❶ 如何杀病毒
楼主可能是个可爱的小白,或者是一个电脑高手
如果是小白的话,想杀毒的话,就下载杀毒软件吧,这里给你推荐几款:
免费的:“金山毒霸”“360杀毒”“可牛杀毒”“木马专杀”“贝壳木马专杀”“小红伞”“MSE”
收费的:“瑞星”“江民”“诺顿”“大蜘蛛”“微点杀毒”“卡巴斯基”“趋势科技”
这几款是现在流行的主流杀毒软件,你下载好之后,进行杀毒就行了。一般别上一些不知名或者一些莫名其妙的网站,一般不会中招。
如果你是一位电脑高手,你向手动杀毒的话,或者进行反病毒的话,你应该去看看相关的代码知识,呵呵,很有用的。
❷ 迅驰平台的第四代迅驰平台
2007年5月9日,Intel发布了迅驰4平台Santa Rosa,平台包含四大组件,分别是Merom+处理器、Intel 965M系列芯片组、Intel 4965AGN无线模块和Intel Tubro Memory(英特迅盘)模块。其中处理器和Intel 965移动芯片组是必要选择,而Intel无线模块可以从4965AGN、3945ABG两种模块中随意选择,都符合Santa Rosa平台的要求。Intel Tubro Memory模块则为可选方案,即便不采用该模块,依然可以张贴新版的Centrino Duo标志。
1、处理器:Santa Rosa平台采用的处理器依然使用酷睿微体系架构,因此也属于Core2Duo处理器的范畴,但从处理器的开发代号来看,Santa Rosa平台采用的处理器名为Merom+,相对于传统的Merom处理器,Merom+处理器主要有两点改进,分别是FSB由原来的667MHz升级到800MHz,其次是处理器的针脚定义由原来的Socket-M更改为Socket-P,但依然是Socket478针设计,以往的Socket479型处理器底座可以完全兼容,但是针脚定义的不同导致945芯片组以及915芯片组并不能兼容新的处理器。此外提供了对64位运算的原生支持,而且其支持IDA技术,该技术能够进一步提高双核处理器的性能,并减小双核处理器的能耗。在二级缓存方面,则依旧有2MB和4MB两种级别可供选择,新增了Intel Dynamic Acceleration (IDA)技术,对于单线程任务,或者大范围非并行指令的多线程任务,IDA技术能够更好的进行任务的分配,只由一个核心来处理器,从而提高性能,同时其它空闲的核心能够进入C3或者更深的休眠状态,降低处理器的耗电,延长续航时间。而当有新的线程进入队列时,休眠的核心就会根据需要开始工作。
2、移动芯片组:开发代号为Crestline的Intel 965移动芯片组共包含三种不同的规格,分别是GM965、PM965和GL960,根据搭配的南桥芯片不同,即将发售的各类Santa Rosa平台产品还是存在一些微小的功能差别,搭配ICH8-M的芯片组不支持RAID功能,而搭配ICH8-ME的芯片组则能够支持RAID0及RAID1。
965系列芯片组,全部采用新的命名方式,之前采用的数字+字母的组合,如今刚好掉了个,改为字母+数字的组合。其中PM为不集成显卡,而GM为集成显卡,GL表示集成显卡的低端产品,主要是为Celeron-M所准备。
(1)PM965芯片同样是无内置显卡,只要面对高端市场的独显机型。PM965支持800MHz的前端总线,支持最大4GB DDR2 667/533内存,可以搭配ICH8M和ICH8M-Enhanced两款南桥芯片组,在Santa Rosa发布之后,其将成为独显本本芯片组中的主力。
(2)GM965在各方面与PM965基本相同,但GM965集成了显卡GMA X3000,最高核心频率达到了500MHz,可以完整支持Direct X 9.0c。
GMA X3000作为Intel第四代绘图核心,成为首个支援Direct X 9.0、Sharder Model 3.0及OpenGL 1.5的Intel IGP芯片组,硬件Pixel Sader 3.0及Vertex Shader 3.0处算能力,硬件Transform & Lighting (T&L)及Full Precision Floting Point Operations支援HDR效果,最高可共享256MB系统记忆体。同时GMA X3000亦已整合独立的UDI输出功能,作为未来的数字输入输出技术,相信随着GMA X3000的推广,这一技术也会逐渐成为主流。
(3)GL960仅支持533MHz的前端总线,同样的,内存也仅支持最大2GB DDR2 533,相比GM965缩水不少,更多的是为Celeron-M所准备。此外,GL960集成的GMA X3000显示核心,其核心频率也仅为320MHz,同时在搭配的南桥芯片方面,GL960仅可使用ICH8M,不过GL960同样可以完整支持Vista的Aero特效,对于入门级市场,相信会是一个很不错的选择。
而在南桥芯片组方面,将有ICH8M和ICH8M-Enhanced两款。ICH8M-Enhanced将比普通版则加入Intel Active Management Technology 2.5版本支援,及支援RAID 0、1功能。
3、无线网卡模块:相比3945ABG的单一选择方案,Santa Rosa改用4965AGN和4965AG上下搭配,厂商任选其中一种无线网卡,今后都可以贴上迅驰的Logo。就目前了解到的情况,4965AGN和4965AG均放弃了对802.11b的支持,其中4965AG仅支持802.11a和802.11g,而4965AGN又增加了对802.11n的支持。
Intel早在2006年底就发布了Intel Wireless 4965AGN无线网卡模块,这款新的无线模块依旧采用Mini-Card接口,能够兼容目前的3945ABG无线模块直接升级。Intel Wireless 4965AGN无线模块是符合802.11N草案的产品,能够向下兼容2.4GHz的BG无线格式和5GHz的A无线格式,是目前笔记本无线网卡模块中规格最高的产品。这款Intel Wireless 4965AGN无线网卡模块能够提供300Mbps的最高数据传输速度,通过MIMO接口进行信号发射,能够提供更好的覆盖率,MIMO天线也是保证了如此高带宽数据连接的关键因素。
Intel Wireless 4965AGN无线模块开始支持基于无线的技术的主动管理技术,这将会是配合将来的VPro技术的一个关键细节,管理者可以通过无线模块唤醒笔记本电脑,保证时时刻刻都处于被管理状态,这是目前3945AGN无线模块所无法支持的。
关于无线广域网,Santa Rosa增加了1965HSD作为建议规格,1965HSD支持2.5G(Edge)和3G(CDMA-2000/WCDMA)无线技术,其中2.5G最高支持348Kbps,3G则可以实现2.4Mbps的速率。
4、英特尔迅盘(Tubro Memory)模块:Tubro Memory模块是新增加的一个新面孔,根据英特尔的说法,Turbo Memory可以大幅增加操作系统的启动和运行速度,能够更快的从休眠中恢复,速度能够提高近一倍,而休眠时的功耗水平却大幅降低。不过它并不是Santa Rosa平台必需的硬件配置。
Turbo Memory的全部神秘之处,就在于NAND闪存芯片。Turbo Memory充当硬盘和系统之间的缓存。读数据时,硬盘根据预测算法,将数据预读到Turbo Memory上,系统则从Turbo Memory直接读数据,由于NAND闪存芯片能够更快的读取随机数据,可以高速多次重复读取某一数据,因而系统可以更高速的读取所需的数据。写数据时,系统将数据传输到Turbo Memory,累计到一定数量后,Turbo Memory再将数据一次性传递给硬盘。由于在目前,硬盘已经成为整机的绝对性能瓶颈,而NAND闪存芯片的采用会大量减缓这一瓶颈。同时,由于系统的更多的是从Turbo Memory读取和写入数据,硬盘更多的时间处于待机状态,无论功耗、噪音还是热量都会大幅减少,这对笔记本电脑无疑是一个很诱人的改进。
而在休眠的时候,以往的传统方式是将数据全部转移到硬盘上,现在则是将数据都存储在Turbo Memory上,由于NAND闪存即使断电也不会丢失数据,而其数据的读写速度当然不是传统硬盘可以比拟的,因而可以实现更高速度的休眠和恢复,根据英特尔官方的数据,从休眠中恢复的速度将提高一倍。
就原理和技术上来说,Turbo Memory技术是个相当完美的硬盘加速方案,至少在SSD闪存硬盘诞生之前还是。但是是否当真能够如英特尔所说,实现X2的系统速度呢?关键就在于预读的算法,是否能够具有足够的命中率
Tubro Memory模块只能在Windows Vista操作系统下工作。满足使用Tubro Memory模块的条件比较苛刻,首先,用户需要启用硬盘的AHCI功能,安装Windows Vista操作系统,并且计算机硬件本身需要能够支持DFOROM功能(磁盘过滤ROM),只有满足这些条件才可以正常使用Tubro Memory模块的功能。
附:ReadyBoost技术、Hybrid技术和Turbo Memory技术的区别:
ReadyBoost技术是由微软提出,Vista操作系统的加速技术之一,其将高速的NAND闪存芯片作为系统和硬盘之间的缓存,同时对于用户常用的操作和软件进行分析,提前将数据预存到NAND闪存芯片上。
Hybrid技术则可以是高速的优盘,也可以是高速的读卡器或者mp3,可以是Hybrid技术的硬盘,也可以是Turbo Memory技术的闪存模块。
至于Hybrid技术和Turbo Memory技术的区别,首先可以确定的是,Hybrid将NAND闪存芯片直接集成到了硬盘上,通过SATA和系统进行互连;而Turbo Memory技术则是一块集成了NAND闪存芯片的卡,通过PCI Express和系统进行 互连;至于原理和作用,两者应该是完全相同的。
❸ 路由器MAC过滤破解
是呀,在路由里添加自己的mac就ok啦。
要不就把允许上网的mac地址抄下来,通过软件更改自己无线网卡的mac地址。
❹ 英特尔® 酷睿™2 双核处理器和 英特尔® 迅驰® 处理器技术 哪个更好一点有什么分别
一个是处理器(即cpu), 一个是处理技术,跟本不是一回事。
先看看下面这些东东,看不明白没关系,最后我再帮你说简单点~~
酷睿处理器采用800MHz-1333Mhz的前端总线速率,45nm/65nm制程工艺,2M/4M/8M/12M/16M L2缓存,双核酷睿处理器通过SmartCache技术两个核心共享12M L2资源.英特尔公司已经结束使用长达12年之久的“奔腾”的处理器,转而推出“Core 2 Duo”和“Core 2 Quad”品牌。“奔腾”作为消费者所熟悉的一个品牌将逐渐转向经济型产品。
酷睿一代,英特尔先推出的CORE用于移动计算机上市不久即被CORE2取代。酷睿二代,包括DUO双核和QUAD四核,即将推出八核,但没有单核(现在有了,在笔记本配置里看到过)。应用的核心“Merom用于移动计算机”“Conroe用于桌面计算机”“Woodcrest用于服务器”
“迅驰”是一种计算功能强、电池寿命长,具有移动性、无线连接上网等功能的CPU、芯片组、无线网卡结合的名称。
2003年3月英特尔正式发布了迅驰移动计算技术,英特尔的迅驰移动计算技术并非以往的处理器、芯片组等单一产品形式,其代表了一整套移动计算解决方案,迅驰的构成分为三个部分:奔腾M处理器、855/915系列芯片组和英特尔PRO无线网上,三项缺一不可共同组成了迅驰移动计算技术。英特尔迅驰移动计算技术是英特尔最出色的笔记本电脑技术。它不仅仅是一枚处理器,同时还具备集成的无线局域网能力,卓越的移动计算性能,并在便于携带的轻、薄笔记本电脑外形中提供了耐久的电池使用时间。这些组件包括英特尔奔腾M处理器,移动式英特尔915高速芯片组家族或英特尔855芯片组家族,英特尔PRO/无线网卡家族。
Carmel是首代迅驰的开发代号,它於2003年3月启动。Carmel包括了一个Pentium M 处理器,一个英特尔855系列主机板,一个IEEE 802.11b或 IEEE 802.11ab无线网路接收器。
Sonoma是英特尔第二代迅驰平台,在2005年1月启动。它包括了一个更快的Pentium M 处理器,其具有133MHz(四倍频后为533MHz)的前端汇排,英特尔移动915Express核心家族,支持IEEE 802.11bg或 IEEE 802.11abg的WiFi 接收器。速度提升的同时,因为使用了PCI Express及更快的Pentium M处理器使得Sonoma笔记本的电使用时间减少,Sonoma笔记本在53 Wh电池的情况下大妁可使用3.5-4.5小时。
三代迅驰平台Napa,
1.Yonah Core处理器
在Napa平台里面,最为瞩目的莫过于采用了双核技术的Core Duo处理器, Core Duo处理器是采用65nm制程新一代移动处理器,不过仍然采用Socket 479针脚。它除了引入双核技术以外,同时前端总线速率提升至667MHz,因为双核心的存在而使用的SmartCache技术、新一代电源管理技术,以及开始支持SEE3多媒体指令集。
Core Duo双核是Intel第一款在移动处理器产品里面引入双核技术的产品,它在一个处理器里面植入了两个核心单元,通过SmartCache技术共享2M L2二级缓存,根据处理任务的负荷程度,在两个核心处理单元之间进行协调,然后分别同时进行指令运算,从而达到更高效的处理能力。双核技术所解决的是,并发多任务运行时整体的性能。虽然Core Duo有两个核心,但是缓存是通过SmartCache技术来共享使用2M L2缓存,而并没有为两个核心单独设计二级缓存,因此总线速率同时提高至667MHz会相应减少处理器与芯片组之间通信存在瓶颈的可能性。
双核心技术的引入,虽然性能方面获得了绝对的提升,同时也提高了多任务并发运行的处理效率,但是作移动处理器产品来说,功耗有没有得到相应的控制也是用户最为关心的方面。Yonah Core处理器的产品线当中,单核Core solo处理器的功耗还是与Dothan处理器一样,而双核Core Duo普通版的最大运行功率达到了31W,超低电压双核Yonah只有9W,低电压单核15W,普通一般单核为27W,单核Yonah处理器的功耗比相应Dothan处理器保持同样的水平,而双核版的Yonah处理器的功耗则有所提升,因此Intel引入了名为Intel Dynamic Power Coordination技术、Enhanced Intel Deeper Sleep节能技术,来使Napa平台可以更合理的根据用户的应用来调整功耗,结合Intel SPeedstep自动调频技术,Napa平台在整体功耗方面会相应到改善。Intel Digital Media Boost也是Yonah处理器引入的一个新技术,其主要就是在SSE/SSE2 Micro Ops Fusion、SSE解码器容量提高以及对SSE3指令集的支持,这一技术的引入,会增加Yonah处理器在多媒体应用方面的性能,对于家庭用户来说,其娱乐性会得到改善,比如在视频剪辑、视频播放等应用上,性能以及效果都会得到提高。
2.Intel 945芯片组系列
Calistoga是移动Intel 945系列芯片组的代号,相比于Intel 915系列芯片组,Calistoga芯片组提供了系统总线至667MHz,支持DDR2双通道内存,最高速率支持667MHz(PC5300),支持PCI-Express x16接口技术,Intel 945GM集成Intel Graphics Media Accelerator 950显示单元,400MHz显示核心,并且提升共享系统DDR2 667MHz内存为显存。Intel 945北桥相应地搭配ICH7-M南桥,支持6个PCI-Express x1接口,同时也支持PCI接口,SATA-300硬盘接口,最高支持3Gbps传输速率。另外,同样支持HD Audio音频技术。
3.Intel Pro/Wireless 3945ABG无线模块
Napa将使用Intel Pro/Wireless 3945ABG无线模块,它支持IEEE 802.11a/b/g无线网络协议,并且在Napa中将一改在Sonoma以及之前的Carmel平台使用的PCI接口,开始使用PCI-Express x1接口,并且模块的规格也转为一种更小的迷你卡。
基于PCI-Express x1接口的WiFi迷你卡无疑最大的好处可以为机器节约一些资源,符合笔记本电脑机体尺寸向更便携的方向发展,不过就目前来看,也有部分Napa平台的工程样机仍然采用基于PCI接口的Intel 2200BG无线模块,因此在未来Napa产品中,这两种无线模块会同时存在,需要一个过渡期来完成两代无线模块的交接。兼容802.11a/b/g三种无线网络协议,可以使Napa有更为广泛的应用领域,就随着迅驰技术发展起来的无线网络市场来看,目前普遍的还是兼容802.11b/g双模无线环境,而抗干扰能力更强的802.11a无线环境多用于一些特殊领域。
三代半准讯4Napa Refresh和Napa最大的区别在于中央处理器升级为Core 2 Duo(酷睿2)。
2007年5月9日,Intel发布了迅驰4平台Santa Rosa,平台包含四大组件,分别是Merom处理器、Intel 965M系列芯片组、Intel 4965agn无线模块和Intel Tubro Memory(英特迅盘)模块。其中处理器和Intel 965移动芯片组是必要选择,而Intel无线模块可以从4965AGN、3945ABG两种模块中随意选择,都符合Santa Rosa平台的要求。Intel Tubro Memory模块则为可选方案,即便不采用该模块,依然可以张贴新版的Centrino Duo标志。
1、处理器:Santa Rosa平台采用的处理器依然使用酷睿微体系架构,因此也属于Core2 Duo处理器的范畴,但从处理器的开发代号来看,Santa Rosa平台采用的处理器名为Merom+,相对于传统的Merom处理器,Merom处理器主要有两点改进,分别是FSB由原来的667MHz升级到800MHz,其次是处理器的针脚定义由原来的Socket-M更改为Socket-P,但依然是Socket478针设计,以往的Socket479型处理器底座可以完全兼容,但是针脚定义的不同导致945芯片组以及915芯片组并不能兼容新的处理器。此外提供了对64位运算的原生支持,而且其支持IDA技术,该技术能够进一步提高双核处理器的性能,并减小双核处理器的能耗。在二级缓存方面,则依旧有2MB和4MB两种级别可供选择,新增了Intel Dynamic Acceleration (IDA)技术,对于单线程任务,或者大范围非并行指令的多线程任务,IDA技术能够更好的进行任务的分配,只由一个核心来处理器,从而提高性能,同时其它空闲的核心能够进入C3或者更深的休眠状态,降低处理器的耗电,延长续航时间。而当有新的线程进入队列时,休眠的核心就会根据需要开始工作。
2、移动芯片组:开发代号为Crestline的Intel 965移动芯片组共包含三种不同的规格,分别是GM965、PM965和GL960,根据搭配的南桥芯片不同,即将发售的各类Santa Rosa平台产品还是存在一些微小的功能差别,搭配ICH8-M的芯片组不支持RAID功能,而搭配ICH8-ME的芯片组则能够支持RAID0及RAID1。965系列芯片组,全部采用新的命名方式,之前采用的数字+字母的组合,如今刚好掉了个,改为字母+数字的组合。其中PM为不集成显卡,而GM为集成显卡,GL表示集成显卡的低端产品,主要是为Celeron-M所准备。(1)PM965芯片同样是无内置显卡,只要面对高端市场的独显机型。PM965支持800MHz的前端总线,支持最大4GB DDR2 667/533内存,可以搭配ICH8M和ICH8M-Enhanced两款南桥芯片组,在Santa Rosa发布之后,其将成为独显本本芯片组中的主力。(2)GM965在各方面与PM965基本相同,但GM965集成了显卡GMA X3000,最高核心频率达到了500MHz,可以完整支持Direct X 9.0c。GMA X3000作为Intel第四代绘图核心,成为首个支援Direct X 9.0、Sharder Model 3.0及OpenGL 1.5的Intel IGP芯片组,硬件Pixel Sader 3.0及Vertex Shader 3.0处算能力,硬件Transform & Lighting (T&L)及Full Precision Floting Point Operations支援HDR效果,最高可共享256MB系统记忆体。同时GMA X3000亦已整合独立的UDI输出功能,作为未来的数字输入输出技术,相信随着GMA X3000的推广,这一技术也会逐渐成为主流。(3)GL960仅支持533MHz的前端总线,同样的,内存也仅支持最大2GB DDR2 533,相比GM965缩水不少,更多的是为Celeron-M所准备。此外,GL960集成的GMA X3000显示核心,其核心频率也仅为320MHz,同时在搭配的南桥芯片方面,GL960仅可使用ICH8M,不过GL960同样可以完整支持Vista的Aero特效,对于入门级市场,相信会是一个很不错的选择。而在南桥芯片组方面,将有ICH8M和ICH8M-Enhanced两款。ICH8M-Enhanced将比普通版则加入Intel Active Management Technology 2.5版本支援,及支援RAID 0、1功能。
3、无线网卡模块:相比3945ABG的单一选择方案,Santa Rosa改用4965AGN和4965AG上下搭配,厂商任选其中一种无线网卡,今后都可以贴上迅驰的Logo。就目前了解到的情况,4965AGN和4965AG均放弃了对802.11b的支持,其中4965AG仅支持802.11a和802.11g,而4965AGN又增加了对802.11n的支持。Intel早在2006年底就发布了Intel Wireless 4965AGN无线网卡模块,这款新的无线模块依旧采用Mini-Card接口,能够兼容目前的3945ABG无线模块直接升级。Intel Wireless 4965AGN无线模块是符合802.11N草案的产品,能够向下兼容2.4GHz的BG无线格式和5GHz的A无线格式,是目前笔记本无线网卡模块中规格最高的产品。这款Intel Wireless 4965AGN无线网卡模块能够提供300Mbps的最高数据传输速度,通过MIMO接口进行信号发射,能够提供更好的覆盖率,MIMO天线也是保证了如此高带宽数据连接的关键因素。Intel Wireless 4965AGN无线模块开始支持基于无线的技术的主动管理技术,这将会是配合将来的VPro技术的一个关键细节,管理者可以通过无线模块唤醒笔记本电脑,保证时时刻刻都处于被管理状态,这是目前3945AGN无线模块所无法支持的。关于无线广域网,Santa Rosa增加了1965HSD作为建议规格,1965HSD支持2.5G(Edge)和3G(CDMA-2000/WCDMA)无线技术,其中2.5G最高支持348Kbps,3G则可以实现2.4Mbps的速率。
4、英特尔迅盘(Tubro Memory)模块:Tubro Memory模块是新增加的一个新面孔,根据英特尔的说法,Turbo Memory可以大幅增加操作系统的启动和运行速度,能够更快的从休眠中恢复,速度能够提高近一倍,而休眠时的功耗水平却大幅降低。不过它并不是Santa Rosa平台必需的硬件配置。Turbo Memory的全部神秘之处,就在于NAND闪存芯片。Turbo Memory充当硬盘和系统之间的缓存。读数据时,硬盘根据预测算法,将数据预读到Turbo Memory上,系统则从Turbo Memory直接读数据,由于NAND闪存芯片能够更快的读取随机数据,可以高速多次重复读取某一数据,因而系统可以更高速的读取所需的数据。写数据时,系统将数据传输到Turbo Memory,累计到一定数量后,Turbo Memory再将数据一次性传递给硬盘。由于在目前,硬盘已经成为整机的绝对性能瓶颈,而NAND闪存芯片的采用会大量减缓这一瓶颈。同时,由于系统的更多的是从Turbo Memory读取和写入数据,硬盘更多的时间处于待机状态,无论功耗、噪音还是热量都会大幅减少,这对笔记本电脑无疑是一个很诱人的改进。 而在休眠的时候,以往的传统方式是将数据全部转移到硬盘上,现在则是将数据都存储在Turbo Memory上,由于NAND闪存即使断电也不会丢失数据,而其数据的读写速度当然不是传统硬盘可以比拟的,因而可以实现更高速度的休眠和恢复,根据英特尔官方的数据,从休眠中恢复的速度将提高一倍。就原理和技术上来说,Turbo Memory技术是个相当完美的硬盘加速方案,至少在SSD闪存硬盘诞生之前还是。但是是否当真能够如英特尔所说,实现X2的系统速度呢?关键就在于预读的算法,是否能够具有足够的命中率。Tubro Memory模块只能在Windows Vista操作系统下工作。满足使用Tubro Memory模块的条件比较苛刻,首先,用户需要启用硬盘的AHCI功能,安装Windows Vista操作系统,并且计算机硬件本身需要能够支持DFOROM功能(磁盘过滤ROM),只有满足这些条件才可以正常使用Tubro Memory模块的功能。
第二代迅驰平台Sonoma ReadyBoost技术Hybrid技术和Turbo Memory技术的区别ReadyBoost技术是由微软提出,Vista操作系统的加速技术之一,其将高速的NAND闪存芯片作为系统和硬盘之间的缓存,同时对于用户常用的操作和软件进行分析,提前将数据预存到NAND闪存芯片上。Hybrid技术则可以是高速的优盘,也可以是高速的读卡器或者mp3,可以是Hybrid技术的硬盘,也可以是Turbo Memory技术的闪存模块。至于Hybrid技术和Turbo Memory技术的区别,首先可以确定的是,Hybrid将NAND闪存芯片直接集成到了硬盘上,通过SATA和系统进行互连;而Turbo Memory技术则是一块集成了NAND闪存芯片的卡,通过PCI Express和系统进行 互连;至于原理和作用,两者应该是完全相同的。
看起来是不是很复杂?跟这个打交道久了,就知道其中的区别了。简单地说:在三代半准迅4Napa Refresh处理技术和第4代迅驰平台Santa Rosa笔记本上,装的是酷睿2双核处理器,而在迅驰1代Carmel和2代Sonoma处理技术笔记本上装的是Pentium M 处理器,在三代迅驰平台Napa上装的是酷睿双核处理器。
笔记本CPU中T 7,5 开头:都是merom核心的二代酷睿,T7XXX 除T7100外,都是4M二级缓存,T7XXX都是800MHz的前端总线;T5XXX自然是2M二级缓存,667MHz前端总线。他们都是64位的。 T2XXX有两种,一种是奔腾版的T2060,T2080,T2130;一种是正宗的酷睿。其中,又分为:T2X50系列,这些是阉割版,去了虚拟化技术,前端总线533MHz;T2X00系列,前端总线667MHz,未阉割。但T2XXX系列都是一代酷睿,yanoh核心,不支持64位,只是32位。~~我的就是迅4平台的本本,酷睿2的CPU T7250~~题外话~~
哈哈,这下明白了吧,我也累了,趴下~~~~~~~~~~~~~~~~~~~~~~~~
F41A-TFI(雪山)的主频是2.0的,F41A-UT 的主频只有1.5. 他们是同一系列的CPU,2.0的比1.5的好。
❺ 进了cs1.6怎么在英特网上一个服务器都刷不出来
你要确定你的网络很好,并且没有打开P2P之类的软件,比如QVOD会有后台进程,会影响你的网速,还有下载工具,迅雷之类的,因为雷友们都是托资源的,
❻ 上海切沃过滤和国际知名品牌pall,贺德克,英特罗曼,3M都有很好的合作是真的吗
pall,贺德克,英特罗曼,3M只是其中之一的几个知名品牌而已,还有伊顿、FSI等等,上海切沃过滤只是国内的一个品牌,虽然做过不少项目,但他们主要是造纸行业、制药行业、化工行业的自清洗过滤器、微孔过滤机、叶片过滤机、板框过滤机、袋式过滤器上有一定的经验,其它的也说不上优秀,我的意见只供参考。
❼ pall滤芯、3M滤芯、GE滤芯、mykrolis滤芯和filtrafinel滤芯选配指导,各品牌的市场份额如何。谢谢!
国外的品牌有:pall,贺德克,英特罗曼,3M,
国内的品牌有:北京欧洛普,温州黎明,榆次液压,
E7 空气管路过滤器 能滤除小至1μm的液体及固体微粒,达到最低残油分含量
仅0.5ppm,有微量水分、灰尘和油雾。 用于E5级过滤器之前作前处理之用;冷
干机和吸干机之后,进一步提高空气质量。
E5 高效除油过滤器 能滤除小至0.01μm的液体及固体微粒,达到最低残油含量
仅0.001ppm,几乎所有的水分、灰尘和油都被去除。 用于E3级过滤和吸干机之
前,起保护作用,冷干机之后,确保空气中不含油。
E3 超高效除油过滤器 能滤除小至0.01μm的液体及固体微粒,达到最低残油含量
仅0.001ppm,几乎所有的水分、灰尘和油都被去除。 用于E1级过滤和吸干机之
前,起保护作用,冷干机之后,确保空气中不含油。
E1 活性炭过滤器 能滤除小至0.01μm的油雾及碳氢化合物,达到最低残油含量
仅0.003ppm,不含水分、灰尘和油,无臭无味。 起最后一道过滤作用,供一些
必须使用高质量高质量空气的单位,如食品工业、呼吸、无菌包装等
277713187
买卖二手车就用 淘车宝 !公开、公平、公正!2011-10-21 20:03:37
❽ 英特尔酷睿处理器和英特尔ie3\ie5\ie7处理器的区别
尊敬的用户您好:
英特尔正式面向全球发布最新的革命性产品,基于全新的32纳米制程的i7、i5、i3处理器产品。全新酷睿家族中Westmere核心的酷睿i5/i3采用了Clarkdale架构,其是Nehelem架构的经典延续,采用了革命性的微架构,具备了睿频加速技术,超线程技术,增强型的英特尔智能高速缓存与控制器等多项技术。 其中酷睿i7及酷睿i5-700系列而言,它们均采用了原生四核心设计。通过对超线程技术的支持与否而划分定位。同时还将三级缓存引入其中。其L1缓存的设计与酷睿微架构相同,而L2缓存则采用超低延迟的设计,不过容量大大降低,每个内核仅有256KB,新加入的L3缓存采用共享式设计。LGA1156接口酷睿i7/i5处理器与目前市场中的LGA1366酷睿i7系列相同,均配备了8MB的三级缓存。而新酷睿家族中的酷睿i5-600系列与酷睿i3系列产品则是采用了原生双核,通过睿频加速技术的支持与否来划分产品的定位。 与之前的芯片相比,这一系列英特尔的32纳米新品增加了图形处理功能,即现实CPU+GPU的整合,历史性地将显示核心和CPU封装到了一起,不但提高了PC的兼容性稳定性,同时令高清电影的播放流畅,画面颜色更栩栩如生。同时,游戏运行效率也会高于以往的集成显卡。 新酷睿产品相较于之前的酷睿家族产品,最大的区别是制程工艺上的改进,即从45纳米过渡到32纳米,芯片性能达到近50%的提升。全新的英特尔酷睿i7/i5处理器都拥有独特的英特尔睿频加速技术,能够根据工作负载动态、智能地调节频率和性能,在工作量较大时能实现按需提升频率自动加速,可自如应对用户工作、娱乐、生活的万变需求。英特尔超线程技术则是用于英特尔酷睿i7/i5/i3处理器,通过让每个内核同时运行双重任务,实现高效、智能的多任务处理,从而呈现令人惊叹的相应速度与性能;在同步进行多任务处理的同时,还与业内领先的能效表现之间形成完美的平衡。 编辑本段酷睿i系列 i7全部采用45nm工艺,它是针对最高端的发烧友以及游戏玩家而推出的产品,面向高端市场,它具备了目前英特尔所有最新最好的技术,它可以为你带来终极智能化性能的最高端处理器,任何苛刻的应用以及游戏,Core i7系列都可以轻松的面对。 移动系列型号: 处理器型号 内核/线程数 时钟速度 英特尔® 智能高速缓存 芯片 英特尔® 睿频加速技术◊1 英特尔® 超线程(HT)技术◊2 标准电压处理器i7-820QM4 个内核 / 8 条线程1.73 GHz,采用英特尔® 睿频加速技术后可达 3.06 GHz8 MB45 纳米是是i7-720QM4 个内核 / 8 条线程1.60 GHz,采用英特尔® 睿频加速技术后可达 2.80 GHz6 MB45 纳米是是i7-620M2 个内核 / 4 条线程2.66 GHz,采用英特尔® 睿频加速技术后可达 3.33 GHz4 MB32 纳米是是超低压处理器i7-640LM2 个内核 / 4 条线程2.13 GHz,采用英特尔® 睿频加速技术后可达 2.93 GHz4 MB32 纳米是是i7-620LM2 个内核 / 4 条线程2.0 GHz,采用英特尔® 睿频加速技术后可达 2.8 GHz4 MB32 纳米是是i7-640UM2 个内核 / 4 条线程1.20 GHz,采用英特尔® 睿频加速技术后可达 2.26 GHz4 MB32 纳米是是i7-620UM2 个内核 / 4 条线程1.06 GHz,采用英特尔® 睿频加速技术后可达 2.13 GHz4 MB32 纳米是是台式系列型号: i7-9604 个内核 / 8 条线程3.20 GHz,采用英特尔® 睿频加速技术后可达 3.46 GHz8 MB45 纳米是是i7-9504 个内核 / 8 条线程3.06 GHz,采用英特尔® 睿频加速技术后可达 3.33 GHz8 MB45 纳米是是i7-9404 个内核 / 8 条线程2.93 GHz,采用英特尔® 睿频加速技术后可达 3.20 GHz 8 MB45 纳米是是i7-9204 个内核 / 8 条线程2.66 GHz,采用英特尔® 睿频加速技术后可达 2.93 GHz8 MB45 纳米是是i7-8704 个内核 / 8 条线程2.93 GHz,采用英特尔® 睿频加速技术后可达 3.60 GHz8 MB45 纳米是是i7-860s4 个内核 / 8 条线程2.53 GHz,采用英特尔® 睿频加速技术后可达 3.46 GHz 8 MB45 纳米是是i7-8604 个内核 / 8 条线程2.80 GHz,采用英特尔® 睿频加速技术后可达 3.46 GHz8 MB45 纳米是是i5共有45nm和32nm两种工艺的产品,同时也有集成GPU和非GPU的版本,Core i5是针对主流市场而推出的高性能产品,它的睿频智能加速技术,可以在各种应用中提升你的处理器性能。尤其适合大型的图形图像处理,主流游戏以及视频处理任务。 移动系列型号: 处理器型号 内核/线程数 时钟速度 英特尔® 智能高速缓存 芯片 英特尔® 睿频加速技术◊1 英特尔® 超线程(HT)技术◊2 标准电压处理器i5-540M2 个内核/ 4 条线程2.53 GHz,采用英特尔® 睿频加速技术后高达3.06 GHz3 MB32 纳米是是i5-520M2 个内核/ 4 条线程2.40 GHz,采用英特尔® 睿频加速技术后高达2.93 GHz3 MB32 纳米是是i5-430M2 个内核/ 4 条线程2.26 GHz,采用英特尔® 睿频加速技术后高达2.53 GHz3 MB32 纳米是是超低电压处理器i5-520UM2 个内核/ 4 条线程1.06 GHz,采用英特尔® 睿频加速技术后高达1.86 GHZ3 MB32 纳米是是台式系列型号: i5-750S4 个内核/ 4 条线程2.40 GHz,采用英特尔® 睿频加速技术后高达3.20 GHZ8 MB45 纳米是无i5-7504 个内核/ 4 条线程2.66 GHz,采用英特尔® 睿频加速技术后高达3.20 GHZ8 MB45 纳米是无i5-6702 个内核/ 4 条线程3.46 GHz,采用英特尔® 睿频加速技术后高达3.73 GHZ4 MB32 纳米是是i5-6612 个内核/ 4 条线程3.33 GHz,采用英特尔® 睿频加速技术后高达3.60 GHZ4 MB32 纳米是是i5-6602 个内核/ 4 条线程3.33 GHz,采用英特尔® 睿频加速技术后高达3.60 GHZ4 MB32 纳米是是i5-6502 个内核/ 4 条线程3.20 GHz,采用英特尔® 睿频加速技术后高达3.46 GHZ4 MB32 纳米是是i3采用了最新的32nm工艺制程,集成了GPU功能,主要面对入门级的市场推出,它为用户带来了全新的智能化的性能体验,同时低功耗、低温度以及出色的性能表现,都可以让它面对主流应用游刃有余。 移动系列型号: 处理器型号 内核/线程数 时钟速度 英特尔® 智能高速缓存 芯片 英特尔® 睿频加速技术◊1 英特尔® 超线程(HT)技术◊2 i3-350M2 个内核 / 4 条线程2.26 GHz3 MB32 纳米否是i3-330M2 个内核 / 4 条线程2.13 GHz3 MB32 纳米否是台式系列型号: i3-5402 个内核 / 4 条线程3.06 GHz4 MB32 纳米否是i3-5302 个内核 / 4 条线程2.93 GHz4 MB32 纳米否是编辑本段i系新技术 32nm除了架构与以往不同,32nm的全新制程也是受到消费者们关注的另一大亮点。了解芯片行业的人知道,要想提高CPU的性能一方面是提高他的主频,一方面是更改他的架构,再有一方面就是提高他的制作工艺了。制造工艺的改进理论上可以带来功耗的降低,使得产品的默认时钟频率可以更高,直接提升性能。 和现有的45nm工艺相比,32nm工艺在以下几个方面有着显著的变化:32nm工艺使用第二代高-K金属栅级、0.9nm等价氧化物厚度高-K(45nm技术是1nm)、金属栅级工艺流程更新、30nm栅极长度、第四代应变硅、有史以来最紧密的栅极间距(第一代32nm技术将使112.5nm栅极间距)、有史以来最高的驱动电流、晶体管性能提升22%、同比封装尺寸将是45nm工艺产品的70%。 相对于45nm工艺,NMOS晶体管的漏电量减少5倍多,PMOS晶体管的漏电量则减少10倍以上。由于上述改进,电路的尺寸和性能均可得到显著优化。英特尔方面宣称,第一批32nm处理器的功耗将和现有同档次45nm处理器大致持平或稍低,但性能会大幅度提升。 睿频加速自Bloomfield核心的Core i7开始,Intel便为Nehalem架构引入了睿频加速技术,当时的酷睿i7-900系列处理器的TDP为130W,在这个TDP设定范围内用户可以开启一种名为睿频加速的技术来提升CPU在某些应用中的时钟频率。例如在大型3D游戏中,可能多核心并不能带来明显的效能提升,对处理器进行超频反而效果更好,如果这个时候开启Turbo模式,并且将TDP设定在用户所采用的散热器允许范围内,那么CPU在这个时候可以对某颗或某两颗核心进行动态超频来提升性能。 实现Turbo技术需要在核心内部设计一个功率控制器,大约需要消耗100万个晶体管。但这个代价是值得的,因为在某些游戏中开启Turbo模式可以直接带来10%左右的性能提升,相当于将显卡提升一个档次。值得一提的是,Extreme版本的Core i7处理器最高可以将TDP在BIOS中设定到190W来执行Turbo模式,在个别应用中进一步提升CPU时钟频率,带来效能上的提升。 LGA1156接口酷睿i7/i5处理器从LGA1366接口处理器那里很好的继承了Turbo Mode技术(中文名为睿频加速技术)。他的加入可以很好的帮助处理器在空闲时刻降低功耗,从而起到提高工作效率同时节能的目的。 Turbo Mode功能是一项可以充分使用处理器工作效率的技术。它能让内核运行动态加速。可以根据需要开启、关闭以及加速单个或多个内核的运行。如在一个四核的Nehalem处理器中,如果一个任务是单线程的,则可以关闭另外三个内核的运行,同时把工作的那个内核的运行主频提高,这样动态的调整可以提高系统和CPU整体的能效比率。 超线程技术除了睿频加速技术之外,超线程技术也成为了全新酷睿家族中不可不提的智能应用。我们知道,Nehalem架构重新启用了曾经在NetBurst上应用过的超线程技术,不过已经更名为同步多线程技术(Simultaneous Multi-Threading,SMT)。NetBurst架构上的超线程技术局限于FSB和内存传输数据带宽,实际带来的性能提升可能并不明显,因此后来的酷睿2处理器直接抛弃了超线程技术。 Nehalem架构将QPI和集成内存控制器引入后直接带来惊人的带宽,重新启动同步多线程技术毫无疑问不用再担心传输带宽所产生的瓶颈。 Nehalem架构所采用的同步多线程技术基于2路设计,即每颗核心可以同时执行2个线程。在多任务情况下可以有效提升性能,采用这种模拟的逻辑运算核心绝对比直接增加一颗物理运算核心成本低。Intel表示SMT技术可以在能耗增加不明显的情况下提升20-30%性能。 整合图形核心09年1月,英特尔便向全球媒体正式公布了其32nm处理器的最新进程和产品细节。这次技术发布是Intel “Tick-tock” 在2009年度的最新进展,英特尔带来了多个让人激动的消息,这其中便包括全球首个整合图形处理器(GPU)的x86处理器的问世。1月8日即将发布的新酷睿i5及i3处理器新品都首次整合了图形处理器,因此其显示方面的性能无疑非常受到莫大关注。那么处理器内部整合的高清图形媒体加速器是什么样呢? 根据规格不同,此次发布的新酷睿i5/i3两大系列全部自带图形核心。从上面的表格我们可以看出,此次发布的产品,除了CPU主频不同之外,GPU频率也有所不同,因此GPU频率也成为了处理器性能划分的一个新的标准。例如,酷睿i5-661与酷睿i5-660的主频及CPU规格完全一致,不同的仅仅在于GPU频率。 Intel暂时未将处理器模块和图形核心模块(含内存控制器)完全融合在一起,而是直接封装在一块基片上,32nm工艺处理器的基板上将有两个Die,二者的制造工艺也不同,其中一个是使用32nm工艺制造的处理器内核,另一个较大的是使用45nm工艺制造的GPU+内存控制器。 这样的处理器构造和英特尔在08年底发布的在同一个Die上集成处理器内核+内存控制器又发生了很大变化,英特尔称这种模式为MCP(多芯片封装处理器)。不过需要提醒消费者的是,要想使用到处理器中的GPU核心,您必须购买提供了视频输出接口的H55主板。若是您使用的是没有提供视频输出接口的P55主板的话,那么就只能使用到CPU核心了。 智能缓存技术前面我们已经了解了睿频加速技术、超线程技术等多项新酷睿家族产品的智能应用,其实智能缓存技术同样是新酷睿家族中极具亮点的特色。新酷睿家族的处理器是基于Westmere架构的产品,其延续了三级缓存的使用。其L1缓存的设计与酷睿微架构相同,而L2缓存则采用超低延迟的设计,不过容量大大降低,每个内核仅有256KB,新加入的L3缓存采用共享式设计。其三级缓存由两颗核心完全共享,它几乎可以处理所有的一致性流量问题,同时不需要单独打扰每颗独立核心自己的L1、L2缓存。如果L3缓存没有命中,那么我们需要访问的数据也不在L1或者L2中,此时也不需要侦听所有核心。如果L3缓存命中成功,它还可以作为侦听过滤器。 Westmere核心的每个核心有64KB的L1和256KB的L2在L3缓存中保留数据,因此在总共的4MB L3中,有1MB-1.25MB的数据与前两级缓存相同。 为了提高缓存利用效率,Westmere核心使用了MESIF缓存一致性协议(全称为MESIF cache coherency protocol),在它的L3缓存中的每一个缓存行里,有4bit用作核心确认,以此表明是哪一个核心在它私有的缓存里具有这个行的数据备份。如果某个核心确认位设置位0,则那颗核心就不具有该行的数据备份;如果两个以上核心的确认位都有效,设置为1,那么该缓存行就被确定为未被修改的,任何一个核心的缓存行都不能够进入更改模式;当4颗核心确认位都是0时,就不需要对其它内核做侦听,而只有1个位是有效时,则只需要侦听那1颗核心。这种仲裁机制让Westmere的L3缓存避免了每个核心数据一致性错误,带来更多带宽。 内存控制器在处理器内部,集成的功能同样有变化,内存控制器(integrated memory controller)简称IMC,由于新酷睿家族处理器通过QPI直接与内存交换数据,因此CPU内部就必须集成一个控制内存的部门。通过内存控制器设计,Westmere 延续了Nehelem架构的优势,处理器达到了酷睿2处理器的4倍内存带宽,使得每个核心可以支持最大10个未解决的数据缓存命中失败和总共16个命中失败,比酷睿2单核心8个总共14个提高不少。 内存控制器和QPI总线的结合工作,令数据延迟大大降低,直接的表现就是我们在运行大型软件或大型3D游戏时的数据加载时间大大减少,这对无法忍耐长时间数据加载的玩家确实是一个利好消息。新酷睿家族的高端酷睿i7-900系列拥有三通道内存控制器,而Core i7的800系列及酷睿i5/i3也都同样整合了内存控制器。 在频率方面,除了早期的酷睿i7仅仅能够支持到DDR3 1066之外,全新的酷睿i5/i3等产品均能够支持DDR 3 1333频率的内存。这也为玩家获得更高的性能奠定了基础。内置的DDR3内存控制器需要处理器引出更多的针脚而对内存进行支持,因此我们看到支持三通道DDR3的Bloomfield核心Core i7需要LGA 1366的针脚,而由于Lynnfield Core i7/i5及Westmere Core i5/i3处理器仅支持双通道内存,因此所引出的针脚也大大减少了,而对于集成的PCI-E控制器来说,晶体管数量并不多,故而体积也较Bloomfield核心Core i7有所减小,几乎与上一代的Core 架构的产品保持了一致。
希望可以帮到您