① 咪唑有毒吗
二甲基-2-咪唑啉酮
别名:DMI
作为一种有机溶剂和原材料广泛应用于医药、农药、染料、液晶材料等领域。是清洗电子部件和模具的试剂,及高聚物的聚合溶剂。在医药领域作为药物透皮吸收剂应用效果显著;在高分子领域,可促进原料和催化剂的混合,改善聚合物化学性能、热性能和机械性能;在液晶材料领域,可获得优质多孔超滤膜,是储存性能稳定的液晶定位剂;在分子间,分子内的缩合制备大分子杂环化合物,碱性条件下的亲核取代、还原、氧化、消除、卤素交换反应、Kolbe-Sschmill反应、Ullmann反应领域的应用都具有良好效果。作为一种有机溶剂和原材料广泛应用于医药、农药、染料、液晶材料等领域。是清洗电子部件和模具的试剂,及高聚物的聚合溶剂。在医药领域作为药物透皮吸收剂应用效果显著;在高分子领域,可促进原料和催化剂的混合,改善聚合物化学性能、热性能和机械性能;在液晶材料领域,可获得优质多孔超滤膜,是储存性能稳定的液晶定位剂;在分子间,分子内的缩合制备大分子杂环化合物,碱性条件下的亲核取代、还原、氧化、消除、卤素交换反应、Kolbe-Sschmill反应、Ullmann反应领域的应用都具有良好效果。
1 反应溶剂
由于DMI 的热稳定性、化学稳定性,它对无机和有机化合物的溶解能力,以及它作为非质子传递型极性溶剂的催化作用,使其成为一种特别有效的反应溶剂。通过DMI的应用,能够在较短的时间内以较高的收率得到较高纯度的反应产物。
它对于各种亲核取代反应是非常有效的,例如,在如后图解所示的苯基醚衍生物、氨基化合物以及氟苯衍生物的合成等。它的高介电常数和对阳离子的溶剂化作用能够催化阴离子亲核反应。这些合成产物在农用化学品、医药、染料以及高性能树脂的单体等的合成中用作中间体。
2 聚合物
DMI 是唯一适用于耐热的热塑塑料的生产过程的溶剂,它还能有效地用作各种聚合物合成工艺的溶剂,并且用作聚合反应及塑料成型加工时的清模剂。在聚酰胺和聚酰亚胺树脂的生产中,DMI 能加速酰胺和亚胺基团的形成,得到高分子量的聚合物。在聚苯硫醚树脂的生产中,用DMI可以获得电子材料中需要的含极少量有机杂质的产品。在聚苯醚砜树脂生产中,DMI 能有效控制副反应的发生,得到高质量的聚合物产品。在聚酰亚胺树脂和聚砜树脂成膜加工以及聚醚酮树脂薄膜的延展加工时,用DMI进行处理可以使薄膜更均匀。
3 洗涤剂
把DMI添加到表面活性剂、碱、醇和聚氧乙烯烷基醚的混合物中去,能得到一种强力洗涤剂。由于DMI很容易溶解污垢,它还能用来配制一种高效清洗液用于清洗玻璃和金属。
4 染料和颜料
用DMI为溶剂组分与染料及颜料混合制作的墨水,能喷绘出对比鲜明,图像画面清晰。
5 电子材料
由于DMI的粘度低,介电常数高,它可以用作非水电池的电解质溶液的溶剂。此外,它还可以作为光致刻蚀用的剥离剂,与通常所用的剥离剂不同,它不涉及因通常所用的剥离剂的水不溶性而导致的一系列复杂工艺过程,也不会对环境产生负面影响。
6 表面处理剂
为了提高环氧树脂粘合剂的粘接强度,一种SDN (钠、钾或锂的聚丙烯络合物)的DMI溶液被用于TEFLON® (聚四氟乙烯)的表面处理。
7 石油产品
DMI 具有高沸点和高热稳定性,并且不易与其它物质构成共沸混合物,所以,它可以在液-液萃取、逆流分布、提取蒸馏和逆流洗涤等许多工业过程中应用。
由于DMI 能够溶解芳香化合物和不饱和烃,却不能溶解链烷烃,因此它是最好的BTX(苯、甲苯和二甲苯)萃取剂
② 汪猷的人物成就
汪猷字君谋,1910年6月7日出生于杭州书香门第之家。父亲汪知非是清末秀才,年轻时深受西方科学技术和孙中山的革命思想影响,遂弃功名仕途,在浙江从事测量和盐务等工作。父母先后于1928年和1930年病故。1941年汪猷与协和医学院儿科助教李季明女士结婚,夫妻感情甚笃。
汪猷聪颖好学,从小深受父亲影响,喜爱自然科学。1921年考入浙江省立甲种工业学校(浙江大学前身之一),就读于应用化学系,从此汪猷与化学结下了不解之缘。1927年考入金陵大学工业化学系。1931年毕业,获理学士学位。由于他历年学习成绩优秀,获得斐托飞(φτφ)学会金钥匙奖的荣誉。毕业后由学校推荐到北平协和医学院作研究生后转作研究员。师从我国著名生物化学家吴宪,研究性激素的生物化学。他首先使用了问世不久的瓦堡微量呼吸器测定男性激素对正常鼠和阉鼠的各部器官的影响。在名师指点下,汪猷的研究才华脱颖而出,发表了4篇论文,深得吴宪的器重。1935年8月,汪猷作为中国生理学会代表团成员与吴宪等参加了在莫斯科举行的第十五届国际生理学大会。这是汪猷第一次去国外参加大型国际学术会议。他见到了不少仰慕已久的国际生理、生化界大师,如巴甫洛夫和胰岛素发现者班丁(F.G.Banting)等。这使他下决心奋发图强,日后希跻身于国际著名学者之列。大会结束后,汪猷赴德国慕尼黑大学化学研究所,在著名化学家、诺贝尔奖获得者维兰德(H.Wieland)指导下当研究生。
在维兰德及其助手唐纳(E.Dane)指导下,汪猷从事不饱和胆酸和甾醇的合成研究。找到了甾环内引进共轭双烯的改进方法,合成了胆甾双烯酮和胆甾双烯醇。1937年冬,汪猷获慕尼黑大学最优科学博士学位。1938年秋,他又去海德堡威廉皇家科学院医学研究院化学研究所任客籍研究员。在著名化学家、诺贝尔奖金获得者库恩(R.Kuhn)指导下进行藏红素化学的研究。合成了十四乙酰藏红素。这是当时分子量最大的有机化合物。在国内外名师和著名学术机构的优良学风的薰陶和严格训练下,汪猷养成了严肃、严谨的学风和勇于创新的精神,这对他以后的事业产生了深远的影响。
1939年春,汪猷离开德国转赴英国。在伦敦密特瑟克斯医学院考陶尔生化研究所陶慈(E.C.Dodds)的研究室任客籍研究员,从事雌性激素类似物的化学合成研究。当时欧洲战云密布,我国正遭受日本法西斯铁蹄的蹂躏。怀着振兴祖国科学事业的强烈愿望,汪猷毅然放弃国外优越的研究条件和物质生活,于1939年8月回国。在协和医学院先后任讲师、助教授等职。除讲课外,他的大部分时间继续在吴宪指导下从事甾族性激素的化学研究,包括孕妇尿中甾三醇葡萄糖苷排泄量的测定和中药当归有效成分及药理作用研究等。他在与妇产科医生合作的一项研究中发现了怀双胞胎的孕妇尿中甾二醇葡萄糖排泄量特别高。珍珠港事变之后,日本侵略军于1942年1月占领协和医学院,研究设备、资料和研究记录、样品全被日本侵略军搜掠一空。教授、医生、学生都被迫离开实验室,离开医学院。
中国抗生素事业的开拓者
1942年4月,汪猷进入上海丙康药厂,担任厂长和研究室主任。这是一家小药厂,主要生产针剂、止咳润喉糖之类。当时上海沦陷、视听闭塞。1944年他偶然获悉国外发现了一种从霉菌里培养出来的抗生素,激起了他对新学科的研究渴望。他刻苦学习微生物学、发酵等方面的知识,决心在中国开拓抗生素研究的道路。汪猷对霉烂的桔子表面的烂毛发生了兴趣。经过几年研究试验,克服种种困难,终于分离得到了一种抗菌物质桔霉素。1947年汪猷的论文“桔霉素”发表于美国《科学》杂志。国内“大公报”等报纸报道了他研究成功桔霉素的消息。美国一家通讯社也做了报道。但是汪猷的才华和研究成果并未得到药厂厂主的赏识,汪猷于1947年8月愤然离开丙康药厂。
1947年9月汪猷借用中央研究院医学研究所筹备处的两间原病理和尸体解剖实验室,同两位自愿从丙康药厂退职跟随他的助手继续进行桔霉素的研究。当时他本人没有工资和报酬,汪猷一家的生活十分拮据,但他对清贫甘之如饴,刻苦努力,埋头研究。在助手的合作下,桔霉素的化学及其抗菌作用的研究未曾中断。后得到林可胜、冯德培的支持被聘为医学研究所筹备处的研究员。这一时期汪猷发表了“抗生素桔霉素”、“双氢桔霉素”、“桔霉素及其衍生物的结构和抗菌活力”等6篇论文。中华人民共和国建立后,成立了中国科学院,汪猷被聘为中国科学院生理生化研究所研究员。1952年底调入有机化学研究所任研究员并担任副所长。由于党和政府十分重视科学研究事业的发展,使他得以对桔霉素的结构、合成、生物作用、毒性和药理等方面进行系统的研究,终于取得了丰硕的成果。发表了“桔霉素”、“桔霉素骈醇”等10余篇论文。虽然由于桔霉素的毒性,未能用于临床,但是40年代汪猷在如此简陋、困难的条件下,对桔霉素开始了系统的研究,成为中国抗生素研究的开拓者。他的这一研究成果获得中国科学院1956年度科学奖金三等奖。 50年代是抗生素研究的鼎盛时期。随着医疗保健事业的发展,迫切需要大力开展抗生素的研究。汪猷是积极的倡导者和组织者。1952年汪猷在中国科学院领导下曾参加组织召开我国首次抗生素工作会议。以后又参加组织了上海抗生素研究工作委员会和全国抗生素研究工作委员会。1955年在北京主持了国际性的抗生素学术会议。这些活动都为推动我国抗生素的研究和生产起到了一定的作用。与此同时,他与合作者于1953年开始研究链霉素及金霉素的分离、提纯以及结构和合成化学。曾发表“有关链霉素菌株的选育、发酵及提取的研究”、“自L-双氢链糖酸内脂合成L-双氢链糖”、“金霉素的抗生作用机制”等近10篇论文。他和助手们在50年代即合成了几种性能优良的阳离子交换树脂,用于提取发酵液中链霉素与碱性抗生素。他们大胆地提出用离子交换树脂法代替当时使用的活性炭的分离工艺,并多次深入生产现场,指导和帮助解决生产工艺问题,汪猷不仅重视生产中的实际应用课题,也不忽视学科中的基础理论研究。他和同事们在研究链霉素的立体化学中纠正了美国著名碳水化合物专家、链霉素结构的测定者沃尔弗浪姆(M.L.Walfrom)等提出的链双糖胺β苷键的结论,确证为α苷键。这项成果被选入上海1960年科研成果论文集。
中国生物有机化学的先驱者之一
中华人民共和国成立后,由于国家对科学事业的重视,大为激发了汪猷对振兴祖国科学事业的热情,他的研究生涯进入了黄金时期。60年代开始,汪猷先后开展了生命基础物质——蛋白质、核酸、多糖的研究以及有机催化、生物催化、石油发酵和单细胞蛋白生产,模拟酶化学,生物合成等研究。他的研究活动几乎包括了这一时期我国生物有机化学的全部内容。这些研究都以出色的成果载入了我国有机化学发展史册。
1965年9月,我国在世界上首次人工合成了结晶牛胰岛素,它是第一个全合成的、与天然产物性质完全相同的、有生物活性的蛋白质。胰岛素的分子组成和结构是1955年英国科学家桑格尔(F.Sanger)阐明的。虽然此后各国科学家都开展了胰岛素人工合成的探索,但由于胰岛素结构复杂、合成工作量繁复浩大,直到1958年英国《自然》杂志还断言“人工合成胰岛素在相当长时间里未必会实现。”可是,在这场世界性的科学竞赛中,中国科学家领先了,我国得到了人工合成的结晶的牛胰岛素。这一举世瞩目的成果博得了国际科学界的高度评价。结晶牛胰岛素的全合成是由中国科学院生物化学研究所、上海有机化学研究所和北京大学部分科学家合作进行的。王应睐、汪猷、邢其毅等负责领导组织这项研究工作。汪猷还直接参加了牛胰岛素A链和C14标记的牛胰岛素的全合成等研究项目。对合成方案、产物的鉴定分析标准都提出了明确具体的要求。汪猷与合作者发表了“肽的研究”、“结晶牛胰岛素的全合成”、“牛胰岛素A链的合成及其与天然B链组合成结晶牛胰岛素”、“C14标记牛胰岛素A链和C14标记牛胰岛素的合成”等论文。胰岛素合成成功,推动了我国多肽激素医药工业的建立和生化试剂工业的发展。
自1968年开始至1981年完成的酵母丙氨酸转移核糖核酸的全合成是继胰岛素全合成以后我国自然科学基础研究中又一成就,是我国生物化学及有机化学研究史上又一项崭新的科研成果,也是汪猷科研生涯中耀眼的篇章。1967年4月在北京由当时国家科委主任聂荣臻元帅主持召开有关基础理论研究的座谈会上,汪猷首先提出把核酸化学提到日程上来,作为下一步的攻坚目标。这一建议得到了与会科学家的赞同和聂荣臻元帅的支持。经过酝酿与调查,1968年中国科学院正式下达任务,把“人工合成酵母丙氨酸转移核糖核酸”列为重大科研项目,组织了中国科学院上海生物化学研究所、上海细胞研究所、上海有机化学研究所、生物物理研究所、北京大学、上海化学试剂二厂等单位,前后100余位科技人员从事这项研究。酵母丙氨酸转移核糖核酸分子量在2.6万道尔顿以上,是由76个核苷酸(其中有4种常见的核苷酸、7种修饰的核苷酸)通过磷酸二酯键连接而成的生物大分子。汪猷是协作组副组长,他和协作组组长王应睐及协作组领导成员王德宝等对这项高难度研究进行精心规划。经过13年的艰苦奋战,终于在1981年11月完成了酵母丙氨酸转移核糖核酸的全合成。这是世界上第一个人工合成的含有全部修饰核糖核苷酸的并具有接受丙氨酸、参与蛋白质生物合成等生物活性的丙氨酸转移核糖核酸。这项研究使我国在生命基础物质的研究上步入了新的阶段,且为国家培养了一支从事核酸化学和核酸生物化学的研究队伍。为我国的基因工程、核酸的工业生产、核苷类抗癌药物的研究与生产奠定了基础。汪猷与合作者发表了“酵母丙氨酸转移核糖核酸的全合成”、“核酸化学研究”、“酵母丙氨酸转移核糖核酸3′-半分子(36—76)的合成”、“生物学上有趣的天然大分子的合成研究”、“多核苷酸合成的研究”等多篇论文。汪猷还在国际核酸化学会议、中德核酸蛋白质学术讨论会及中美天然产物化学讨论会上做了学术报告。尽管他工作繁忙,但对此项工作的指导十分具体、细致。他提出并成功地将羧酰咪唑应用于核糖核酸的酰化反应,使核酸化学合成中单体的保护方法的研究获得了进展。随后他又应用31P核磁共振和计算机技术进行羧酰咪唑酰化机制和反应动力学的研究并取得了成果,发表了“在寡聚核糖核苷酸合成中偏磷酸酯在TPS或DCC激活核苷酸的反应中的作用”、“N苯甲酰咪唑与核糖核苷酸的反应机制”、“用31PNMR法研究核糖核酸酶A水解核酸的机制”等论文。
在进行酵母丙氨酸转移核糖核酸的人工合成研究的同时,汪猷还承担了另一项重大科研项目——天花粉蛋白的化学研究。天花粉是我国特有的引产中药,宋代已有记载。1966年底有机化学研究所的科研人员开始从事这方面研究。1972年汪猷在国家科委的一次科研规划会议上,建议将天花粉的研究列为中国科学院重点课题。他认为这项基础理论研究,既有重大的学术意义,又有明确的应用前景。自1978年开始,汪猷参加和直接指导了对天花粉有效成分天花粉蛋白的一级结构的测定,并与协作单位共同完成了二级结构与空间结构的初步测定。这是完全由我国化学家和物理化学家完成分离、提纯并测定一级及空间结构的第一个蛋白质。当汪猷将这一研究成果在1985年国际纯粹与应用化学联合会(IUPAC)药用天然产物有机化学讨论会上演讲时,受到与会科学家的热烈欢迎和高度评价。他曾与合作者发表了“天花粉的科学评价—历史,化学与应用”等多篇论文,并主编了《天花粉蛋白》一书。 汪猷在多糖化学研究方面也有建树,最突出的成就是与屠传忠等共同研制成功高效、安全的新型代血浆(即血管扩张剂)——羧甲基糖淀粉。这是我国独创的代血浆,和国际上广泛应用的代血浆——右旋糖苷比较效果相同,但具有原料易得、工艺简便等优点,已在临床上广泛应用。1979年英国《自然》杂志有一篇评论高分子代血浆的文章中曾提及中国有不少成果是“重复西方专利资料”,但这项成果则是“原始的”(首创性的)。外国学者到上海有机化学所参观时,至今仍对这个项目很感兴趣。值得一提的是,当初代血浆问世后,需进行健康人安全试验,汪猷是志愿受试的首批报名者之一。
60年代初,汪猷提出开展有机催化和生物催化的基础研究。汪猷和王大琛从事的生物催化研究,迅速取得了成果并显露了应用前景——石油微生物转化。汪猷敏锐地意识到这项研究对国民经济尤其是对农牧业的重要意义,遂不失时机地把这项研究转向应用基础研究,把实验室研究成果扩大到中试和设计试生产,组织协调各项应用试验。汪猷是我国石油发酵生产单细胞蛋白研究的开创者。曾发表“石蜡油微生物氧化产物支链九烷酸和十二烷酸研究的初步报告”、“石蜡油微生物氧化产物羟基羟酸研究的初步报告”、“分枝杆菌石蜡油发酵液中的支链脂肪酸”等论文。汪猷还在1973年维也纳联合国工业发展组织会议和1981年巴黎单细胞蛋白国际会议上分别宣读了“关于石油蛋白作为新饲料的若干问题”和“中国正构烷烃酵母作为食物的进一步研究”等论文。石油发酵生产的单细胞蛋白作为饲料的研究已通过国家鉴定。 汪猷在50年代后期负责并如期完成了国家急需的二个活性染料的剖析任务。在60年代负责完成了对高感光度高空侦察片中片基和增感染料剖析的军工任务。1985年以来,汪猷领导开展了抗疟药青嵩有效成分青嵩素的生物合成研究。发表了论文“青嵩素的二维核磁共振研究”、“青嵩素的生物合成研究”、“青嵩素和青嵩素B生物合成中的关键中间体——青蒿酸”。1986年,在蛋白质化学和核酸化学研究的基础上,汪猷组织人力开展了模拟酸化学的研究,已发表“具有合成核酸活性的多肽I.C-端去四肽和去六肽核糖核酸酶A及其水解和合成活性”等5篇论文。 汪猷的学术成就在国内外学术界享有很高的声誉,受到了国家的嘉奖。其中有二项获国家自然科学一等奖:人工全合成牛胰岛素(1982年7月)及酵母丙氨酸转移核糖核酸的人工全合成(1988年8月);一项获国家自然科学二等奖:天花粉蛋白的化学(1988年8月);一项获中国科学院自然科学三等奖(1956年1月);以及多项全国科学大会奖(1978年)。
在半个多世纪的研究生涯中,汪猷始终站在有机化学发展的前沿,在生命基础物质的研究以及其他天然产物化学的研究方面取得多项成就,为我国有机化学的发展做出贡献。
为中国有机化学事业的发展再做贡献
汪猷是我国有机化学家的杰出代表。这不仅由于他在有机化学研究工作中取得重大成就,还由于几十年来他为国家培养、组织了一支训练有素、学有所成,能承担重大科研课题的队伍,建设了有机化学研究基地。自1952年汪猷被调入中科院上海有机化学研究所后,相继任副所长、代理所长、所长、名誉所长。他把全部精力倾注于有机化学研究所的成长和发展。毕生追求就是振兴中国的有机化学事业,进而推向世界先进水平之列。
汪猷根据我国有机化学研究的实际状况和有机化学发展的规律提出有机化学研究所体制、专业设置的“二经二纬二辅助”的方针,二经是有机合成化学和物理有机化学;二纬是天然有机化学和元素及金属有机化学;二辅助是配合全所研究工作,建立分析化学实验室和生物化学实验室。随着电子计算机技术的迅速发展,1973年汪猷又及时提出建立计算机化学实验室。有机化学所有着雄厚的有机合成研究力量,但70年代前没有一个专门的研究室从事物理有机化学的研究。1973年汪猷提出建立物理有机化学研究室,请擅长物理有机化学的蒋锡?出任室主任,组织从事有机化学中理论问题的研究。从研究所的体制上保证了基础研究的比例。汪猷在执长有机化学所的数十年间,带领全所人员积极承担国家下达的应用研究课题的同时,鼓励科研人员勇于进取,努力开展基础性研究,勇于开拓新学科、新领域。汪猷先后主持领导了近10项基础性研究课题,他也亲自参加和组织了多项重大应用性课题,甚至是任务性研究。近40年来,有机化学研究所在基础研究和应用研究方面都取得了丰硕成果,共发表研究论文2600多篇,获得研究成果达300项。这些成就正是研究所稳定、健康发展的证明。
汪猷十分重视人才的培养。作为主管业务的所长,他深知建设一支具有真才实学、勇于探索的精兵强将对于科学事业的重要性,50年代开始,汪猷亲自主持制订全所科研人员的业务学习计划,使他们较快地掌握了最新的有机化学基础理论、分离技术、立体化学、谱学等知识。他还多次亲自为本所专业外语及文献阅读辅导班、有机化学微量操作短训班、有机化学实验班、德文训练班授课。1955年起招收研究生,至1965年汪猷共培养研究生7名,还培养了一批在职科技人员。汪猷注重培养学生的独立工作能力、扎实的基础知识和认真、严谨的研究风尚。1978年后,汪猷是国务院和中国科学院学位委员会委员,并亲自负责指导研究所的研究生培养工作。80年代末,他不顾自己古稀高龄,两次去新疆、一次去云南考察,指导边远地区的科学事业,为当地有关研究所的研究方向、人才培养、仪器保养等作详细指导,帮助他们解决一些研究上的难题。如新疆化学所在天然有机化学方面力量比较薄弱,在汪猷的支持下,有机化学研究所派出周维善、林国强赴疆进行短期工作培训。汪猷还亲自代培了一名维吾尔族女进修生,还为新疆化学所代培研究生。蛋白质的结构分析在我国曾较薄弱,汪猷结合天花粉蛋白一级结构的测定研究课题,于1980年邀请西德B·维特曼·利博特(B.Wittmann-Liebold)和亨辛·埃特曼(A.Henschen-Edman)这二位蛋白质结构化学家到有机化学研究所举办蛋白微量顺序测定讲习班。后由该所再办学习班,把这一新技术推广到全国许多单位,为提高我国在这一领域的测试水平做出了贡献,受到了好评。
改革开放以来,汪猷积极为研究所的业务骨干的出国进修、留学创造条件。他根据研究所的专业设置方向、学科发展趋向,有计划有重点地派遣科研人员,让他们到国外学习先进的科学技术,回国报效祖国。
汪猷受中国化学会委托担任《化学学报》主编达24年。由于他的不懈努力,学报由复刊时的季刊发展为双月刊,进而为月刊,篇幅也不断增加。并且于1983年创办了《化学学报》的英文版,使国际化学界能及时了解中国同行的研究进展。
汪猷积极为中国与国际学术界的交流和友谊做了许多有益的工作。他是1955年北京抗生素国际会议、1979年中国一前联邦德国蛋白质和核酸学术讨论会、1980年中美天然产物化学会议的主持人之一。他组织并主持有来自五大洲33个国家和地区的400余名科学家参加的1985年国际纯粹与应用化学联合会(IUPAC)上海药用天然产物有机化学讨论会,其学术水平和组织工作均受到与会科学家的高度评价。50年代以来,他曾到比利时、荷兰、英国、奥地利、捷克、民主德国、联邦德国、古巴、澳大利亚、罗马尼亚、法国、瑞士、瑞典、美国、苏联、日本、香港等国家和地区进行参观访问、考察、讲学和参加国际学术会议。与许多国际著名科学家建立并保持着友好的往来和密切的联系。汪猷的学术成就受到国外同行的赞誉。他被聘为国际著名的有机化学杂志《四面体》、《四面体通讯》的顾问编委(1982—至今),《四面体计算机化学》和《四面体不对称合成》的顾问编委(1989—至今)以及《核酸研究》编委(1982—至今)。1984年他被列入美国马尔基(Marquis)第七版名人录,1984年3月当选为法兰西科学院外籍院士,1986年当选为美国生物化学与分子生物学学会名誉会员。1987年11月慕尼黑大学按德国传统为获得博士学位50年并取得了突出成就的汪猷举行了重发博士学位文凭的隆重仪式。这是一种极高的荣誉。1988年他又当选为德国巴伐利亚科学院通讯院士。1990年在他80岁时,《四面体》以其第46卷第9期作为献给汪猷80寿诞的专刊,辑录了海内外著名有机化学家专门为他撰写的学术论文。其中包括美、法、英、德、日、瑞士、香港等地著名有机化学家,这是国际化学界对汪猷的学术成就所给予的殊荣。
求索不息严以律己
汪猷有着为祖国科学事业彻底献身的精神,多少年来,他总是早起晚睡,每天都工作到深夜.科学研究就是他的全部生活.他已发表论文100余篇,获奖成果近10项。半个世纪以来,他始终站在学科发展的前列,勇敢地迎接挑战性的难题。30年代他研究甾体,40年代研究抗生素,以后是合成胰岛素和核糖核酸。他对“无涯之知”的求索从未停息。多少次他与同行或学生探讨甚至争论一些科学命题。他反对停滞的观点,勇于进取。因此当胰岛素合成后,他思索在深化蛋白质化学所取得成果的同时,开展另一重要的生命基础物质——核酸化学的研究。经过国内有关科学家的集思广益,形成了“人工合成酵母丙氨酸转移核糖核酸”的课题。历经13年,前后上百人的艰苦研究,核酸合成的任务完成了。在欢庆这一成就时,汪猷发表了“无涯之知,世代之功”(《红旗》1982年第4期)的文章。告诫他的同事、助手和学生“学无止境”,不要满足于已得之功,揭开自然科学的奥秘需要世世代代不懈地努力。汪猷身体力行,尽管当时他已过古稀之年,仍壮心不已,继续去攻克新的科学堡垒,1985年和1986年他组织人力开展了两项国内尚属空白和尚无系统研究的重要学科;生物合成和模拟酶化学,至今已陆续发表多篇论文,取得了可喜结果。
汪猷对研究工作刻意求新、求精的精神是他治学态度的又一特点。他大胆、积极地采用新方法、新技术。在他主管有机化学研究所期间,非常重视大型仪器设备的配置和更新。我国第一台用于有机化学研究的红外光谱仪和核磁共振仪都率先建立于该所。他总是在自己的研究工作中积极应用新技术。从事抗生素研究时,他率先采用当时还属先进的技术,如离子交换、层析和电泳等。在胰岛素、核酸和模拟酶的研究中,他将同位素技术、核磁共振、计算机等先进技术及时用于检测、动态跟踪、机理研究等。他首次应用计算机拟合方法于天花粉的结构测定,取得了可喜的结果。凡是汪猷直接负责的研究课题,从路线设计、合成方法、分析手段、数据处理直到撰写论文,他都亲自指导,严格把关,一丝不苟。胰岛素的全合成曾开过二次鉴定会。在1965年底的第一次成果鉴定会上,参加会议的大多数专家对研究结果都表示满意,但汪猷作为这项成果的主要负责者之一,带头发难,指出胰岛素的合成虽然基本完成,但数据不够充足,应再补充一些必要的数据再进行鉴定。他的这种严谨求实的学风受到与会者的赞赏,使几个月后召开的第二次鉴定会取得圆满成功。
汪猷爱护青年,提携后学。1984年他主动退出了所、室领导岗位,放手让中青年化学家去挑担子。他说:“中青年思想敏捷、精力充沛,以中青年更新老年,必然有利于科学技术的开创和发展。当然老的科技工作者有更成熟的经验,更丰富广博的学识、见闻、思虑,但体力日衰、反映渐钝的自然规律是不可抗拒的。老科学工作者应该主动地、有意识地、实事求是地培养青年接班人。”他的行动给该所的老同志起了表率作用,推动了该所体制改革的步伐。
汪猷博闻强记。他能熟练使用英、德两种语言,能阅读法、俄、日文献,谙熟中外科学史中的典故、轶事,他常借这些故事教诲他的助手和学生,指点成才之路。 汪猷酷爱写诗,藉以叙情记事、抒怀言志。
汪猷为人正直,品德高尚,言行一致,身体力行,宽以待人,严以律己,绝不谋一己私利。“文化大革命”中汪猷被诬陷,身处逆境,仍坚持原则,拒不承认强加于他的罪名,也丝毫不说假话。他默默地忍受着“文化大革命”遗留下的巨大创伤,并不鸣冤叫屈。在他复任上海有机化学研究所所长后,他一如既往,宽厚待人,从不计较私怨。粉碎“四人帮”之后,组织上着手解决一部分高研人员的住房问题,有一套较理想的房子,组织上打算让汪猷搬进去,汪猷婉言相谢说:“我的住房已经可以了,我年纪已大,也住不了多长时间,还是给别的同志。”他把较好的住房让给了另一位高研。
汪猷克己奉公、公私分明。他每年的外事活动、学术交流、外出开会频繁。凡是私人用车、复印资料坚持自己付款,外事活动中凡以个人名义请客送礼或邮寄年历等费用,从不向公家报销。相反,出国访问或参加国际会议,他尽可能地节约伙食、交通费用,把省下来的钱包括在国外作学术讲演所得酬金为研究所添置打字机、幻灯机,购买急需的试剂等等。实行奖金制度以来,无论是论文稿费、研究成果的奖金、月度奖、年终奖等等,他都分文不受。甚至连《化学学报》的主编费、审稿费也统统交给编辑部。他认为他所有的成果都是依靠大家的努力,功劳是大家的。 近几年来,汪猷曾推荐多人出国,为研究所的业务骨干创造了许多留学、进修的条件。但他却从未为自己学化学的女儿写过一封推荐信,没有为她提供出国机会。当有人问他为什么不安排自己的女儿出国时,他回答:“出国学习要靠自己的努力去争取,如果我先给她联系,那在研究所里我还怎么执行好国家的政策!”汪猷就是这样一位严以律己、不谋私利的优秀学者。
汪猷于1961年加入中国共产党。他热爱党,维护党的威信,拥护社会主义。他党性强,时时以共产党员的高标准严格要求自己。自1959年至1987年,他曾被选为第二、三、五、六届全国人民代表大会的代表。1986年汪猷被评为上海市优秀党员。他的一言一行,严格地履行着他入党时立下的誓言“我决心争取做一个光荣的中国共产党党员,忠实的马列主义信徒和实践者,党的革命事业的先锋。”
③ 比较软脂酸生物合成与脂肪酸的氧化的不同之处、
一、编写说明
(一) 本课程的任务和适用的专业
生物化学是生命的化学, 是介于生物学与化学之间的一门边缘科学。生物化学是用物理学、化学和生物学的现代技术来研究生物体的物质组成和结构,物质在生物体内发生的化学变化,以及这些物质结构的变化与生理机能之间的关系的科学。学习和研究生物化学的目的在于阐明生命活动的化学、物质基础,并与其他学科配合,来揭示生命活动的本质和规律。
生物化学是农业院校中生技、农学、园艺、植保、资环、食品和牧医等本科专业的专业基础课,也是这些专业的学生考研的必考课程。生物化学与植物生理学、遗传学、微生物学、分类学、病理学以及农业科学、食品科学、营养科学和医药卫生等学科都有密切关系。学习生物化学不仅是进一步学习以上课程的必要基础,亦为研究这些学科中的问题提供了必要的基本理论和手段。
生物化学课程的任务是使学生掌握蛋白质、酶、核酸等生物大分子的结构、性质及功能;生物膜的结构及特性;生物能量的产生及生物大分子前体的生物合成;遗传信息的储存、传递及表达等基本理论知识。并且还要掌握生物化学分离、制备、分析、鉴定技术(比色、层析、电泳、离心等)的基本实验原理及操作技能,为学生进一步学习专业课打下坚实的基础。
进入80年代以来,新兴起的生物技术已成为技术革命的优先发展领域,它包括:基因工程、细胞工程、发酵工程和酶工程四大部分,其在二十一世纪的生命科学时代有着广阔的发展前景,但它们的发展都需要生物化学的理论作指导。为适应生命科学的迅速发展,为使生物技术专业的同学掌握现代生物化学的最新进展,我校生命科学学院生物技术和生物科学专业的学生从2002年秋季更换教材。
(二)使用教材及授课时数
《生物化学》(上、下册)由沈同、王镜岩主编,高等教育出版社。本教材被国家教委评为优秀教材。本课程教学时数为110学时,理论讲授80学时,实验课30学时。由于学时有限,在参考其他兄弟院校和其他综合院校教学安排的基础上,上册中删去糖、脂类、抗生素和激素四章内容。下册中删去生物能学、光合作用两章,生物膜与物质运送的介绍放在上册膜结构一章中,DNA重组与基因工程放在DNA和RNA合成之后讲。
二、教学大纲的主要内容
(一)各章节的主要内容
第一章 绪论 (2学时)
一、 生物化学的概念和研究内容
二、 生物体的化学组成
三、 生物化学的发展
四、生物化学与各学科之间的联系
五、生物化学知识的应用
六、如何学好生物化学
第二章蛋白质(14学时)
引 言 蛋白质概述
一、蛋白质的化学组成
二、蛋白质的大小和分子量
三、蛋白质功能的多样性
第一节 蛋白质的基本结构单位—氨基酸
一、蛋白质的水解:酸水解、碱水解和酶水解
二、氨基酸的分类
(一)根据来源分:内源氨基酸和外源氨基酸
(二)从营养学角度分:必需氨基酸和非必需氨基酸
(三)根据是否组成蛋白质来分:蛋白质中常见氨基酸、蛋白质中稀有氨基酸和非蛋白氨基酸
三、氨基酸的理化性质
(一)氨基酸的一般物理性质:氨基酸的旋光性、氨基酸的光吸收、高熔点、一般均溶于水,溶于强酸、强碱;不溶于乙醚、氨基酸一般有味
(二)氨基酸的离解性质:氨基酸的兼性离子形式、氨基酸的两性解离、氨基酸的等电点计算、氨基酸的甲醛滴定。
(三)氨基酸的化学反应:茚三酮反应、Sanger反应、Edman反应、DNS反应、-SH反应、-OH反应、成肽反应、咪唑基的反应。
(四)氨基酸的分析分离
第二节:肽
一、肽与肽键
二、肽链中AA的排列顺序和命名
三、肽的重要理化性质
四、天然存在的重要多肽
第三节 蛋白质的分子结构
一、蛋白质的一级结构:
(一)定义:蛋白质的一级结构指蛋白质多肽连中AA的排列顺序,包括二硫键的位置。
(二)蛋白质一级结构的测定:测序要求、测序步骤
二、蛋白质的二级结构和纤维状蛋白
(一)构型与构象
(二)蛋白质的构象:蛋白质多肽链空间折叠的限制因素—肽键具有部分双键性质、肽键不能自由旋转、组成肽键的四个原子和与之相连的两个a碳原子(Ca)都处于同一个平面内,即为酰胺平面、二面角所决定的构象能否存在,主要取决于两个相邻肽单位中,非键合原子之间的接近有无阻碍。
(三)蛋白质的二级结构:a-螺旋、b-折叠、b-转角、自由回转。
(四)超二级结构
(五)纤维状蛋白
三、蛋白质的三级结构
(一)结构域
(二)维持蛋白质三级结构的作用力
(三)肌红蛋白及其功能、肌红蛋白的氧合曲线
四、蛋白质的四级结构
(一)蛋白质的四级结构及其作用力
(二)血红蛋白及其功能
(三)氧合引起血红蛋白的构象变化
(四)血红蛋白的氧合曲线
(五)H+、CO2和DPG 对血红蛋白结合氧的影响
第四节 蛋白质分子结构与功能的关系
一、蛋白质一级结构与功能的关系
(一)同功蛋白质一级结构的种属差异性
(二)蛋白质一级结构的变异与分子病
(三)一级结构的局部断裂与蛋白质的激活
二、蛋白质的高级结构与功能的关系
三、免疫球蛋白的结构与功能
第五节:蛋白质的重要性质
一、蛋白质的两性离解和电泳现象
二、蛋白质的胶体性质
三、蛋白质的沉淀作用
四、蛋白质的变性
五、蛋白质的紫外吸收
六、蛋白质的颜色反应
第六节 蛋白质的分类
第七节 蛋白质的分离纯化和利用
第三章 核酸(6学时)
引 言:核酸概述
核酸的发现
核酸的研究历史
第一节:核酸的种类、分布与功能
一、核酸的种类与分布
二、核酸的生物学功能
第二节:核酸的化学组成
一、核酸的元素组成
二、核酸的分子组成:
核苷酸—核苷+磷酸
核苷—戊糖+碱基 DNA(脱氧核糖、A、T、G、C、磷酸)
RNA(核糖、A、U、G、C、磷酸)
核苷酸的生物学作用
第三节:核酸的分子结构
一、DNA的分子结构
(一)DNA的碱基组成 Chargaff定则
(二)DNA的一级结构:多脱氧核苷酸的连接方式及排列顺序;DNA一级结构的表示方法
(三)DNA的二级结构:B型DNA的双螺旋结构模型的特点及稳定因素
(四)DNA的三级结构:超螺旋结构
二、RNA的分子结构
(一)RNA的一级结构
(二)RNA的二级结构:tRNA的二级结构特点(三叶草)、tRNA的三级结构特点(倒L型)
(三)rRNA的结构特点:真核细胞与原核细胞的核糖体结构特点
(四) mRNA的分子结构:真核生物与原核生物mRNA结构的区别
第四节 核酸的理化性质
一、 一般物理性质
二、 两性性质
三、 紫外吸收
四、 变性与复性
五、 酸解与碱解
第五节 核蛋白
一、 核糖体
二、 病毒
三、 染色质
本章重点:DNA的分子结构和核酸的主要理化性质,为进一步学习核酸的代谢奠定基础。
第四章 酶(9学时)
概 述 酶的研究历史
第一节 酶的概念及作用特点
一、酶的概念
二、酶的作用特点:高效性专一性、反应条件温和、酶易失活、酶活力可调节控制、某些酶催化活力与辅酶、辅基及金属离子有关。
三、酶的底物专一性:结构专一性和立体化学专一性。
四、酶的分离与制备
第二节 酶的命名及分类
一、酶的命名
二、酶的分类
(一)国际系统分类法:氧化还原酶类、移换酶类、水解酶类、水解酶类、裂合(裂解)酶类、异构酶类、合成酶类
(二)按酶的化学组成分类:
简单蛋白酶:指酶的活性仅仅决定于它的蛋白质结构
结合蛋白酶:这些酶只有在结合了非蛋白组分(辅助因子)后,才表现出酶的活性。酶蛋白-apoenzyme(脱辅酶-apoprotein)、辅助因子(cofactor) 和全酶(holoenzyme)、辅基(prosthetic group)、辅酶(coenzyme)。
(三)根据酶的分子结构特点分类:单体酶、寡聚酶和多酶体系
第三节 酶的作用机理
一、酶的活性中心及结构特点(必需基团和非必需基团、活性中心的研究方法)
二、作用专一性的机制(锁钥学说、诱导契合学说)
三、酶作用高效率的机制:降低反应的活化能(中间产物学说)、邻近效应和定向效应、酶使底物分子中的敏感键发生变形、多功能催化作用(酸碱催化、共价催化)、金属离子的催化作用、酶活性中心微环境的影响。
四、酶作用机理举例:胰凝乳蛋白酶作用机制举例
第四节 酶促反应的动力学
一、酶活力与酶反应速度:酶活力定义、酶活力单位、酶活力测定方法
二、影响酶促反应速度的因素
1.底物浓度对酶促反应速度的影响:米氏方程、米氏常数及其意义、米氏常数的求法
2.pH 的影响
3.温度的影响
4.酶浓度的影响
5.激活剂的影响
6.抑制剂的影响:抑制作用与抑制剂、抑制作用类型(竞争性抑制、非竞争性抑制、反竞争性抑制)、常见抑制剂类型
第五节 别构酶 核糖酶 同工酶 诱导酶 抗体酶
第六节 酶工程简介
第五章 维生素的结构与功能(3学时)
一、维生素的概念、分类
二、几种重要辅酶(辅基)的结构与功能
NAD和NADP、FMN和FAD、焦磷酸硫胺素、磷酸吡哆醛、辅酶A、生物素、四氢叶酸、5‘-脱氧腺苷钴胺素、维生素C、硫辛酸
本章重点:酶的作用机理;影响酶促反应速度的因素。较系统地掌握酶的一般知识,为学习物质代谢奠定基础。
第六章 生物膜的组成与结构(6学时)
第一节 生物膜的组成和结构
一、生物膜的组成和性质:膜脂、膜蛋白和糖类
二、生物膜的分子结构:生物膜中分子间的作用力、生物膜结构的几个 主要特征、生物膜的分子结构模型:流体镶嵌模型及其发展
第二节 生物膜的功能
运输功能
第三节 生物膜研究进展
本章重点:生物膜的结构与功能
第七章 糖代谢 (10学时)
第一节 生物体内的糖类 (简介)
第二节 双糖和多糖的酶促降解
一、蔗糖的水解
二、淀粉的降解
1. 淀粉的水解
2. 淀粉的磷酸解
第三节 糖酵解
一、糖酵解的概念
二、糖酵解的历程:细胞定位、反应历程
三、糖酵解中产生的能量
四、糖酵解的生物学意义
五、糖酵解的调控
六、丙酮酸的去处
有氧条件下:彻底氧化
无氧条件下:乳酸发酵、乙醇发酵
第四节 三羧酸循环
一、丙酮酸氧化为乙酰辅酶A:E.coli丙酮酸脱氢酶多酶复合体的结构及其作用机理
二、三羧酸循环的历程:细胞定位、反应历程
三、三羧酸循环能量的产生及特点
四、三羧酸循环的回补反应
五、三羧酸循环的调控
六、三羧酸循环的生物学意义
第五节 磷酸戊糖途径
一、磷酸戊糖途径的细胞定位及反应历程
二、磷酸戊糖途径的生物学意义
三、磷酸戊糖途径的调控
第六节 单糖的生物合成
一、糖异生作用的概念
二、糖异生途径的反应历程
第七节 蔗糖和多糖的生物合成
一、糖核苷酸的作用与形成
二、蔗糖的生物合成
蔗糖磷酸化酶途径、蔗糖合酶、蔗糖磷酸合酶途径
三、淀粉的生物合成
直链淀粉的合成:淀粉磷酸化酶、D-酶、淀粉合酶
支链淀粉的合成:Q-酶
本章重点:糖酵解、三羧酸循环的反应历程及生物学意义;磷酸戊糖途径的特点及生物学意义;蔗糖和淀粉的合成,明确生物体内糖代谢的基本途径。
第八章 生物氧化(5学时)
第一节 生物氧化概述
一、生物氧化的概念及特点
二、生化反应的自由能变化
三、高能化合物
第二节 电子传递链
一、电子传递链的概念
二、呼吸链中的电子传递体
三、呼吸链的电子传递顺序
四、呼吸链组分在线粒体内膜上的分布
五、呼吸链的电子传递抑制剂
第三节 氧化磷酸化
一、氧化磷酸化的概念、部位及与底物水平磷酸化区别
二、氧化磷酸化的偶联部位与P/O比
三、氧化磷酸化的机理
化学偶联假说、构象偶联假说、化学渗透学说
四、氧化磷酸化的解偶联剂和抑制剂
五、线粒体穿梭系统
磷酸甘油穿梭、苹果酸穿梭
六、能荷
概念、能荷对ATP生成与利用途径的调节
第四节 其他氧化酶系统 (自学)
一、抗氰氧化酶系统
二、多酚氧化酶系统
三、抗坏血酸氧化酶系统
四、细胞色素P450系统
五、超氧化物歧化酶、过氧化物酶、过氧化氢酶系统
本章重点:电子传递链和氧化磷酸化作用,明确物质代谢与能量代谢的关系。
第九章脂类代谢 (4学时)
第一节 生物体内的脂类(简介)
一、单纯脂类
二、复合脂类
三、非皂化脂类
第二节 脂肪的分解代谢
一、脂肪的酶促水解
二、甘油的氧化分解与转化
三、脂肪酸的氧化分解
1. 饱和脂肪酸的氧化
脂肪酸的β-氧化:概念;反应历程;能量计算
脂肪酸的α-氧化
脂肪酸的ω-氧化
2. 不饱和脂肪酸的氧化
四、乙醛酸循环
乙醛酸循环的反应历程、部位、生物学意义
第三节 脂肪的生物合成
一、甘油的生物合成
二、脂肪酸的生物合成
1.饱和脂肪酸的从头合成
乙酰辅酶A的来源及转运;丙二酰单酰辅酶A的形成;脂肪酸合酶系统;从头合成的反应历程;从头合成与β-氧化的比较
2.脂肪酸碳链的延长
内质网上的延长;线粒体内的延长
3.不饱和脂肪酸的合成
需氧途径;厌氧途径;多烯脂酸的合成
三、三酰甘油的生物合成
第四节 类脂代谢(简介)
一、甘油磷脂的降解与生物合成
二、糖脂的生物合成
三、胆固醇的生物合成
本章重点:脂肪酸的β-氧化与从头合成,明确糖代谢与脂代谢的关系。
第十章 蛋白质的酶促降解和氨基酸代谢(7学时)
第一节 蛋白质的酶促降解
一、肽酶
二、蛋白酶
第二节 氨基酸的降解和转化
一、脱氨基作用
氧化脱氨基、非氧化脱氨基、转氨基作用、联合脱氨基作用、脱酰胺基作用
二、脱羧基作用
直接脱羧基作用、羟化脱羧基作用
三、氨基酸分解产物的去向
1.α-酮酸的去向
2.产物NH3的去向(尿素的生成与尿素循环)
第三节 氨同化和氨基酸的生物合成
一、氨同化
1.谷氨酸合成途径:谷氨酸脱氢酶催化;谷氨酰胺合成酶与谷氨酸合成酶共同催化
2.氨甲酰磷酸的生成:氨甲酰激酶催化;氨甲酰磷酸合成酶催化
四、基酸的生物合成
a.转氨作用:由α-酮戊二酸氨基化合成谷氨酸;氨基酸相互转化
b.个别氨基酸的合成:丙氨酸族;丝氨酸族;天冬氨酸族;谷氨酸族;组氨酸和芳香氨基酸族
本章重点:氨基酸的酶促降解、氨同化、氨基酸的生物合成,明确碳代谢与氮代谢之间的关系。
第十一章 核酸的酶促降解和核苷酸代谢(3学时)
第一节 核酸的酶促降解
一、核酸外切酶
二、核酸内切酶
第二节 核苷酸的生物降解
一、核苷酸的降解
二、嘌呤的降解
三、嘧啶的降解
第三节 核苷酸的生物合成
一、核糖核苷酸的合成
1.嘌呤核苷酸的合成:从头合成途径;补救途径
2.嘧啶核苷酸的合成:从头合成途径;补救途径
二、脱氧核糖核苷酸的合成
1.核糖核苷酸的还原
2.补救途径
三、核苷酸转变为核苷二磷酸和核苷三磷酸
本章重点:核酸的酶促降解及核苷酸的合成
第十二章 核酸的生物合成(4学时)
引言 中心法则
第一节 DNA的生物合成
一、复制
1.半保留复制的概念及实验证据
2.参与大肠杆菌DNA复制的酶和蛋白质因子
3.原核细胞DNA的复制过程
4. 真核细胞DNA的复制过程(简介)
二、逆转录:逆转录酶及其催化特性;逆转录过程;cDNA
三、DNA的突变(自学)
四、DNA的损伤修复(自学)
第二节 RNA的生物合成
一、转录
转录的概念及不对称性;
1.大肠杆菌的RNA聚合酶
2.原核细胞的转录过程
3.真核生物RNA聚合酶
4.RNA前体的转录后加工
二、RNA的复制
第三节 基因工程简介
一、基因工程的概念
二、基因工程的操作技术
三、基因工程的应用前景
本章重点:DNA的复制及转录,明确DNA及RNA生物合成的特点。
第十三章 蛋白质的生物合成(4学时)
第一节 蛋白质合成体系的重要组分
一、mRNA及遗传密码:遗传密码的概念和密码表的破译;遗传密码的特点;起始密码子和终止密码子
二、tRNA:反密码子的概念;同工受体tRNA;起始tRNA
三、rRNA与核糖体
四、辅助因子:起始因子、延伸因子、终止和释放因子
第二节 蛋白质的合成过程
一、氨基酸的活化:氨酰-tRNA合成酶的性质及反应机理
二、大肠杆菌蛋白质的合成
1.肽链合成的起始:SD序列、起始氨酰-tRNA、起始复合物的形成
2.肽链的延伸:进位、转肽、移位
3.肽链合成的终止和释放
三、真核生物蛋白质的合成(简介)
五、链合成后的加工、折叠
第三节 蛋白质合成后的运送(简介)
一、蛋白质的分选信号
二、蛋白和运送类型
三、蛋白和运输方式
四、蛋白质的运输过程
本章重点:蛋白质生物合成过程,明确其特点及与核酸的关系。
第十四章 细胞代谢和基因表达的调控 (3学时)
第一节 代谢途径的相互关系
一、糖代谢与脂类代谢的相互关系
二、糖代谢与蛋白质代谢的相互关系
三、脂类代谢与蛋白质代谢的相互关系
四、核酸代谢与糖、脂类和蛋白质代谢的相互关系
第二节 代谢调节
一、代谢调节的不同水平
二、酶水平调节
a.酶活性调节:共价修饰调节、酶原激活、反馈抑制、前馈激活
b.酶合成的调节:基因表达的调控
三、激素水平的调节 (简介)
四、辅因子的调节:能荷、NADH/NAD+
五、金属离子浓度的调节 (简介)
本章重点:酶活性及酶合成的调节,明确两种调节在代谢上的重要性。
(二) 实验课内容 (30学时)
第一部分 生物化学实验技术原理(6学时)
第一章 蛋白质(酶)、核酸的分离纯化(1学时)
第一节 引言
一、分离纯化的意义
二、分离纯化的要求
三、分离纯化的一般程序
第二节 蛋白质(酶)、核酸分离纯化的前处理
一、材料的选择与预处理
二、细胞的破碎
三、细胞器的分离
四、提取
(一)蛋白质(酶)的提取
(二)核酸的提取
第三节 分离纯化
一、蛋白质(酶)的分离纯化
(一)粗分级分离
1、盐析
2、等电点沉淀
3、有机溶剂法
(二)细分级分离
1.层析法
2.电泳法
3.超离心法
(三)酶的活力测定
二、核酸的分离纯化
(一)粗分级分离
(二)精分级分离
第三节 纯度鉴定
第二章 层析技术(2学时)
第一节引言
一、层析法的基本原理
二、层析法的分类
第一节 吸附层析技术
一、基本原理
二、吸附剂种类
三、薄板层析操作要点
第二节 分配层析技术
一、基本原理
二、层析操作要点
第三节 凝胶过滤层析技术
一、基本原理
二、凝胶的种类和性质
(一)交联葡聚糖凝胶(Sephadex)
(二)琼脂糖凝胶
(三)聚丙烯酰胺
(四)聚丙乙烯凝胶(Styrogel)
三、凝胶过滤在试验室中的应用
(一)生物大分子物质的分离纯化
(二)分子量的测定
(三)分级分离
(四)溶液浓缩
(五)平衡常数的测定
(六)细胞及颗粒的分离
四、柱层析操作要点
第四节 离子交换层析法
基本原理
第五节 亲和层析法
基本原理
第六节 高压液相层析特点
第三章 离心技术(1.5学时)
第一节 离心技术概论
一、离心机的分类
二、一般制备离心与制备性超离心技术
第二节 制备性超离心技术
一、离心力和相对离心力
二、转子、离心管及选择
(一)离心管
(二)离心管帽
(三)转子及选择
三、离心技术类型
(一)差速离心法
(二)等密度梯度离心
(三)速率—区带离心
四、梯度回收
(一)穿刺法
(二)取代法
(三)虹吸法
(四)切割法
五、梯度的分析
第四章 电泳技术(1.5学时)
第一节 引言
一、概念
二、发展
三、分类
第二节 电泳的基本原理
第三节聚丙烯酰胺凝胶电泳
一、概述
二、聚丙烯酰胺凝胶的制备
(一)化学聚合
(二)光聚合
三、凝胶浓度和交联度与孔径大小的关系
四、不连续聚丙烯酰胺凝胶电泳
第四节 琼脂糖凝胶电泳简介
第五节 免疫电泳简介
第二部分 实验 (24学时)
一、酵母RNA的提制(3学时)
二、氨基酸的纸层析(3学时)
三、蛋白质含量的测定--考马斯亮兰G-250法(3学时)
四、糖酵解中间产物的鉴定(3学时)
五、过氧化物酶聚丙烯酰胺凝胶电泳(6学时)
六、脲酶Km的测定(3学时)
七、苯丙氨酸解氨酶的分离纯化(演示)(3学时)
三、参考书目:
生物化学 主编王镜岩 朱圣庚 徐长法,高等教育出版社,2002年
生物化学导论 主编Trudy Mckee, James R.Mckee ,科学出版社,2000年(第二版)
生物化学 主编 B.D.Hames,N.M.Hooper等,科学出版社,2001年(中、英)
细胞生物化学 主编 钱凯先 李亚南 邵建忠 浙江大学出版社
基础生物化学 主编 吴显荣 中国农业出版社
蛋白质化学 主编 姜涌明 赵国骏,扬州大学农学院
基础生物化学 主编 白宝璋 任永信 史国安 于少华 ,延边大学出版社
分子酶学导论 主编姜涌明等,中国农业大学出版社
④ 用125I标记抗原,直接标记法最常用于以下哪些物质的碘化标记
简单说,放射性碘标记法,标记的化合物内部必须有碘原子可结合的基团,即结构上要含有酪胺基或组织胺残基。凡蛋白质、肽类等抗原,在结构上含有上述基团的可直接用放射性碘进行标记。如不含上述基团的,放射性碘无法标记,必须在这些化合物的结构上连接上述基团后才能进行碘标记。具体点,放射性碘标记在RIA中,标记抗原质量的优劣,直接影响测定结果,必须制备比放射性强、纯度高的标记抗原,并保持免疫活性不受丧失。一、同位素的选择同位素有稳定性和放射性两种。放射性同位素可利用其衰变时放出的放射线进行测量,这种测量较灵敏而方便,故多用放射性同位素。标记抗原,常用的放射性同位素有3H、14C、131I和125I等。在使用上各有其优缺点,可根据所进行的放射免疫分析的类型特点,标记物制备和供应情况以及实验室设备条件等作适当的选择(表8-1)。大多数抗原分子中都含有C、H等原子,所以用14C或3H标记不改变抗原的结构及其免疫学活性,且14C、3H半衰期长,所标记的抗原长时间放置后仍可使用,这都是其优点。14C或3H标记的不足之处是操作较繁琐,并难以获得高比放射性的标记物;3H及14C放出的都是弱β射线,需用较昂贵的液体闪烁计数器方能获得较高效率的测量,且测定操作也较麻烦。但某些抗原用放射性碘标记容易丧失免疫化学或生物学活性者,则仍以采用3H或14C标记物为佳。表8-1标记抗原常用的放射性同位素及其性质放射性元素半衰期射线种类及能量(百万电子伏特)βγ14C5720年0.155-3H12.5年0.0189-125I60天-0.035131I8.05天0.608,0.335,0.2500.364,0.637,0.722大多数抗原分子中是不含碘的,引入碘原子就改变了抗原的分子结构,往往容易损伤抗原的免疫化学活性;且放射性碘的半衰期较短,标记物放置后因衰变使放射性降低,因而需要经常制备标记物或要求能定期提供放射性碘标记都能适用,放射性碘放出γ—射线,用一般晶体闪烁计数器就能获得较高效率而精确的测量,测量操作也很简单。由于这些突出的优点,目前在放射免疫分析中,使用放射性碘标记物最多。从应用角度来看,131I和125I又各有其优缺点,可根据实验的要求、仪器的条件和放射性碘制剂的规格等条件合理选用。但相对而言,125I有较多的优点,一是半衰期适中,允许标记化合物的商品化及贮存应用一段时间;二是它只发射28keV能量的X射线和35keV能量的γ射线,而无β粒子,因而辐射自分解少,标记化合物有足够的稳定性。放射性碘适用于放射免疫分析许多对象(包括蛋白质、肽类、固醇类、核酸类以及环型核苷酸衍生物等)的标记,且操作简单,一般实验室都不难做到。二、蛋白质与多肽激素的放射性碘标记要制备高比度、高纯度与免疫化学活性好的标记物,首先要有高纯度、良好免疫活性的抗原。用作放射标记加网免疫分析的特异性,所以若用纯度不高的抗原作标记,则标记后必须采取适当的步骤除去杂质,以获得高纯度的标记物。标记对象的纯化应尽量采用温和的方法,否则在纯化操作中已受潜在性损伤的蛋白质(这时表面上活性可能还是良好的),再经标记反应时所受的损伤,活性就会显著降低,影响以后的放射分析结果。有了好的纯抗原,还要采用适当方法加以标记,尽量获取高比放射性、而又能保持良好的特异免疫化学活性的标记物。这些都是放射免疫分析能取得高特异性和高灵敏度的关键问题。多肽激素与蛋白质多用碘标记,最常用的是125I。碘化反应的基本过程如下:通过氧化剂的作用,使碘化物(125I-)氧化成的碘分子(125I2),再与多肽激素、蛋白质分子中的酪氨酸残基发生碘化作用。所以不管采用哪一种放射性碘标记法,标记的化合物内部必须有碘原子可结合的基团,即结构上要含有酪胺基或组织胺残基。凡蛋白质、肽类等抗原,在结构上含有上述基团的可直接用放射性碘进行标记。如不含上述基团的,放射性碘无法标记,必须在这些化合物的结构上连接上述基团后才能进行碘标记。因此影响蛋白质、多肽碘化效率的因素,主要决定于蛋白质、多肽分子中酪氨酸残基的数量及它们在分子结构中暴露的程度;此外,碘化物的用量、反应条件(pH、温度、反应时间等)及所用氧化剂的性质等也有影响。常用的标记方法有:(一)氯胺T法氯胺T法标记效率高、重复性好、试剂便宜易得,是目前使用最多的碘标记方法。1.原理氯氨—T(Chloramine--T)是一种温和的氧化剂,在水溶液中产生次氯酸,可使碘阴离子氧化成碘分子。这活性碘可取代肽链上酪氨酸苯环上羟基位的一个或两个氢,使之成为含有放射性碘化酪氨酸的多肽链。2.方法以125I—AVP的制备为例。(1)碘化反应:AVP5μg+0.5mol/lPB50μl(pH7.5)+1251800μCi,混合后,加入新配置的Ch—t30μg/15μl(0.05mol/lPB,pH7.5)。迅速振荡混匀,室温下反应40s。(2)终止碘化反应:加入还原剂偏重亚硫酸钠40μg/20μl(0.05mol/lPB,pH7.5),以终止碘化反应。(3)Bio—GelP2层析纯化:将碘化反应混合液注入Bio—GelP2柱,用0.1nHAC溶液洗脱,分部收集,每2min收集一管,共收集60管。(4)放射性测量:测定各收集管的放射性,出现两个峰,第一峰为125I—AVP,第二峰为游离碘盐峰。第一个峰中计算最高的几管,留下备用。为了解标记抗原的质量,每次碘标记后应计算出碘的利用率,标记上多少放射性碘,以及每微克抗原结合上多少放射性碘。(5)标记抗原的贮存:经纯化与检查后的标记物、加入1/8体积的异丙醇,分成若干小份,置于铅罐中,在-20℃以下的冰箱中贮存备用,应避免反复冻融。标记抗原在贮存中是不稳定的,这是因为:一是脱碘,标记的碘从原来位置上脱落,变成游离碘;二是蛋白损伤、变性,成为聚合大分子或断键成小分子碎片。由于上述原因,使B/F明显降低,标准曲线斜率变小,以致不能使用,故需分离纯化,其方法是用SephadexG100长柱(40~80cm)过柱,洗脱后出现3个峰。第1个峰分子量大,是蛋白变性的聚合的大分子,尚保留部分抗原决定簇,免疫活性弱;第2个峰是纯抗原的蛋白峰,免疫活性好;第3个峰是游离125I或小分子碎片,不具备免疫活性。收集到的第2个纯抗原蛋白峰,免疫活性好;第3个峰是游离125I或小分子碎片,不具备免疫活性。收集到的第2个纯抗原蛋白峰,其性能类似于新鲜标记的抗原。分离纯化的方法解决了标记抗原的贮存、长期使用问题,特别对来之不易的抗原更显得重要。2.注意事项(1)放射性碘源的选用:无载体的131I或125I均可用于碘化标记,但应尽量选用新鲜的、比放射强度高的、含还原剂量少的放射性碘源。碘源的比放射强度最好≥50~100mCi/ml,至少也要>30mCi/ml,否则加入碘源的容量要增加,随着带入碘源中含有的还原剂(为放射性碘源运输保存所需加入)量也增加,这将会显著降低碘利用率及标记蛋白比放射强度。放置较久和放射性碘源,一方面因衰变致比放射强度降低,另一方面因水的辐射化学产物增多(主要是131I源),都会降低标记时的碘利用率。放射性碘源含还原剂(如Na2S2O5等)量多时,会抵消氯胺T的作用,降低碘利用率,甚至导致标记完全失败。放射性碘源要用无载体的,标记所用全部用具和试剂必须不含碘;只要有极少量的碘的污染,非放射性碘就会稀释放射性碘,使放射性碘利用率显著降低。为了便于放射性防护和除污染,以及减少射线对蛋白质分子的损伤,标记投入的放射碘量不宜过大,一般以0.5~1.0ml)时则影响较小。微量氯胺T法放射碘标记时,一般多控制碘化反应体积<100μl。(5)碘化反应温度:温度升高,碘化反应速度加快,碘利用率有所增加。但总的来看,反应温度的影响不很大,一般从0℃到20℃碘利用率相差不过百分之几,故一般在室温下进行标记操作就可能获得重复性好的结果。有些蛋白质或肽类极易丧失活性,则可在0℃进行碘化反应。(6)碘化反应的pH值:受氧化剂氧化生成的活性碘,对多肽链的酪氨酸基苯环羟基邻位的碘化作用,最适pH是7.3~7.8之间。当pH变化时,碘化位置也会发生变化,例如pH值较高时,组氧酸的咪唑环也可被碘化;当pH4~5时,活性碘能迅速氧化色氨酸基生成羟基吲哚,导致肽链断裂。这些都会影响蛋白质或多肽的放射性碘化反应,或引起降解或失活。因此作放射性碘化标记时,除放射性碘源外,所有的试剂都应用适当的缓冲液配制,保证碘化反应在最佳pH条件下进行。(7)微量蛋白质或多肽的吸附损失:界面的吸附损失,在使用大量蛋白质或多肽类时是可以忽略的,但作微量法标记时投入的蛋白质或多肽类只在微克甚至毫克甚至毫微克水平,界面吸附导致的损失就不能忽略。例如制备131I—ACTH时,所用ACTH浓度低到50Pg/ml时,因表面吸附可损失10%~30%,甚至高达75%。改变pH、加入非特异性载体蛋白、或使用聚苯乙烯、聚乙烯容器时,能减少吸附,但不能完全消除。一般残留在反应管和滴管上的放射性为投入总放射性的2%~8%、残留在层析柱上折占5%~10%。残留量随标记蛋白比放射性强度而直线增减,残留者几乎全部都是标记蛋白。由此可见,微量蛋白质或多肽受吸附而损失的量是不容忽略的。由于微量蛋白质、多肽会被显著吸附而丢失,所以标记时投入蛋白质、多肽量过微(如<2μg)也是不适宜的,否则标记蛋白质、多肽的收回率会太低,并在计算上会造成较大的误差。(8)不同蛋白质、多肽碘化标记的差别:由于不同的蛋白质和多肽分子中含有的酪氨酸数目不同,而且其空间结构也不相同,分子中的酪按酸残基有的容易发生碘化反应,有的就不容易碘化,因此同样条件下进行碘化标记,不同蛋白质或多肽对碘的利用率是不相同的。不同蛋白质经碘化标记后生物活性受损的情况也各不相同。例如ACTH、促性腺激素释放激素(GRH)、促黄体激素释放激素(LRH)等多肽,碘化标记后容易丧失激素活性或与受体结合的活性;而AFP及人绒毛膜促性腺激素(HCG)等的碘化标记,则较容易保存良好的免疫化学活性。尽管不同多肽、蛋白度的碘化标记结果有所差别,但上述讨论的因素对不同多肽、蛋白质碘化标记的影响有共同的规律。掌握了这些因素,就容易成功地获得合格的标记物。不同多肽、蛋白质的分子量大小、理化性质各不相同,放射碘化标记反应后,可根据具体情况采取不同的方法将标记蛋白质(或多肽)与未反应的游离放射性碘及受损伤的标记物分开,常用的方法有凝胶过滤、离子交换层析、吸附层析、各种电泳法等。
⑤ 高分急求!!!生物相关翻译-中译英
This study was research for prokaryotic expression of human apolipoprotein A-1 how to successfully ,efficiently and plentifully isolate the pure apolipoprotein A-1 through a series of isoltation and purification by general chromatography .The result show the penetrated solution was for pure apolipoprotein A-1 by Western through bacteria break by ultrasound , centrifugated the suspension,and which by the ion-exchange chromatography to PB: PBS =**:** the ratio of elution, and using nickel affinity chromatography column to *** mM imidazole elution , ** enzyme digestion four hours in 250C water bath, and then isolated the labels by affinity chromatography . The method could replaced a large number of human serum which got ApoA-Ⅰ by traditional ultracentrifugation , has good application prospects to provided a good foundation for future instrial proction.
⑥ 二乙基四甲基咪唑碱性强弱
这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6—8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。