你弄错概念了吧,钠离子交换只能将水中硬度离子置换出来,水中就不存硬专度离子,俗称软水属,但水中的碱度依然不变。当软水进入热力设备后,不断蒸发浓缩,自然软水中的碱度盐类也不断升高,当碱度一定时,热力设备就需进行"排污"降低碱度盐类物质…。华粼水质
2. 海水淡化后浓海水(含盐量在12%左右),能用阳离子交换树脂进行软化,去除钙镁吗
准确的讲不是软化速度很慢,应该是几乎没有什么软化效果。因为普通软化阳树脂去除钙回镁后,再生液的浓度(NaCl溶液答)也就5-8%,你含盐量为12%的浓海水不就是比再生液浓度还高了嘛,所以阳树脂一边与钙镁交换,一边又被浓海水中的NaCl给再生出来了。
所以普通阳离子交换树脂在这样的运行工况中,去除钙镁是不行的。不过你可以采用我争光树脂的螯合树脂去去除钙镁,效果应该会比较理想的,螯合树脂可以在20%的浓盐水中去除钙镁二价金属离子。具体你可以点我头像,看我个人资料获得我的联系方式。
3. 离子交换分离操作中,以高浓度盐溶液进行洗脱的原理是
用离子交换树脂进行分离的操作程序包括三个步骤,具体操作过程如下文中所述.
(1)交换柱的制备首先选择合适的离子交换树脂类型,用相应的溶液进行处理,如强酸性阳离子交换树脂需要在稀盐酸中浸泡,以除去杂质并使之溶胀和完全转变成H式.然后用蒸馏水洗至中性,装入充满蒸馏水的交换柱中.注意防止气泡进入树脂层.
(2)交换使待处理水样以合适的流速通过交换柱进行离子交换.交换完毕后用蒸馏水洗去残留的溶液及交换过程中形成的酸、碱或盐类等.
(3)洗脱洗脱是将已交换到树脂上的离子分离出来的过程.选择合适的洗脱液,使之以适宜速度通过交换柱进行洗脱.(更多质量检测、分析测试、化学计量、标准物质相关技术资料请参考中检所对照品查询 www.rmhot.com)
阳离子交换树脂常用盐酸溶液作为洗脱液;阴离子交换树脂常用盐酸溶液、氯化钠或氢氧化钠溶液作洗脱液.对于分配系数相近的离子,可用含有机络合剂或有机溶剂的洗脱液,以提高洗脱过程的选择性.
离子交换技术在富集和分离微量或痕量元素方面应用很广.例如分离水中的锂离子、锰离子、铜离子、铁离子、锌离子等多种金属离子,首先加入盐酸使一部分离子转变为络合阴离子,然后将水样通过强碱性阴离子交换树脂,各种离子均被交换在树脂上,最后用不同浓度的盐酸溶液进行洗脱分离.锂离子不生成络合阴离子,不发生交换,可用12mol/L HCl溶液最先洗脱出来
4. 分离与富集
铼的分离与富集常采取蒸馏、共沉淀、离子交换与吸附、溶剂萃取、液膜分离等方法进行。
62.5.2.1 蒸馏分离法
利用R2O7(或HReO4)的易挥发性,在200~220℃滴加氢溴酸或盐酸于高沸点酸如高氯酸、硫酸或磷酸溶液中,或滴加硝酸于硫酸溶液中可将铼蒸馏出来。用饱和碳酸钠溶液为吸收液,部分As3+、Se4+、Se6+、Te4+和Hg,及大部分Sb3+、Sb5+、Os、Cr、Sn、Ge、Tl+和少量钼随铼一并进入蒸馏液中。蒸馏时以水蒸汽、二氧化碳、氮气或空气为载气。如利用水蒸汽通入硫酸溶液,在270~290℃下蒸馏铼,仅Se4+、Se6+、As3+及Re-一并进入蒸馏液中,而Hg、Mo、Bi及Te只有很少量被蒸馏出来。
62.5.2.2 共沉淀分离法
(1)以砷(Ⅲ)为聚集剂
在4mol/LHCl或3mol/LH2SO4中,以砷(Ⅲ)为聚集剂,通入硫化氢可使微量铼与之共沉淀,生成的棕褐色Re2S7易溶于含过氧化氢的氢氧化铵或氢氧化钠溶液中。
(2)高铼酸亚铊
在pH4~6的乙酸盐溶液中,高铼酸(ReO-4)与铊(Ⅰ)生成高铼酸亚铊沉淀,可与铜、锌、镉、钴、镍、铝、锰、钙、镁等分离,钼酸与铊(Ⅰ)也生成沉淀,可用柠檬酸掩蔽(10mg柠檬酸可掩蔽16mg钼)。
(3)氯化四苯(TPAC)
在5mol/LHCl至6mol/LNH4OH中均可用TPAC定量地沉淀ReO-4。Hg2+、Bi3+、Pb2+、Ag+、Sn2+、VO2+,以及MnO-4、ClO-4、IO-4、I-、Br-、F-和SCN-等离子干扰测定。VO3-4及WO2-4无干扰。如在含有0.6mol/L酒石酸盐的氨性介质中且调节pH8~9的溶液中进行沉淀,则可与Hg2+、Bi3+、Ni2+、Fe3+、Pb2+、Ag+、Sn2+、VO2+、Zn2+、Cu2+、SO2-4、PO3-4、AsO3-3、VO3-4、MoO2-4、WO2-4、BO3-3等分离,MnO-4与铼同时沉淀。
(4)高氯酸四苯(TPAP)
微克量铼可在酸性、中性或碱性溶液中定量地与TPAP生成沉淀,MoO2-4不沉淀。在碱性溶液中(约2mol/LNaOH)进行沉淀,铼可与大量MoO2-4、WO2-4、AsO3-3、AsO3-4、ZnO2-2、AlO-2、CrO2-4、VO2-3、SeO2-3、NO-3、PO3-4等分离,析出的沉淀溶于热水后用2mol/LHClO4或过量高氯酸处理以交换出高铼酸离子,可用于光度法测定辉钼矿中的铼。
在pH<7.5,以铁(Ⅲ)共沉淀钼,ReO-4留在溶液中。
在pH3.5~7.5的乙酸盐缓冲溶液中,8-羟基喹啉可沉淀钼而铼留于溶液中。
在冷的(1+9)硫酸或盐酸溶液中,在Fe3+存在下,用Th4+、Rb2+或AsO3-4为聚集剂,铜铁试剂可定量地沉淀钼,残余的铜铁试剂用三氯甲烷萃取除去,铼留于水溶液中。
62.5.2.3 离子交换与吸附法
(1)纸色层析分离
以异丙醇-浓硝酸-水(7+2+2)的混合溶液为展开剂,使铼与钨、钼分离。Rf值分别为0.90、0.33和0。此法可分离10倍~100倍钨及钼存在下的1μg的铼。
(2)阳离子交换树脂
在pH1.5~5.0的盐酸中,钼以MoO2-4形式与大多数金属(铁、铜、镍、锰、铝等)一并被树脂吸附,而ReO-4进入淋洗液中,可使铼与钼分离。
(3)阴离子交换树脂
阴离子交换树脂分离富集情况及其他树脂交换分离富集铼,见表62.16、表62.17。
表62.16 阴离子交换树脂分离富集情况
续表
表62.17 其他树脂交换分离富集铼
(4)活性炭吸附
常温下(25℃),活性炭在pH8.2~9.0时,对铼、钼的吸附率分别为E(Re):96.1%~93.0%,E(Mo):0.7%~0.001%。此条件能成功分离铼和钼。
62.5.2.4 溶剂萃取法
(1)萃取分离钼
a.羟基喹啉-氯仿。在pH1.5~5.6的乙酸-乙酸铵缓冲溶液中,1g/L8-羟基喹啉/氯仿可萃取钼及钨,铼不被萃取。
b.铜铁试剂-氯仿。在1mol/LH2SO4中,用10g/L铜铁试剂-氯仿可定量萃取分离钼,铼不被萃取。
c.乙基黄原酸钾-三氯甲烷。在2mol/LHCl或pH9~11的溶液中,钼与乙基黄原酸钾生成配合物定量地被三氯甲烷萃取,铼不被萃取,适用于分离含铜的钼精矿中的铼。
d.N-苯甲酰苯胲-氯仿。在0.752~2mol/LH2SO4或pH3的盐酸介质中,钼定量地被N-苯甲酰苯胲-氯仿萃取,可从微克量的铼中分离毫克量的钼。
e.磷钼杂多酸-乙酸戊酯。在0.52~0.7mol/LHCl中,钼作为磷钼杂多酸定量地被乙酸戊酯萃取,铼不被萃取。
(2)萃取分离铼
a.喹啉。在4mol/LNaOH溶液中,ReO-4定量地被喹啉萃取,可与50mg的Mo6+,100mgW6+、V5+、Se4+、As3+、As5+分离,蒸发除去喹啉或用水和四氯化碳反萃取使铼转入水相。
b.丁酮。在5mol/LNaOH溶液中,ReO-4可被丁酮萃取(3次萃取几乎接近定量)。可与Au、Ag、Bi、Cd、Fe2+、Ga、Mo6+、Pb、Pt4+、Sb3+、W、Zn等分离,用水和氯仿(7+10)反萃取,铼进入水相。
c.甲基异丁酮。在4mol/LH2SO4中,微克量ReO-4定量地被甲基异丁酮萃取,可与Mo(Ⅵ)(<0.18%)等分离,铼可用稀氢氧化钠反萃取。
d.8-巯基喹啉-三氯甲烷。在5~11.5mol/LHCl中,铼的8-巯基喹啉配合物被三氯甲烷萃取。
e.三辛胺/三壬胺-二甲苯/三氯甲烷。在1~6.0mol/LH2SO4中,ReO-4定量地被三辛胺、三壬胺的二甲苯或三氯甲烷萃取,可与Zn、Cd、Co、Ni、Mn2+、Cr3+、Fe、In、Bi、Cu、Al、Ca、Mg、V5+、W5+、Mo6+等分离,被萃取的微量钼可用饱和草酸溶液洗除,加入草酸钠或硫酸钠有利于抑制微量钼的萃取,萃取的铼可用50~100g/L的氢氧化钠、碳酸钠、氢氧化铵溶液反萃取。
f.三丁胺-氯仿。在pH1~6.5HCl介质中,ReO-4定量地被三丁胺-氯仿萃取,可与60倍的Mo6+,600倍的Fe3+,6000倍的Ni,7000倍的Co、Pb,10000倍的Ag、Cu,12000倍的Cd等分离,被共萃取的微量Mo6+,可用饱和草酸钠溶液洗除。
g.N-苄替苯胺-氯仿。在3.5~4.5mol/LH2SO4中,ReO-4定量地被N-苄替苯胺(C6H5CH2NHC6H5)/氯仿萃取,可与Cu、Cd、As3+、Bi、Fe3+、Sb3+、Cr3+、Co、Ni、Ga、In、Ce3+、Ca、Mg、Sr、Se4+、Te4+、Ag、Hg2+、Tl3+等分离,Pd2+、Pt4+、V5+、Fe3+、Cr6+、Os6+、Ru6+、Ti4+、Ce4+与ReO-4同时被萃取,但除Pd2+、Pt4+以外的其他元素加入抗坏血酸后均不被萃取,U6+和Th也部分被共萃取,柠檬酸、酒石酸、草酸、抗坏血酸对萃取ReO-4无影响。有机相中的铼可用反萃取。
h.氯化四苯-三氯甲烷或二氯乙烷。在pH8~9且含用酒石酸或柠檬酸盐的溶液中,ReO-4与氯化四苯离子生成的缔合物可定量地被三氯甲烷或二氯乙烷萃取。当溶液中钼与铼之比为106∶1可定量分离钼。20mg的Se4+、Ni、Fe3+、Pb、Zn、Cu2+、AsO2-3、AsO3-4、WO2-4、SiO2-3、SO2-4、PO3-4不被萃取。有机相中的铼可用浓盐酸反萃取,也可在有机相直接测定铼。或将萃取液蒸干后,用水浸取并通过Dowex-50阴离子交换树脂(H+型),四苯离子被树脂交换吸附,ReO-4进入洗脱液中。
i.其他溶剂萃取。见表62.18。
表62.18 其他溶剂萃取
62.5.2.5 液膜分离法
以二苯并-18-冠-6(DBC)-L113B-(CCl4+n-Hrxance)-NaClO4溶液组成的液膜体系。在下列条件下:膜相,DBC-L113B-(CCl4+n-Hrxance)体积比为7+4+89;内相,0.2mol/LNaClO4溶液,油内比为1+1;外相2mol/LH2SO4介质,乳水比为20+100;室温(15~36℃),搅拌速度250r/min;富集时间8min。200μgRe(Ⅶ)的迁移率(回收率)达99.5%~100.5%。50mgMo6+、W6+、Fe3+、Al3+、Cu2+、Ni2+、Mn2+、Sr2+、Ba2+、Zn2+、Mg2+、Sn4+、La3+、Y3+、Cr3+、Bi3+、K+、Na+、Li+、NH+4、Cd2+、Cs+,20mgCa2+、Pb2+,5mgPt4+、Pd2+等(均为最大限量),大量Cl-、SO2-4、NO-3、SO2-4、PO3-4等,都不被迁移富集或不影响富集铼。K+存在下,对迁移铼极为有利。富集方法用于钼精矿、多金属矿和合金中铼的硫脲光度法测定,效果较佳。
5. 阴离子交换分离-盐酸底液方波极谱法
方法提要
试样经酸溶分解,在稀氢溴酸介质中,铅能形成稳定的配阴离子[PbBr4]2-,应用717强碱性阴离子交换树脂能分离干扰元素、富集铅。本法采用的上柱液为0.15mol/LHBr-5g/LKBr混合液;淋洗液为热的(1+9)HNO3,淋洗体积为30mL。当测定溶液中存在100mgCu2+,50mgFe3+,20mgZn2+,10mgW、Mo6+,1mgSb5+、Bi3+、Sn2+、As,200μgIn3+、Se4+、Cd2+,50μgAu3+时,经阴离子交换树脂分离,均不影响测定。少量锡经上柱分离后虽影响不太大,但仍有正干扰,可在分解试样时加入盐酸及氢溴酸蒸发,使锡成四溴化锡挥发除去。
试样经预分离、富集后,用方波极谱仪在2mol/LHCl-12.5g/L抗坏血酸底液中测定铅,峰电位约为-0.46V(对银片电极)。本法适用于10×10-6~1000×10-6铅的测定。
仪器
数字极谱仪,方波极谱部分。
银片参比电极。
试剂
盐酸。
硝酸。
氢氟酸。
高氯酸。
氢溴酸。
氢溴酸(0.15mol/L)-溴化钾(5g/L)混合液称取0.5gKBr,加入80mLHBr[c(HBr)=0.15mol/L]溶解,并稀释至100mL,摇匀。用时配制。
抗坏血酸溶液(25g/L)用时配制。
铅标准溶液ρ(Pb)=100.0μg/mL,ρ(Pb)=10.0μg/mL由ρ(Pb)=1.00mg/mL铅标准储备溶液(本章41.3.1铅的EDTA容量法测定)稀释配制。
717型阴离子交换树脂将80~100目717型阴离子交换树脂用40g/LNaOH溶液及(1+9)HNO3浸泡处理,除去杂质,用蒸馏水洗至中性,备用。
离子交换柱将已处理好的717型树脂装入筒形漏斗,下接Ф8mm×100mm的交换柱,装柱高约为9cm左右,控制流速约1.5mL/min,用水淋洗。漏斗上叠放滤纸,用HBr-KBr混合液淋洗平衡。
校准曲线
移取0mL、0.25mL、0.50mL、1.00mL、2.00mL、…、10.00mL铅标准溶液[ρ(Pb)=100.0μg/mL]或0mL、0.50mL、1.00mL、2.00mL、…、20.00mL铅标准溶液[ρ(Pb)=10.0μg/mL],分别置于25mL烧杯中,低温蒸至近干,然后按试样分析步骤操作,测得峰电流值,绘制校准曲线。
分析步骤
称取0.1~0.5g(精确至0.0001g)试样置于100mL聚四氟乙烯烧杯中,用水润湿,加10mLHCl,盖上表面皿,于低温电热板上溶解20~30min。洗去表面皿,再加入5mLHNO3、3mLHF和1mLHClO4,继续加热溶解,蒸发至白烟冒尽。加入2mLHBr和1mLHCl,加热除砷、锑、锡。加入1mLHNO3,蒸干。加入1mLHCl及5滴HClO4,蒸发至白烟冒尽。
加入5滴(1+1)HCl,盖上表面皿,微热溶解干涸物。加入10mLHBr-KBr混合液,微热,用少量水洗去表面皿,冷却后再加入5mLHBr-KBr混合液,摇匀。将此溶液倾入已准备好的交换柱漏斗上,进行过滤交换。用HBr-KBr混合液洗净烧杯及滤纸,弃去滤纸,用30mL热(1+9)HNO3淋洗吸附在树脂上的铅(每次10mL,分3次淋洗),用50mL烧杯承接。加入10滴HClO4,蒸发至白烟冒尽,取下冷却后,再加入5滴(1+1)HCl,水吹洗杯壁,低温蒸发至近干。
准确加入12.5mL4mol/LHCl,盖上表面皿微热,准确加入12.5mL抗坏血酸溶液,摇匀,放置10min。于起始电位-0.3V处,用极谱仪方波部分测定,记录峰电流值,测得铅量。
铅含量的计算公式同式(41.2)。
6. 分离和预富集
铟的分离和预富集常采用溶剂萃取、离子交换与吸附、液膜分离、沉淀分离、蒸馏分离等方法。
62.3.2.1 溶剂萃取法
(1)卤化物的萃取
矿石中铟的含量甚微,实际工作中常以溶剂萃取法进行富集。应用卤化物萃取,可使铟与许多元素分离。许多含氧有机溶剂都能很好地萃取碘化铟,而溴化铟次之,氯化铟最差。
在6mol/LHCl中,乙醚经两次萃取能定量地萃取镓(Ⅲ)和铁(Ⅲ),金(Ⅲ)、铊(Ⅲ)、锑(Ⅴ)、钼(Ⅵ)等也被一起萃取,而铟不被萃取。
从氢溴酸介质中,用乙醚萃取铟是经常采用的方法,铟的萃取率在4mol/LHBr中为99%,而在3mol/LHBr中则为89.3%。在3.2mol/L、4.2mol/L、5.5mol/L和6mol/LHBr介质中,铟的萃取分配系数分别为1、10、100和30~40。通常是在4~6mol/LHBr中萃取铟,与铟一起被萃取的有铁(Ⅲ)、镓、锑(Ⅴ)、铊(Ⅲ),以及金(Ⅲ)、钼(Ⅵ)、铼(Ⅶ)和少量锌、碲(Ⅳ)。在5mol/LHBr中,以碘化钾还原铁(Ⅲ),用乙醚或乙酸丁酯萃取铟,除镓、铊(Ⅲ)、金(Ⅲ)同时定量地被萃取外,大量铁、铜、钼、锌、镉、镍以及汞等只有微量被萃取入有机相;有机相经萃洗后,再用含有过氧化氢的6mol/LHCl反萃取铟,则镓、铊(Ⅲ)、金仍留于有机相中,既达到铟、镓、铊的彼此分离,又可利用此分离方法进行铟、镓、铊的连续测定。萃取时亦可用三氯化钛还原铁(Ⅲ),此时铊与金也被还原成低价或单质状态,只有镓与铟一起被萃取。亦可用溴化钠-硫酸介质替代氢溴酸介质,因其中含有大量硫酸钠作盐析剂,降低乙醚在水相中的溶解度,有助于提高萃取率。
在0.5~2.5mol/LHI介质中,用乙醚或类似含氧溶剂可定量萃取铟。例如在1.5mol/LHI中,铟的浓度在0.026~5.4×10-6mol/L范围内,其萃取率均达99%。与铟一起被萃取的有锡(Ⅱ)、镉、铊(Ⅲ,Ⅰ)、镓、铁(Ⅱ),铝和铍等不被萃取,铋、铜、锌、汞和锑部分被萃。氟化物、磷酸盐、柠檬酸盐和氰化物等的存在不影响萃取,但大量氯化物的存在会降低铟的萃取率。氢碘酸介质也可用碘化钾-硫酸介质替代。为使铟进一步与其他元素分离,可用水再从有机相中反萃取铟,但选择性仍不如氢溴酸介质。
不同有机溶剂对卤化铟的萃取效果是:3-甲基丁酮-[2]>4-甲基戊酮-[2]>乙酸乙酯>乙醚>异戊醇。
实际工作中通常采用乙醚或乙酸丁酯。用乙醚萃取铟通常需要萃取两次,而用乙酸丁酯则一次就能将铟定量萃取。有盐析剂存在时,乙醚萃取也只需一次就可以。
(2)非有机溶剂萃取
在25mL体积中,pH2.6~4.6,用5mL(3+7)Tween80和20g(NH4)2SO4萃取In3+,其萃取率可保持在95%以上。以聚乙烯醇缩对甲酰基偶氮-8羟基喹啉为显色剂,对20μgIn3+,3gNa+、K+、Cl-、NO-3、CO2-3、SO2-4,50μgCa2+、Mg2+,40μgCd2+、Zn2+、Ti4+、Sn4+、La3+、Bi3+、Ce3+、Pb2+、Cu2+,20μgCr3+、Nb5+、Mo6+、Ni2+、Pb2+、Fe3+不干扰测定。Mn2+、Al3+、V5+、Co2+等有干扰。采用50g/L硫脲-100g/L柠檬酸钠5mL混合掩蔽,可允许100μgFe3+,500μgCu2+,200μgAl3+,200μgTi4+,500μgSn4+。方法实现了In3+和Al3+等离子的定量分离。
(3)P204、P507萃取分离
P204:2-(2-乙基己基)磷酸,P507:2-(2-乙基己基)磷酸单酯。均以200#溶剂油作稀释剂,浓度(1+4),相比(1+1),萃取率都随酸度增大而减小;在同一酸度下,P507萃取铟的能力小于P204,两者均需在较低的酸度下进行;P507萃取酸度在pH0.5~2.0,铟的萃取率>95%,P204萃取酸度在pH0.3~2,铟可被完全萃取。反萃取铟时,P204需用6mol/LHCl,而P507仅用2~3mol/LHCl。用P204萃取铟,基本上可完全分离Zn、Cu、Cd、As、Sb、As、Sb、Na等金属;少量Fe3+进入有机相,可预先用还原剂亚硫酸钠、铁屑或铜屑等处理。
(4)N503萃取分离
N503:N,N-二(1-甲基庚基)乙酰胺,以200#溶剂油作稀释剂,浓度(4+6),相比(1+3)~(1+4)。在2.6~2.8mol/LHCl中,铟可被定量萃取,萃取率>98%。用1mol/LHCl反萃取铟,0.1mol/LHCl可反萃取锡,工业上可用于铟锡分离。
(5)苯并-15-冠-5萃取分离
以1,2-二氯乙烷作稀释剂,在1mol/LKI-0.04mol/L抗坏血酸存在下,0.01mol/L苯并-15-冠-5可完全萃取In3+。0.02mol/LHCl反萃取5min,反萃取率>99%。100倍Zn2+、Ni2+、Mg2+、Fe2+,50倍Cr3+(对100μgIn3+),基本上不干扰In3+的PAR光度法测定。
(6)N1923萃取分离
N1923:长碳链烷基伯胺,在硫酸介质中,随着酸度的增加,N1923对Ga、In、Tl的萃取率明显下降,其萃取能力大小顺序为Tl>In>Ga;当H2SO4酸度为0.05mol/L时,(1+9)N1923-乙苯对In、Tl能定量萃取,而当H2SO4酸度≤0.05mol/L时,Ga才能有较高的萃取率。由于Ga易水解,一般以0.05mol/LH2SO4为宜。在此萃取体系下,Al3+、Zn2+、Cd2+、Cu2+、Fe2+、Co2+、Ni2+、As3+等不被萃取,碱土金属和碱金属也不能被萃取。3mol/LH2SO4可完全反萃取In,0.5~1.0mol/LHCl可反萃取Ga,反萃率≥95%。
8-羟基喹啉铟在微酸性介质中(pH4.0)可被三氯甲烷萃取,而与一些元素分离。
在酸性介质中用三氯甲烷可萃取铁、镓与铜铁试剂生成的螯合物,而铟不被萃取。
62.3.2.2 离子交换与吸附法
(1)阳离子交换树脂分离富集
铟在pH1~pH3的盐酸介质中能定量地吸附在阳离子交换树脂上,在含有脂肪醇、丙酮等有机溶剂的盐酸溶液中,分配系数增大,可与许多元素分离。可用(3+1)丙酮+0.1mol/L盐酸先洗提铋、镉,再以(1+1)丙酮+0.04mol/L盐酸洗提铟。铁(Ⅲ)、锌、镓、铅、锰、铀(Ⅵ)、铜(Ⅱ)、钒(Ⅳ)等均留在柱上。
铟也可在低浓度氢溴酸介质中被阳离子交换树脂吸附,可用0.5mol/L盐酸-(3+7)丙酮溶液洗提铜、锌、镓、铁、钛、锰、铀、铅、钠、镍、钴等,再用0.2mol/L氢溴酸+(1+1)丙酮溶液洗提镉、铋、金、铂、铝、钼和锡,最后洗提铟。
(2)巯基棉分离富集
在pH4.0时,巯基棉可定量富集痕量In3+,饱和吸附量为181μg/g,In3+可被0.8mol/LHNO3定量洗脱。于石墨炉原子吸收光谱法测定,对5μgIn3+,经富集后,部分离子允许量为:Al3+(500mg),Cu2+、Zn2+(50mg),K+、Na+、Mg2+(20mg),Ca2+、Fe3+(10mg),方法回收率92.8%~100.6%。
(3)巯基葡聚糖凝胶分离富集
巯基葡聚糖凝胶pH5.0以上时,In3+可定量吸附,1.0mol/LHCl可定量洗脱。于微乳液介质中[(溴化十六烷基吡啶+正丁醇+正庚烷+水)的质量比例为(1+0.1+0.1+0.97)],三甲氧基苯基荧光酮显色光度法测定铟,100倍的Pb2+、Co2+、Ni2+、Sb3+、W6+、Mo6+和Ga3+,200倍的Cu2+、Sn4+、Ag+、Al3+、Fe3+和Cr3+不干扰测定。
(4)色谱分离
a.TBP色谱柱分离。以聚三氟氯乙烯载体、负载磷酸三丁酯(TBP)为固定相的萃取色谱柱,铟可在0.8mol/LHBr中被定量萃取吸附,金、银、铊和镉也被萃取,铁(Ⅲ)、锰(Ⅱ)、铜、锌、钙、镍、镓、铝、镁、铅等不被萃取。用水洗脱铟,镉被洗脱,金、银、铊不被洗脱,洗脱液中可能尚有微量铅或铜残留。
b.P507色谱柱分离。将200g/LP507涂载于硅烷化硅球(150~200目)上作为固定相,上柱液为pH1.5的硫酸-氨基乙酸溶液,只有铟、镓、铝、铋留于柱上。先用0.5mol/LH2SO4淋洗出镓和铝,再用1mol/LH2SO4淋出铋,最后用1mol/LHCl淋洗出铟。
c.P350色谱柱分离。在1mol/LHBr中,In3+被定量吸附,以水作解脱剂,可将In3+全部解脱,富集0.2μg铟,100mg的Fe3+、Cu2+、Mg2+、Na+,50mgAl3+,40mgK+,10mg的Ti4+、Cu2+、Pb2+、Zn2+、Cd2+,经色层柱分离后,均不干扰石墨炉原子吸收光谱法测定铟,方法检出限(3σ)为0.022μg/g。
d.CL-N235萃取色谱柱分离。萃铟余液中In、Ge的分离,以N235为萃取剂,酒石酸为配位剂,在流动相pH1.5~2.5,线性流速0.46mL/min条件下,锗的吸萃率可达98%以上;可用4mol/LH2SO4反洗锗,流速0.5mL/min。Zn、Fe、Cu、Cd、的存在对锗的吸萃无影响。
62.3.2.3 液膜分离法
以P291为流动载体液膜富集铟,最优条件为:膜相由P291-L113A-液体石蜡油+煤油(5+4+4+87)组成,内相为0.2mol/LH2SO4和硫酸肼水溶液,外相试液为pH3~4介质,富集温度15~36℃,富集时间8min,油内比为1+1,乳水比为20+100。In3+的迁移富集率达99.5%~100.4%。对200μg的铟,在DLC、酒石酸、NaF、抗坏血酸和硫脲存在下,500mgFe3+、Al3+、Mg2+、Ba2+、Sr2+、Ca2+、Cu2+、Pb2+、Cd2+、Sn4+、Zr4+、Ti4+、Cr3+、Bi3+、Hg2+、Zn2+、Mn2+、Mo6+、∑REE3+、K+、Na+、NH+4、Cs+等都不迁移透过此液膜,大量F-、Cl-、ClO-4、NO-3、SO2-4、SiO2-3也不影响分离富集In3+。
62.3.2.4 沉淀分离法
(1)单宁沉淀分离
在草酸存在下的微酸性盐酸介质中(甲基红刚呈红色),锡、锑、铋可被单宁沉淀分离,铟留于滤液中,用氢氧化铵中和并补充一些单宁可沉淀回收铟。
(2)氢氧化铟沉淀分离
分离大量铅,可将它们的硝酸盐溶液用稀氢氧化铵中和至出现微弱浑浊,加入大量乙酸铵溶解铅,然后加入适量六次甲基四胺并煮沸,铟以氢氧化铟沉淀析出。必要时用硝酸溶解沉淀,重复沉淀一次。
在沸腾的含有硝酸铵的溶液中,小心滴加氢氧化铵至甲基红指示剂刚变橙色,氢氧化铟沉淀即析出,可与镉、锌、铜、镍、钴、锰分离。必要时用硝酸溶解沉淀,重复沉淀一次。
(3)硫化沉淀分离
于0.025mol/LHCl中,不断通入硫化氢并加热至70℃保温2h,则In2S3沉淀即析出,可与锰、铝、铁分离。或在氨性酒石酸盐介质中,以铍为载体用磷酸盐将铟沉淀,也可和锰、铝、铁分离。
铟、锡最佳分离条件,以H2S为沉淀剂,温度50℃,反应时间20min;在1mol/LH2SO4中,锡完全沉淀,而铟损失率仅为0.47%。
(4)其他
在微酸性冷溶液中,可用锌屑还原沉淀单质铟,镓因不被还原而得以分离。溶液需保持微酸性,以免镓生成碱式盐沉淀,最好是用乙醚萃取氯化镓,铟不被萃取。
当有碘化物存在时,痕量铟可与次甲基蓝等碱性染料生成沉淀,可与一些金属离子分离。
在盐酸介质中,可用蒸馏法将铟与砷分离。用碘化钾还原砷(Ⅴ)至砷(Ⅲ),蒸发至干,反复加盐酸、蒸干至砷完全挥发为止。
7. 阳离子交换树脂分离-偶氮胂Ⅲ光度法
方法提要
试样经碱熔,水提取过滤,盐酸溶解沉淀,经阳离子交换树脂分离富集锆铪,在酸性溶液中,与偶氮胂Ⅲ形成绿色配合物,在波长660nm处有最大吸收。配合物颜色的强度随盐酸浓度增加而加深,并且相当稳定。
仪器
分光光度计。
试剂
过氧化钠。
硫酸。
盐酸。
过氧化氢。
氢氧化钠溶液(10g/L),加几滴过氧化氢。
氯化铵溶液(200g/L)。
草酸铵溶液(40g/L)。
偶氮胂Ⅲ溶液(2g/L)称取2g偶氮胂Ⅲ,用1mo1/LHCl溶解并定容于1L,混匀,过滤备用。
锆标准储备溶液ρ(Zr)=1.00mg/mL称取3.5328g氯化锆酰(ZrOC12·8H2O)于烧杯中,加入40~50mL8mol/LHCl溶解。如溶液混浊需过滤,移入1000mL容量瓶中,用8mol/LHCl稀释至刻度,混匀。
锆标准溶液ρ(Zr)=1.0μg/mL用8mol/LHCl稀释锆标准储备溶液配制。
离子交换柱取80~100目的743阳离子交换树脂,用蒸馏水浸泡半天,再用4mol/LHCl浸泡半天,以4mol/LHCl洗1次。将树脂装入内径为0.8~1cm、长为10cm,出口内径为0.2cm的交换柱中,柱的上下端充填少量玻璃丝,上柱前用20mL1mol/LHCl淋洗平衡。
树脂的再生洗脱锆以后的树脂,用100mL6mol/LHCl洗脱稀土。加入15mLNH4Cl溶液转型,用10mL水淋洗,加入25mL草酸铵溶液洗脱钍,用10mL水淋洗,然后用20mL4mol/LHCl平衡,用水洗至中性,备用。
校准曲线
移取0mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL锆标准溶液,分别置于一组25mL比色管中,补加8mol/LHCl至20mL,准确加入1mL2g/L偶氮胂Ⅲ盐酸溶液,用8mol/LHCl稀释至刻度,混匀。用1cm比色皿,以试剂空白溶液作参比,于分光光度计660nm波长处测量吸光度,绘制校准曲线。
分析步骤
称取0.lg(精确至0.0001g)试样,置于刚玉坩埚中,加入1.5gNa2O2,搅匀,再覆盖一层过氧化钠。在600℃熔融15min,取出冷却,放入150mL烧杯中,用热水提取并煮沸数分钟,洗出坩埚。用中速滤纸过滤,用氢氧化钠溶液洗涤烧杯和沉淀6~8次,水洗2次。滤液弃去。用热25mL4mol/LHCl溶解沉淀于原烧杯中,加入75mL水,混匀。将溶液以1~2mL/min的流速通过交换柱。用50mL1mol/LHCl分4次洗涤烧杯和交换柱,再用25mL(7+93)H2SO4洗脱锆(铪)于50mL烧杯中。于电热板上加热蒸发至硫酸烟冒尽,用8mol/LHCl提取,移入50mL容量瓶中,用8mol/LHCl稀释至刻度,混匀。
分取5.0mL试液于25mL比色管中,用8mol/LHCl稀释至20mL,以下按校准曲线进行测定。
按式(59.1)计算锆(铪)的含量。
注意事项
50mL溶液中,100mgCa、Mg、Al,50mgMn,40mgBi,30mgPb,25mgGa,20mgSn,15mgFe(Ⅱ)、Ti,10mgNi、Be、Co、In,5mgCu、Cr、Nb,及1mgLa、Se均不干扰锆的测定。钪、钍和铀严重干扰。1mgV5+、40μgCr6+、400mgNO-3对试剂有氧化作用。氟、硫酸根、EDTA以及有机含氧酸等与锆配位,也干扰测定。
8. 当含盐浓度较高时,应该用离子交换法还是膜分离法,为什么
膜分离法对水进行脱盐处理,是目前水的脱盐技术中效为先进的工艺,单纯的膜组件设备只是系统中的核心设备,当然还需其它设备配合,否则膜分离设备的组件容易发生故障…。
9. 处理含盐浓度较高的废水时,采用膜分离法好还是离子交换法好
处理含盐浓度较高的废水时,采用膜分离法好还是离子交换法好
粘度低的采用膜分离法好极性强的是离子交换法好
10. 离子交换树脂如何脱盐
离子交换树脂原理即是离子交换树把溶液中的盐分脱离出来的过程:
离子交换树脂内作用环境中的容水溶液中,含有的金属阳离子(Na+、Ca2+、 K+、 Mg2+、Fe3+等)与阳离子交换树脂(含有的磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,在水中易生成H+离子)上的H+ 进行离子交换,使得溶液中的阳离子被转移到树脂上,而树脂上的H+交换到水中,(即为阳离子交换树脂原理)。
水溶液中的阴离子(Cl-、HCO3-等)与阴离子交换树脂(含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团,在水中易生成OH-离子)上的OH-进行交换,水中阴离子被转移到树脂上,而树脂上的OH-交换到水中,(即为阴离子交换树脂原理)。而H+与OH-相结合生成水,从而达到脱盐的目的。