Ⅰ 阴阳离子交换柱的结构及工作流程是啥
一般用在水处理设备中
Ⅱ 逆流再生离子交换器与顺流再生离子交换器相比结构上的主要区别是
以碳钢型离子交换器为例:逆流再生与顺流再生交换器,在结构上的区别是,逆流再生交换器版有中排装置,顺流再生工艺的交换器没有,但逆流再生工艺优于顺流再生工艺。网络上我的图片,就是逆权流再生工艺设备…。一杰水质
Ⅲ 离子交换法的原理
吸附()
溶液中的离子与树脂上官能团发生反应,并结合到树脂上的过程。
淋洗(elution)
用一定浓度的淋洗剂将已吸附在离子交换树脂上的金属由树脂转移到水溶液中的过程,又称解吸。
转型(transformation)
将树脂从一种型式转变为其他离子型式的过程。
离子交换树脂(ion exchange resin)
一种带有官能团(有交换离子的活性基团)、具有网状结构与不溶性的高分子聚合物。通常是球形颗粒物。
饱和树脂(loadedresin)
在某一特定条件下,当吸附尾液中被吸附离子的浓度与进料液中浓度相等或达到动态平衡时的离子交换树脂。
离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换。常见的两种离子交换方法分别是硬水软化和去离子法。硬水软化主要是用在反渗透(RO)处理之前,先将水质硬度降低的一种前处理程序。软化机里面的球状树脂,以两个钠离子交换一个钙离子或镁离子的方式来软化水质。
离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。
阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。也可以将阳离子交换树脂与阴离子交换树脂混在一起,置于同一个离子交换床中。不论是哪一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。
Ⅳ D001型离子交换树脂结构
D001树脂是大孔型苯乙烯系强酸阳离子交换树脂,结构就是乙烯双键两头挂两个苯环,在苯环邻对位交联上一个磺酸基,这个地方画图太不方便,如您有需求,可以搜北京争光创业科技有限公司即可找到我的联系方式
Ⅳ 离子交换树脂的结构和活化方法
你好,你说的这两个产品要根据你的具体用途来判定他的活化工艺,
1、一般D401螯合树脂的出厂形式为Na+型,如果你是用于湿法冶金吸附钯,你可以直接使用不需要活化了,要是用于二次盐水精制及湿法冶金铜、金、等金属的你可以用4-6的HCL-活化;
2、D301G出厂均为由离胺型或CL-型,要是用于废水处理及湿法冶金的必须转为CL-型,要是用于药物及果糖脱色的要转为OH-型。
Q495 711 389
Ⅵ 离子交换树脂的结构有什么特点
离子交换树脂是带有可交换离子功能基团的具有三维网孔结构的高分子聚合物,其能够与溶液中相应的阳离子或阴离子发生交换作用,达到吸附去除或富集提取的目的。
离子交换树脂的结构由三部分组成:不溶性的三维空间网状高分子骨架、连接在高分子骨架上的功能基团以及功能基团上所带的可交换离子。
离子交换树脂按照组成其分子骨架的物质不同,分为苯乙烯系、丙烯酸系、环氧系等;按照其可交换的离子性质分类,可分为阳离子交换树脂和阴离子交换树脂,而阳离子交换树脂又可分为强酸阳离子交换树脂与弱酸阳离子交换树脂,阴离子交换树脂又可分为强碱阴离子交换树脂与弱碱阴离子交换树脂;按照其内部孔道结构的不同,可分为大孔型离子交换树脂与凝胶型离子交换树脂。
(1)强酸阳离子交换树脂
强酸阳离子交换树脂分子骨架上带有强酸性基团(如磺酸基-SO3H),在溶液中,强酸基团易离解出H+,故呈强酸性;而强酸功能基团上的负电基团(如-SO3—),能吸附结合溶液中的其他阳离子,使树脂功能基团上解离的H+与溶液中的其他阳离子发生交换作用。强酸阳离子交换树脂因其强酸功能基团解离能力强,因此,在酸性或碱性溶液中功能基团均能发生解离并产生离子交换作用。
(2)弱酸阳离子交换树脂
弱酸阳离子交换树脂分子骨架上带有弱酸性基团(如羧酸基-COOH),在溶液中,弱酸基团同样可以解离出H+而呈酸性;而弱酸功能基团上的负电基团(如-COO—),能吸附结合溶液中的其他阳离子,使树脂功能基团上解离的H+与溶液中的其他阳离子发生交换作用。但是因为弱酸阳离子交换树脂所带功能基团为弱酸基团,解离性较弱,低pH环境下不利于弱酸基团的解离,因此,弱酸阳离子交换树脂适合在碱性、中性或弱酸性溶液中(如pH:5~14)使用。
(3)强碱阴离子交换树脂
强碱阴离子交换树脂分子骨架上带有强碱性基团(如季胺基-NR3OH),强碱基团能在溶液中离解出OH—而呈强碱性;而强碱基团上的正电基团(如-NR3+),能吸附结合溶液中的其他阴离子,使树脂功能基团上解离的OH—与溶液中的其他阴离子发生交换作用。强碱阴离子交换树脂所带强碱基团具有很强的解离性能,在不同pH环境下均能正常使用。
(4)弱碱阴离子交换树脂
弱碱阴离子交换树脂分子骨架上带有弱碱基团(如伯胺基-NH2、仲胺基-NHR、叔胺基-NR2),弱碱基团在溶液中也能解离出OH—而呈弱碱性;弱碱基团上的正电基团能吸附结合溶液中的其他阴离子,从而产生阴离子交换作用。因为弱碱阴离子交换树脂所带弱碱基团的解离性较弱,因此,其适合在中性或酸性条件下(如pH:1~9)下使用。
Ⅶ 离子交换器的工作原理
工作原理就是离子的交换。
运行时:阳树脂(H-R)+(M+)-->:(M-R)+(H+)
阴树脂(OH-R)+(X-)-->:(X-R)+(OH-)
其中M+为金属离子,X-为阴离子。
再生过程为其逆过程。
离子交换器的失效控制
离子交换除盐水处理最简单的流程为 阳床-阴床 组成的一级复床除盐系统。有的一级复床除盐系统采用单元制,即每套一级复床除盐系统包括 阳床、(除碳器)、阴床各一台,在离子交换除盐运行过程中,无论是阳床还是阴床先失效,都是同时再生;还有的一级复床除盐系统采用母管制,即阳床与阳床或阴床与阴床是并联运行的,哪一台交换器失效就再生哪一台。
1 检测和控制原理
强酸性阳树脂对水中各种阳离子的吸附顺序为:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金属离子Na+被吸附的能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,H+.最后被其他阳离子置换下来,当保护层穿透时,首先泄漏的是最下层的Na+;因此监督阳离子交换器失效是以漏钠为标准的;其反应方程为(A代表金属阳离子,R为树脂基团):
An+ +nRH=RnA+n H+
HCO3- + H+ =H2O+CO2↑
强碱性阴树脂对水中各种阴离子的吸附顺序为:SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,OH-.被其他阴离子置换下来,当保护层穿透时,首先泄漏的是最下层的HSiO3-;因此监督阴离子交换器失效是以漏硅为标准的;其反应方程为(B代表酸根阴离子,R为树脂基团):
Bm- +mROH=RmB+mOH-
2 控制点和控制方法
由于母管制系统包含了单元制系统,而且它具有能充分使用树脂、提高交换器的出水能力、降低酸碱消耗等优点,我们在研究中主要讨论以这种结构为基础的离子交换除盐水处理系统。
以成都生物制品研究所蛋白分离车间纯水站为例,该系统为母管制水处理系统,系统的结构为:砂滤-活性炭过滤-粗滤-阳床- 一阴-二阴-混床-精滤-纯水罐,系统产水能力为5 t/h,在系统的失效控制研究中,我们提出单元失效控制概念,也就是充分利用了母管制制水系统的优点对系统进行失效控制。
(1)RO对各有机溶质的去除率大于NF膜。(2)不同有机溶质的去除率不相同,有的甚至相差很大(例如,RO和NF膜对乙酸的吸光度去除率分别为95.34%、81.45%,而对苯胺的吸光度去除率则分别为61.50%、46.82%)。
3 出水水质
原水经一级复床除盐后,电导率(25℃)低于10μS/cm,水中硅含量低于100μg/L。
Ⅷ 离子交换器的正洗是什么
离子交换器的运行
离子交换器分为固定床和连续床两种。固定床有顺流再生固定床、逆流再生固定床、浮动床、双层床、混合床等形式;连续床有移动床和流动床。离子交换除盐系统一般都采用固定床。
离子交换器外形为圆筒形容器,为防止设备腐蚀,对交换器内部及附属设备都进行了防腐处理。
针对我厂的设备特点,本节主要介绍逆流再生固定床离子交换工艺。
一、逆流再生固定床离子交换工艺
1、交换器的结构
逆流再生离子交换器按其用途的不同,可分为阳离子交换器(包括H型)和阴离子交换器(OH型等)。用于软化工艺的阳离子交换器称为钠离子软化器和氢离子软化器。用于除盐工艺的阳离子交换器和阴离子交换器分别称为阳床和阴床。这些交换器在结构上没有多大区别,其结构为交换器内顶部装有十字支管式进水分配装置。中上部装有母支管式再生液分配装置,称为中间排水装置。在其上面有一层厚150~200mm的压脂层,其作用一是过滤掉水中的悬浮物,二是使水均匀地进入中排装置。底部装有穹形多孔板加石英砂垫层式的排水装置。交换器的外部设有各种管道、阀门、取样管、监视管、排空气管、流量和压力表计以及有机玻璃窥视孔等。
2、交换器的运行
交换器的运行应保证其出水水质、水量和经济指标,这些指标与运行操作,特别是再生操作有很大的关系。
逆流再生固定床的运行通常分为四个步骤,从床层失效后算起为:反洗、再生、正洗和交换。这四个步骤为交换器的一个运行周期。
(1)小反洗。交换器运行到失效时,停止交换运行,将反洗水从中间排水管引进,对中间排水管上面的压脂层进行反洗,以冲去运行时积聚在表面层和中间排水装置上的污物,然后由上部排走。冲洗流速应使压脂层能充分松动,但又不至将正常的颗粒冲走。反洗一直进行到出水澄清。
(2)放水。小反洗后,待交换剂颗粒下降后,放掉交换器内中间排水装置上部的水。
(3)进再生液。开进酸(碱)一次、二次门,启动自用水泵,开喷射器入口门,维持进水流速5-8m/h,同时开启并调整中间排水门。开酸(碱)计量箱出口门,调整进酸浓度为3-4%范围内。进碱浓度为2-2.5%范围内。
(4)逆流冲洗。当再生液进完后,关闭进再生液阀门,停止送入再生液,但喷射器保持原来的流量,在有顶压的情况下,进行逆流冲洗,直至排出废液达到一定标准为止[如H型交换器,控制排出废液中酸度小于10mmol/L(OH-)]。逆流冲洗所需的时间一般为30~40min,逆洗水应采用质量较好的水,不然会影响底部交换剂的再生程度。
(5)正洗。最后,用水由上而下进行正洗至出水合格,即可投入运行。
逆流离子交换器一般在运行10~20个或更多周期后,进行一次大反洗,以除去交换剂层中的污物和破碎的树脂微粒。通常运行,不进行大反洗。大反洗是从底部进水,废水由上部反洗排水阀门放掉。由于大反洗时扰乱了整个树脂层,所以大反洗后第一次再生时,再生剂的用量应加大1倍以上。
为了使逆流再生达到较好的效果,故在逆流再生的操作工艺中需注意以下几个问题:
1)压脂层的厚度要符合要求。
2)为使底部树脂的再生程度高,不致被杂质污染而影响出水水质,故在逆流再生后,应用水质较好的水逆流冲洗,如用经过H离子交换的水来逆流冲洗阴离子交换器。
3)中部排水装置应进行必要的加固,以防止其上的管子断裂或弯曲。此外,为了防止在反冲洗的过程中产生过大的应力,在大反洗时的流量应由小到大,以逐渐排除交换器中的空气和疏松树脂层。进入交换器水中的悬浮物含量要小,以免压脂层中积聚污物,造成过大的压降。
4)逆流再生所用的再生剂质量要好,否则,仍不能保证出水水质良好。逆流再生的再生废液中剩余的再生剂量较少,故不宜再用。
5)应防止有气泡混入交换剂层中。
Ⅸ 离子交换树脂的结构分析
红外——考察基团结构;元素分析——分析元素组成;核磁共振和交换容量等都做做看
Ⅹ 离子交换原理
离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于丙烯酸系弱酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:H+>Fe3+>A13+>Ca2+>Mg2+>K+>Na十。 离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。以D113型离子交换树脂制备硫酸钙晶须为例说明: D113丙烯酸系弱酸性阳离子交换树脂是一种大孔型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当硫酸锌溶液中的Zn2+,S042-扩散到树脂的孔道中时,由于该树脂对Zn2+选择性强于对Ca2+的选择性,,所以Zn2+就与树脂孔道中的交换基团Ca2+发生快速的交换反应,被交换下来的Ca2+遇到扩散进入孔道的S042-发生沉淀反应,生成硫酸钙沉淀。其过程大致为:
(1)边界水膜内的扩散 水中的Zn2+,S042-离子向树脂颗粒表面迁移,并扩散通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Zn2+,S042-离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点;
(3)离子交换 Zn2+与树脂基团上的可交换的Ca2+进行交换反应;
(4)交联网孔内的扩散 被交换下来的Ca2+在树脂内部交联网孔中向树脂表面扩散;部分交换下来的Ca2+在扩散过程中遇到由外部扩散进入孔径的S042-发生沉淀反应,生成CaS04沉淀;
(5)边界水膜内的扩散 没有发生沉淀反应的部分Ca2+扩散通过树脂颗粒表面的边界水膜层,并进入水溶液中。 此外,由于离子交换以及沉淀反应的速度很快,硫酸钙沉淀基本在树脂的孔道里生成,因此树脂的孔道就限制了沉淀的生长及形貌,对其具有一定的规整作用。通过调整搅拌速度、反应温度等外界条件,可以使树脂颗粒及其内部孔道发生相应的变化,这样当沉淀在树脂孔道中生成后,就得到了不同尺寸和形貌的硫酸钙沉淀。