物N2和N2O实现.
3) MgO催化臭氧化的机制主要包括:①MgO部分溶解生成Mg(OH)2及表面强碱性位发生如O2-+H2O→2OH-的反应使溶液pH升高, 催化O3直接氧化NH3的反应;②MgO表面同时吸附NH3和O3在其表面发生反应, 反应完成后不断释放活性位点再进行下一次吸附降解.
4) 在0~20 ℃的温度区间, 温度越高, 氨氮的催化臭氧化去除率越高;即使在低温(0~10 ℃)下, MgO催化臭氧化除氨仍保持了较高的效率.
⑤ 膜法能处理氨氮吗
膜分离是通过空去除的,水能通过盐留下,是能用过,氨也能通过所以去除不了氨
⑥ 纳滤能否有效去除水中的COD BOD5和TOC
首先,纳滤膜(Nanofiltration Membranes)是80年代末期问世的一种新型分离膜,其截留分子量介于反渗透膜和超滤膜之间,约为-2000Da,由此推测纳滤膜可能拥有lnm左右的微孔结构,故称之为“纳滤”。纳滤膜大多是复合膜,其表而分离层由聚电解质构成,因而对无机盐具有一定的截留率。国外已经商品化的纳滤膜大多是通过界面缩聚及缩合法在微孔基膜上复合一层具有纳米级孔径的超薄分离层。
纳滤膜能截留纳米级(0.001微米)的物质。纳滤膜的操作区间介于超滤和反渗透之间,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。纳滤膜的运行压力一般3.5-30bar。
纳滤过程的关键是纳滤膜。对膜材料的要求是:具有良好的成膜性、热稳定性、化学稳定性、机械强度高、耐酸碱及微生物侵蚀、耐氯和其它氧化性物质、有高水通量及高盐截留率、抗胶体及悬浮物污染,价格便宜且采用的纳滤膜多为芳香族及聚酸氢类复合纳滤膜。复合膜为非对称膜,由两部分结构组成:一部分为起支撑作用的多孔膜,其机理为筛分作用;另一部分为起分离作用的一层较薄的致密膜,其分离机理可用溶解扩散理论进行解释。对于复合膜,可以对起分离作用的表皮层和支撑层分别进行材料和结构的优化,可获得性能优良的复合膜。膜组件的形式有中空纤维、卷式、板框式和管式等。其中,中空纤维和卷式膜组件的填充密度高,造价低,组件内流体力学条件好;但是这两种膜组件的制造技术要求高,密封困难,使用中抗污染能力差,对料液预处理要求高。而板框式和管式膜组件虽然清洗方便、耐污染,但膜的填充密度低、造价高。因此,在纳滤系统中多使用中空纤维式或卷式膜组件。
在我国,对纳滤过程的理论研究比较早,但对纳滤膜的开发尚处于初步阶段。在美国、日本等国家,纳滤膜的开发已经取得了很大的进展,达到了商品化的程度,如美国Filmtec公司的NF系列纳滤膜、日本日东电工的NTR-7400系列纳滤膜及东丽公司的UTC系列纳滤膜等都是在水处理领域中应用比较广泛的商品化复合纳滤膜。
对于一般的反渗透膜,脱盐率是膜分离性能的重要指标,但对于纳滤膜,仅用脱盐率还不能说明其分离性能。有时,纳滤膜对分子量较大的物质的截留率反而低于分子量较小的物质。纳滤膜的过滤机理十分复杂。由于纳滤膜技术为新兴技术,因此对纳滤的机理研究还处于探索阶段,有关文献还很少。但鉴于纳滤是反渗透的一个分支,因此很多现象可以用反渗透的机理模型进行解释。关于反渗透的膜透过理论[2]有朗斯代尔、默顿等的溶解扩散理论;里德、布雷顿等的氢键理论;舍伍德的扩散细孔流动理论;洛布和索里拉金提出的选择吸附细孔流动理论和格卢考夫的细孔理论等。
纳滤膜的过滤性能还与膜的荷电性、膜制造的工艺过程等有关。不同的纳滤膜对溶质有不同的选择透过性,如一般的纳滤膜对二价离子的截留率要比一价离子高,在多组分混合体系中,对一价离子的截留率还可能有所降低。纳滤膜的实际分离性能还与纳滤过程的操作压力、溶液浓度、温度等条件有关。如透过通量随操作压力的升高而增大,截留率随溶液浓度的增大而降低等。
所以,纳滤膜可以去除大部分COD及BOD和TOC
⑦ 怎样除氨氮,方法有哪些
氨氮去除方法有多种,1、物理化学法:有折点氯化法、空气吹脱法、化学沉淀法、液膜法、电渗析除氨氮法、催化湿式氧化法、土壤灌溉法、循环冷却水系统脱氨法;2、生物脱氮法
⑧ 超滤膜如何除氨氮
超滤膜做成膜生物反应器(MBR)可以去除氨氮,主要是生物反应器中的微生物的作用。超滤膜孔径较大,氨分子可以通过。如果打算直接滤除氨氮,需要用反渗透膜。
⑨ 氨氮经过反渗透膜能否除去
可以去除,但吨水处理成本太高;技术上可行,但经济上不划算。
建议添加少量微生物制剂——去除氨氮的生物菌种
可提供