导航:首页 > 净水问答 > h2超滤膜

h2超滤膜

发布时间:2021-11-02 11:29:53

❶ PVC中空纤维超滤膜的制备工艺

六、超滤膜在水处理应用中的工艺 1、前处理 超滤法在水处理及其他工业净化、浓缩、分离过程中,可以作为工艺过程的预处理,也可以作为工艺过程的深度处理。在广泛应用的水处理工艺过程中,常作为深度净化的手段。根据中空纤维超滤膜的特性,有一定的供水前处理要求。因为水中的悬浮物、胶体、微生物和其他杂质会附于膜表面,而使膜受到污染。由于超滤膜水通量比较大,被截留杂质在膜表面上的浓度迅速增大产生所谓浓度极化现象,更为严重的是有一些很细小的微粒会进入膜孔内而堵塞水通道。另外,水中微生物及其新陈代谢产物生成粘性物质也会附着在膜表面。这些因素都会导致超滤膜透水率的下降以及分离性能的变化。同时对超滤供水温度、PH值和浓度等也有一定限度的要求。因此对超滤供水必须进行适当的预处理和调整水质,满足供水要求条件,以延长超滤膜的使用寿命,降低水处理的费用。 A、微生物(细菌、藻类)的杀灭: 当水中含有微生物时,在进入前处理系统后,部分被截留微生物可能粘附在前处理系统,如多介质过滤器的介质表面。当粘附在超滤膜表面时生长繁殖,可能使微孔完全堵塞,甚至使中空纤维内腔完全堵塞。微生物的存在对中空纤维超滤膜的危害性是极为严重的。除去原水中的细菌及藻类等微生物必须重视。在水处理工程中通常加入NaClO、O3等氧化剂,浓度一般为1~5mg/l。此外,紫外杀菌也可使用。在实验室中对中空纤维超滤膜组件进行灭菌处理,可以用双氧水(H2O2)或者高锰酸钾水溶液循环处理30~60min。杀灭微生物处理仅可杀灭微生物,但并不能从水中去除微生物,仅仅防止了微生物的滋长。 B、降低进水混浊度: 当水中含有悬浮物、胶体、微生物和其他杂质时,都会使水产生一定程度的混浊,该混浊物对透过光线会产生阻碍作用,这种光学效应与杂质的多少,大小及形状有关系。衡量水的混浊度一般以蚀度表示,并规定1mg/lSiO2所产生的浊度为1度,度数越大,说明含杂量越多。在不同领域对供水浊度有不同的要求,例如,对一般生活用水,浊度不应大于5度。由于浊度的测量是把光线透过原水测量被水中颗粒物反射出的光量、颜色、不透明性,颗粒的大小、数量和形状均影响测定,浊度与悬浮物固体的关系是随机的。对于小于若干微米的微粒,浊度并不能反映。 在膜法处理中,精密的微结构,截留分子级甚至离子级的微粒,用浊度来反映水质明显是不精确的。为了预测原水污染的倾向,开发了SDI值试验。 SDI值主要用于检测水中胶体和悬浮物等微粒的多少,是表征系统进水水质的重要指标。SDI值的确定方法一般是用孔径为0.45μm微孔滤膜在0.21MPa恒定水流压水力下,首先记录通水开始滤过500ml水样所需的时间t0,然后在相同条件下继续通水15min,再次记录滤过500ml 水样所需时间t15,然后根据下式计算: SDI=(1-t0/t15)×100/15 水中SDI的值的大小大致可反映胶体污染程度。井水的SDI<3,地表水SDI在5以上,SDI极限值为6.66……,即需进行预处理。 超滤技术对SDI值的降低最为有效,经中空纤维超滤膜处理水的SDI=0,但当SDI过大时,特别是较大颗粒对中空纤维超滤膜有严重的污染,在超滤工艺中,必须进行预处理,即采用石英砂、活性炭或装有多种滤料的过滤器过滤,至于采取何种处理工艺尚无固定的模式,这是因为供水来源不同,因而预处理方法也各异。例如,对于具有较低浊度的自来水或地下水,采用5~10μm的精密过滤器(如蜂房式、熔喷式及PE烧结管等),一般可降低到5左右。在精密过滤器之前,还必须投加絮凝剂和放置双层或多层介质过滤器过滤,一般情况下,过滤速度不超过10m/h,以7~8m/h为宜,滤水速度越慢,过滤水质量越好。 C、悬浮物和胶体物质的去除: 对于粒径5μm以上的杂质,可以选用5μm过滤精度的滤器去除,但对于0.3~5μm间的微细颗粒和胶体,利用上述常规的过滤技术很难去除。虽然超滤对这些微粒和胶体有绝对的去除作用,但对中空纤维超滤膜的危害是极为严重的。特别是胶体粒子带有电荷,是物质分子和离子的聚合体,胶体所以能在水中稳定存在,主要是同性电荷的胶体粒子相互排斥的结果。向原水中加入与胶体粒子电性相反的荷电物质(絮凝剂)以打破胶体粒子的稳定性,使带荷电的胶体粒子中和成电中性而使分散的胶体粒子凝聚成大的团块,而后利用过滤或沉降便可以比较容易去除。常用的絮凝剂有无机电解质,如硫酸铝、聚合氯化铝、硫酸亚铁和氯化铁。有机絮凝剂如聚丙稀酰胺、聚丙稀酸钠、聚乙稀亚胺等。由于有机絮凝剂高分子聚合物能通过中和胶粒表面电荷,形成氢键和“搭桥”使凝聚沉降在短时间内完成,从而使水质得到较大改善,故近年来高分子絮凝剂有取代无机絮凝剂的趋势。 在絮凝剂加入的同时,可加入助凝剂,如PH调节剂石灰、碳酸钠、氧化剂氯和漂白粉,加固剂水下班及吸附剂聚丙稀酰胺等,提高混凝效果。 絮凝剂常配制成水溶液,利用计量泵加入,也可使用安装在供水管道上的喷射器直接将其只入水处理系统。 D、可溶性有机物的去除: 可溶性有机物用絮凝沉降、多介质过滤以及超滤均无法彻底去除。目前多采用氧化法或者吸咐法。(1)氧化法 利用氯或次氯酸钠(NaClO)进行氧化,对除去可溶性有机物效果比较好,另外臭氧(O3)和高锰酸钾(KMnO4)也是比较好的氧化剂,但成本略高。(2)吸附法 利用活性炭或大孔吸附树脂可以有效除去可溶性有机物。但对于难以吸附的醇、酚等仍需采用氧化法处理。 E、供水水质调整:(1)供水温度的调整 超滤膜透水性能的发挥与温度高低有直接的关系,超滤膜组件标定的透水速率一般是用纯水在25℃条件下测试的,超滤膜的透水速率与温度成正比,温度系数约为0.02/1℃,即温度每升高1℃,透水速率约相应增加2.0%。因此当供水温度较低时(如<5℃),可采用某种升温措施,使其在较高温度下运行,以提高工作效率。但当温度过高时,同样对膜不利,会导致膜性能的变化,对此,可采用冷却措施,降低供水温度。(2)供水PH值的调整 用不同材料制成的超滤膜对PH值的适应范围不同,例如醋酸纤维素适合PH=4~6,PAN和PVDF等膜,可在PH=2~12的范围内使用,如果进水超过使用范围,需要加以调整,目前常用的PH调节剂主要有酸(HCl 和H2SO4)等和碱(NaOH等)。 由于溶液中无机盐可以透过超滤膜,不存在无机盐的浓度极化和结垢问题,因此在预处理水质调整过程中一般不考虑它们对膜的影响,而重点防范的是胶质层的生成、膜污染和堵塞的问题。

❷ 同问膜分离技术有哪些优点及不足

利用固体薄膜对混合物组分的选择性透过的性能使混合物分离的过程。特点:能耗低,方便等专。
(1)反渗属透
反渗透是利用反渗透膜选择性即只能透过溶剂(通常是水)的性质,对溶液施加压力,克服溶剂的渗透压,使溶剂通过反渗透膜而从溶液中分离出来的过程。可用于从水溶液中将水分离出来,海水和苦咸水的淡化是反渗透最主要的应用,目前技术比较成熟,应用十分广泛。
(2)超滤
应用孔径为10Å到200Å
(或更大)的超滤膜来过滤含有大分子或微细粒子的溶液,使大分子或微细粒子从溶液中分离出来的过程叫超滤。与反渗透类似,超滤的推动力也是压差,在溶液侧加压,使溶剂透过膜。与反渗透不同,在超滤过程中,小分子溶质与溶剂一起通过超滤膜。超滤用于从水溶液中分离高分子化合物和微细粒子,采用具有适当孔径的超滤膜,可以用超滤进行不同分子量和形状的大分子物质的分离。目前超滤的应用,特别是用于生物与生化产物分离的研究十分活跃。(3)微滤
微滤与超滤的原理相同,它是利用孔径大于0.02µ直到10µ的多孔膜来过滤含有微粒的溶液,将微粒从溶液中除去。
海水淡化;混合气体中分离H2等。

❸ 透化的原理和应用是什么

血液透析(Hemodialysis,HD)通过其生物物理机制,完成对溶质及水的清除和转运,其基本原理是通过弥散(Diffusion)、对流(Convection)及吸附(Absorption)清除血液中各种内源性和外源性“毒素”;通过超滤(Ultrafiltration)和渗透(Osmosis)清除体内潴留的水分,同时纠正电解质和酸碱失衡,使机体内环境接近正常从而达到治疗的目的。

1. 溶质转运

a. 弥散转运

溶质依靠浓度梯度从高浓度一侧向低浓度一侧转运,称此现象为弥散。溶质的弥散转运能源来自溶质的分子或微粒自身的不规则运动(布朗运动)。在两种溶液之间放置半透膜,溶质通过半透膜从高浓度溶液向低浓度溶液中运动,称为透析。这种运动的动力是浓度梯度。HD的溶质交换主要是通过弥散转运来完成的。血液中的代谢废物向透析液侧移动,从而减轻尿毒症症状;透析液中钙离子和碱基移入血液中,以补充血液的不足。为叙述方便,一般提到的是净物质转运,实际上通过膜的溶质交换是双向性的。

b. 对流转运

溶质伴随含有该溶质的溶剂一起通过半透膜的移动,称对流。溶质和溶剂一起移动是磨擦力作用的结果。不受溶质分子量和其浓度梯度差的影响。跨膜的动力是膜两侧的水压差,即所谓溶质牵引作用(Solvent Drag)。HD和血液过滤(Hemofiltration,HF)时,水分从血液侧向透析侧或滤液侧移动(超滤)时,同时携带水分中的溶质通过透析膜。超滤液中的溶质转运,就是通过对流的原理进行的。反映溶质在超滤时可被滤过膜清除的指标是筛选系数,它是超滤液中某溶质的浓度除以其血中浓度。因此,利用对流清除溶质的效果主要由超滤率和膜对此溶质筛选系数决定。

c. 吸附

吸附是通过正负电荷的相互作用或范德华(Van der Wassls)力和透析膜表面的亲水性基团选择性吸附某些蛋白质、毒物及药物(如b2-M、补体、炎症介质、内毒素等)。膜吸附蛋白质后可使溶质的扩散清除率降低。在血液透析过程中,血液中某些异常升高的蛋白质、毒物和药物等选择性地吸附于透析膜表面,使这些致病物质被清除,从而达到治疗目的。

2. 水的转运

液体在水力学压力梯度或渗透压梯度作用下通过半透膜的运动,称超滤。临床透析时,超滤是指水分从血液侧向透析液侧移动;反之,如果水分从透析液侧向血液侧移动,则称反超滤。

3. 酸碱平衡紊乱的纠正

透析患者每天因食物代谢产生50~100mEq的非挥发性酸,由于患者的肾功能障碍,这些酸性物质不能排出体外,只能由体内的碱基中和。体内中和酸性产物的主要物质是碳酸氢盐,因此尿毒症患者血浆中的H2CO3浓度常降低,平均为20~ 22mEq/L左右。透析时常利用透析液中较血液浓度高的碱基弥散入血来中和体内的酸性产物。

二 影响透析效率的因素

1. 透析器类型

目前各种类型透析器对中、小分子物质的清除以及对水分超滤的效率较大程度上取决于透析膜性能。如聚砜膜、聚甲基丙烯酸甲脂膜和聚丙烯膜等对中分子物资和水分清除效果优于铜仿膜透析器。此外,透析效率尚与透析器有效透析面积成正比。一般应选用透析面积为1.2~1.5m2的透析器为宜。

2. 透析时间

透析时间与透析效率呈正比。使用中空纤维透析器,一般每周透析时间为12~15h。

3. 血液和透析液的流量

每分钟流入透析器内的血液和透析液流量与透析效果密切相关。HD过程中,体内某些代谢产物如肌酐或尿素氮的清除率,一般可由简化的清除率公式计算:

清除率=

Ci=某溶质流入透析器浓度;

Co=某容质流出透析器的浓度;

QB=入透析器的血流量(ml/min )。

从公式中可以看出:(1)血流量越大,清除率越高;(2)在透析过程中,血液内某一溶质的清除与该物质在血液侧与透析液侧的浓度的梯度差呈正比,为保持最大的浓度梯度差,可以增加透析液流量。此外,清除效果尚与透析液通过透析器时接触透析膜的量、面积、时间有关。血流与透析液在透析器内反向流动,可增加接触时间。故透析液流量亦直接影响溶质的清除。常规HD要求血流量为200~ 300ml/min,透析液流量为500ml/min。若能提高血流量至300ml/min,或必要时提高透析液流量至600~ 800ml/min,则更可提高透析效率。

4. 跨膜压力

HD过程中体内水分的清除,主要靠超滤作用。超滤率与跨膜压(TMP)密切相关。TMP越大,超滤作用越强。在常规HD时为扩大TMP,一般在透析液侧加上负压,通常为20~ 26.6kPa(150~200mmHg),使水分从血液侧迅速向透析液侧流动。因此,在透析过程中,及时调节TMP甚为重要。血压正常患者,在血流量为200ml/min时,入口端平均动脉压(MAP)小于10.6~12kPa(80~ 90mmHg)。而出口端MAP小于6.6~ 8kPa(50~60mmHg)。

❹ 如图是与水有关的3个实验.请回答下列问题:(1)A中烧瓶里的水只发生了______变化(填“物理”或“化学

(1)蒸馏过程中,只是水的状态发生改变,没有新物质生成,属于物理变化;
(2)由水电解实验的现象可知电源负极相连的试管内产生氢气,与电源正极相连的试管内产生氧气,反应的化学方程式为2H2O

通电
.

❺ 如何聚沉水中悬浮物的方法

第1节 吸附法

一、 吸附原理

二、 影响吸附的因素

三、 吸附剂

四、 吸附工艺和设备

五、 吸附法在污水处理中的应用

一、吸附原理

固体表面有吸附水中溶解及胶体物质的能力,比表面积很大的活性炭等具有很高的吸附能力,可用作吸附剂。吸附可分为物理吸附和化学吸附。如果吸附剂与被吸附物质之间是通过分子间引力(即范德华力)而产生吸附,称为物理吸附;如果吸附剂与被吸附物质之间产生化学作用,生成化学键引起吸附,称为化学吸附。离子交换实际上也是一种吸附,将在第二节中讨论。

物理吸附和化学吸附并非不相容的,而且随着条件的变化可以相伴发生,但在一个系统中,可能某一种吸附是主要的。在污水处理中,多数情况下,往往是几种吸附的综合结果。

一定的吸附剂所吸附物质的数量与此物质的性质及其浓度和温度有关。表明被吸附物的量与浓度之间的关系式称为吸附等温式。目前常用的公式有二:弗劳德利希(Freundlich)吸附等温式,朗格缪尔(Langrnuir)吸附等温式。

二、影响吸附的因素

吸附能力和吸附速度是衡量吸附过程的主要指标。固体吸附剂吸附能力的大小可用吸附量来衡量。吸附速度是指单位重量吸附剂在单位时间内所吸附的物质量。在水处理中,吸附速度决定了污水需要与吸附剂接触的时间。吸附速度快,则所需的接触时间就短,吸附设备的容积就小。

多孔性吸附剂的吸附过程基本上可分为三个阶段:颗粒外部扩散阶段,即吸附质从溶液中扩散到吸附剂表面;孔隙扩散阶段,即吸附质在吸附剂孔隙中继续向吸附点扩散;吸附反应阶段,吸附质被吸附在吸附剂孔隙内的吸附点表面。一般,吸附速度主要取决于外部扩散速度和孔隙扩散速度。

颗粒外部扩散速度与溶液浓度成正比,也与吸附剂的比表面积的大小成正比。因此吸附剂颗粒直径越小,外部扩散速度越快。同时,增加溶液与颗粒间的相对运动速度,也可以提高外部扩散速度。

孔隙扩散速度与吸附剂孔隙的大小和结构,吸附质颗粒的大小和结构等因素有关。一般,吸附剂颗粒越小,孔隙扩散速度越快。

吸附剂的物理化学性质和吸附质的物理化学性质对吸附有很大影响。一般,极性分子(或离子)型的吸附剂容易吸附极性分子(或离子)型的吸附质;非极性分子型的吸附剂容易吸附非极性的吸附质。同时,吸附质的溶解度越低,越容易被吸附。吸附质的浓度增加,吸附量也随之增加。

污水的pH值对吸附也有影响,活性炭一般在酸性条件下比在碱性条件下有较高的吸附量。吸附反应通常是放热反应,因此温度低对吸附反应有利。

三、吸附剂

吸附剂的种类很多。常用是活性炭和腐植酸类吸附剂。

1.活性炭

在生产中应用的活性炭的种类很多。一般都制成粉末状或颗粒状。粉末状的活性炭吸附能力强,制备容易,价格较低,但再生困难,一般不能重复使用。颗粒状的活性炭价格较贵,但可再生后重复使用,并且使用时的劳动条件较好,操作管理方便。因此在水处理中较多采用颗粒状活性炭。

活性炭的比表面积可达800—2000m2/g,有很高的吸附能力。

颗粒状活性炭在使用一段时间后,吸附了大量吸附质,逐步趋向饱和并丧失工作能力,此时应进行更换或再生。再生是在吸附剂本身的结构基本不发生变化的情况下,用某种方法将吸附质从吸附剂微孔中除去,恢复它的吸附能力。活性炭的再生方法主要有:

(1)加热再生法 在高温条件下,提高了吸附质分子的能量,使其易于从活性炭的活性点脱离;而吸附的有机物则在高温下氧化和分解,成为气态逸出或断裂成低分子。活性炭的再生一般用多段式再生炉。炉内供应微量氧气,使进行氧化反应而又不致使炭燃烧损失。

(2)化学再生法 通过化学反应,使吸附质转化为易溶于水的物质而解吸下来。例如,吸附了苯酚的活性炭,可用氢氧化钠溶液浸泡,使形成酚钠盐而解吸。

湿式氧化法也是化学再生法,主要用于再生粉末状活性炭。

在我国,目前活性炭的供应较紧张,再生的设备较少,再生费用较贵,限制了活性炭的广泛使用。

2.腐植酸类吸附剂

用作吸附剂的腐植酸类物质主要有:天然的富含腐植酸的风化煤、泥煤、褐煤等,它们可以直接使用或经简单处理后使用;将富含腐植酸的物质用适当的粘合剂制备成的腐植酸系树脂。

腐植酸类物质能吸附工业废水中的许多金属离子,如汞、铬、锌、镉、铅、铜等。腐植酸类物质在吸附重金属离子后,可以用H2SO4、HCI、NaCl等进行解吸。目前,这方面的应用还处于试验、研究阶段,还存在吸附(交换)容量不高,适用的pH值范围较窄,机械强度低等问题,需要进一步研究和解决。

四、吸附工艺和设备

吸附的操作方式分为间歇式和连续式。间歇式是将废水和吸附剂放在吸附池内进行搅拌30min左右,然后静置沉淀,排除澄清液。间歇式吸附主要用于小量废水的处理和实验研究,在生产上一般要用两个吸附池、交换工作。在一般情况下,都采用连续的方式。

连续吸附可以采用固定床、移动床和流化床。固定床连续吸附方式是废水处理中最常用的。吸附剂固定填放在吸附柱(或塔)中,所以叫固定床。移动床连续吸附是指在操作过程中定期地将接近饱和的一部分吸附剂从吸附柱排出,并同时将等量的新鲜吸附剂加入柱中。所谓流化床是指吸附剂在吸附柱内处于膨胀状态,悬浮于由下而上的水流中。由于移动床和流化床的操作较复杂,在废水处理中较少使用。

在一般的连续式固定床吸附柱中,吸附剂的总厚度为3~5m,分成几个柱串联工作,每个柱的吸附剂厚度为1~2m。废水从上向下过滤,过滤速度在4~15m/h之间,接触时间一般不大于30~60min。为防止吸附剂层的堵塞,含悬浮物的废水一般先应经过砂滤,再进行吸附处理。吸附柱在工作过程中,上部吸附剂层的吸附质浓度逐渐增高,达到饱和而失去继续吸附的能力。随着运行时间的推移,上部饱和区高度增加而下部新鲜吸附层的高度则不断减小,直至全部吸附剂都达到饱和,出水浓度与进水浓度相等,吸附柱全部丧失工作能力。

在实际操作中,吸附柱达到完全饱和及出水浓度与进水浓度相等是不可能的,也是不允许的。通常是根据对出水水质的要求,规定一个出水含污染物质的允许浓度值。当运行中出水达到这一规定值时,即认为吸附层已达到“穿透”,这一吸附柱便停止工作,进行吸附剂的更换。

五、吸附法在污水处理中的应用

由于吸附法对进水的预处理要求高,吸附剂的价格昂贵,因此在废水处理中,吸附法主要用来去除废水中的微量污染物,达到深度净化的目的。如:废水中少量重金属离子的去除、少量有害的生物难降解有机物的去除、脱色除臭等。

第2节 离子交换法

离子交换法是水处理中软化和除盐的主要方法之一。在废水处理中,主要用于去除废水中的金属离子。离子交换的实质是不溶性离子化合物(离子交换剂)上的可交换离子与溶液中的其它同性离子的交换反应,是一种特殊的吸附过程,通常是可逆性化学吸附。

离子交换剂

水处理中用的离子交换剂有磺化煤和离子交换树脂。磺化煤利用天然煤为原料,经浓硫酸磺化处理后制成,但交换容量低,机械强度差,化学稳定性较差,已逐渐为离子交换树脂所取代。

离子交换树脂是人工合成的高分子聚合物,由树脂本体(又称母体或骨架)和活性基团两个部分组成。生产离子交换剂的树脂母体最常见的是苯乙烯的聚合物,是线性结构的高分子有机化合物。在原料中,常加上一定数量的二乙烯苯做交联剂,使线状聚合物之间相互交联,成立体网状结构。树脂的外形呈球状颗粒,粒径为:0.6~1.2mm(大粒径树脂),0.3~0.6mm(中粒径树脂),或0.02~0.1mm(小粒径树脂)。树脂本身不是离子化合物,并无离子交换能力,需经适当处理加上活性基团后,才具有离子交换能力。活性基团由固定离子和活动离子组成。固定离子固定在树脂的网状骨架上,活动离子(或称交换离子)则依靠静电引力与固定离子结合在一起,二者电性相反电荷相等。

离子交换树脂按树脂的类型和孔结构的不同可分为:凝胶型树脂、大孔型树脂、多孔凝胶型树脂、巨孔型(MR型)树脂和高巨孔型(超MR型)树脂等。

第3节 萃取法

在化工上,用适当的溶剂分离混合物的过程叫萃取。当混合物为溶液时叫液—液萃取,当混合物为固体时叫固—液萃取;使用的溶剂叫萃取剂,提出的物质叫萃取物,在废水处理上,利用废水中的杂质在水中和有机萃取剂中溶解度的不同,可以采用萃取的方法,将杂质提取出来。例如含酚浓度较高的废水。由于酚在有机溶剂中的溶解度远远高于在水中的溶解度,我们可以利用酚的这种性质以及有机溶剂(如:油)与水不相溶的性质,选用适当的有机溶剂从废水中把有害物质酚提取出来。

用萃取法处理废水时,有三个步骤:①把萃取剂加入废水,并使它们充分接触,有害物质作为萃取物从废水中转移到萃取剂中;②把萃取剂和废水分离开来,废水就得到了处理。也可以再进一步接受其他的处理;③把萃取物从萃取剂中分离出来,使有害物质成为有用的副产品,而萃取剂则可回用于萃取过程才算,在技术上已经成立;其次,是经济上的考虑。技术上可靠,经济上合理,生产才能采用。

在化工上常使用“相”这个名词。“相”是一个均匀物质,具有组成相同和性质相同的特征。如在一个物质体系里同时存在界面明确的两部分物质,这两部分物质就抽象地叫做两个相。例如,油和水混在一起,即使剧烈搅拌,油滴分散在水中,油水之间仍然存在明确的界面,我们就说这是存在水相和油相。一个物质体系里的两个相,常常一个呈连续状态而另一个呈分散状态,呈连续状态的叫连续相,呈分散状态的叫分散相。一个物质体系的相数并无限制。

第4节 膜析法

一、 渗析法

二、 反渗透法

三、 超过滤法

膜析法是利用薄膜以分离水溶液中某些物质的方法的统称。目前有扩散渗析法(渗析法)、电渗析法、反渗透法和超过滤法等。

一、渗析法

人们早就发现,一些动物膜,如膀胱膜、羊皮纸(一种把羊皮刮薄做成的纸),有分隔水溶液中某些溶解物质(溶质)的作用。例如,食盐能透过羊皮纸,而糖、淀粉、树胶等则不能。如果用羊皮纸或其他半透膜包裹一个穿孔杯,杯中满盛盐水,放在一个盛放清水的烧杯中,隔上一段时间,我们会发现烧杯内的清水带有咸味,表明盐的分子已经透过羊皮纸或半透膜进入清水。如果把穿孔杯中的盐水换成糖水,则会发现烧杯中的清水不会带甜味。显然,如果把盐和糖的混合液放在穿孔杯内,并不断地更换烧杯里的清水,就能把穿孔杯中混合液内的食盐基本上都分离出来,使混合液中的糖和盐得到分离。这种方法叫渗析法。起渗析作用的薄膜,因对溶质的渗透性有选择作用,故叫半透膜。近年来半透膜有很大的发展,出现很多由高分子化合物制造的人造薄膜,不同的薄膜有不同的选择渗析性。半透膜的渗析作用有三种类型:①依靠薄膜中“孔道”的大,小分离大小不同的分子或粒子;②依靠薄膜的离子结构分离性质不同的离子,例如用阳离子交换树脂做成的薄膜可以透过阳离子,叫阳离子交换膜,用阴离子树脂做成的薄膜可以透过阴离子,叫阴离子交换膜;③依靠薄膜:的有选择的溶解性分离某些物质,例如醋酸纤维膜有溶解某些液体和气体的性能,而使这些物质透过薄膜。一种薄膜只要具备上述三种作用之一,就能有选择地让某些物质透过而成为半透膜。在废水处理中最常用的半透膜是离子交换膜。

二、反渗透法

反渗透法是一种借助压力促使水分子反向渗透,以浓缩溶液或废水的方法。

如果将纯水和盐水用半透膜隔开,此半透膜只有水分子能够透过而其他溶质不能透过,则水分子将透过半透膜进人溶液(盐水),溶液逐渐从浓变稀,液面则不断上升,直到某一定值为止。这个现象叫渗透,高出于水面的水柱高度(决定于盐水的浓度)是由于溶液的渗透压所致。可以理解,如果我们向溶液的一侧施加压力,并且超过它的渗透压,则溶液中的水就会透过半透膜,流向纯水一侧,而溶质被截留在溶液一侧,这种方法就是反渗透法(或称逆渗透法)。

近年来,由于反渗透膜材料和制造技术的发展以及新型装置的不断开发和运行经验的积累,反渗透技术的发展非常迅速,已广泛用于水的淡化、除盐和制取纯水等,还能用以去除水中的细菌和病毒。但反渗透法所需的压力较高,工作压力要比渗透压力大几十倍。即使是改进的复合膜,正常工作压力也需1.5MPa左右。同时,为了保证反渗透装置的正常运行和延长膜的寿命,在反渗透装置前必须有充分的预处理装置。

反渗透装置一般都由专门的厂家制成成套设备后出售。在生产中,根据需要予以选用。

三、超过滤法

超过滤法与反渗透法相似。但超滤膜的微孔孔径比反渗透膜大,在0.005—1um之间。超滤的过程并不是单纯的机械截留,物理筛分,而是存在着以下三种作用:①溶质在膜表面和微孔孔壁上发生吸附;②溶质的粒径大小与膜孔径相仿,溶质嵌在孔中,引起阻塞;③溶质的粒径大于膜孔径,溶质在膜表面被机械截留,实现筛分。毫无疑问,我们应力求避免在孔壁上的吸附和膜孔的阻塞,应选用与被分离溶质之间相互作用弱和膜孔结构是外密内疏的不对称构造的超滤膜。

超滤的过程是动态过滤,即在超滤膜的表面既受到垂直于膜面的压力,使水分子得以透过膜面并与被截留物质分离,同时又产生一个与膜表面平行的切向力,以将截留在膜表面的物质冲开。所以,超滤运行的周期可以较长。在运行方面,还可短时间地停止透水而增加切面流速,即可达到冲洗膜面的效果,使透水率得到恢复。这样的运行方式,使超滤(膜)—活性污泥法这种新型的处理工艺得以实施和发展。

在废水处理中,超过滤法目前主要用于分离有机的溶解物,如淀粉、蛋白质、树胶、油漆等。超过滤法所需的压力比反渗透法要低,一般为0.1—0.7MPa。

❻ 商用净水器的商用净水器过滤膜过滤原理

超滤是一种利用膜分离技术的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定超滤不锈钢净水机的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。
每米长的超滤膜丝管壁上约有60亿个0.01微米的微孔,其孔径只允许水分子、水中的有益矿物质和微量元素通过,而最小细菌的体积都在0.02微米以上,因此细菌以及比细菌体积大得多的胶体、铁锈、悬浮物、泥沙、大分子有机物等都能被超滤膜截留下来,从而实现了净化过程。 1、超滤膜的制水流程
自来水先进入超滤膜管内,在水压差的作用下,膜表面上密布的许多0.01微米的微孔只允许水分子、有益矿物质和微量元素透过,成为净化水。而细菌、铁锈、胶体、泥沙、悬浮物、大分子有机物等有害物质则被截留在超滤膜管内,在超滤膜进行冲洗时排出。
2、超滤膜冲洗流程
超滤膜使用一段时间后,被截留下来的细菌、铁锈、胶体、悬浮物、大分子有机物等有害物质会依附在超滤膜的内表面,使超滤膜的产水量逐渐下降,尤其是自来水质污染严重时,更易引起超滤膜的堵塞,定期对超滤膜进行冲洗可有效恢复膜的产水量。
3、超滤膜滤芯
将成束的超滤膜丝经过浇铸工艺后制成如下图所示的超滤芯,滤芯由ABS外壳、外壳两端的环氧封头和成束的超滤膜丝三部分组成。环氧封头填充了膜丝与膜丝之间的空隙,形成原液与透过液之间的隔离,原液首先进入超滤膜孔内,经超滤膜过滤后成为透过液,防止了原液不经过滤直接进入到透过液中。
4、超滤膜滤芯膜丝总面积的计算:
在单位膜丝面积产水量不变的情况下,滤芯装填的膜面积越大,则滤芯的总产水量越多, S内=πdL×n
S外=πDL×n
其中:S内为膜丝总内表面积,d为超滤膜丝的内径;
S外为膜丝总外表面积,D为超滤膜丝的外径;
L为超滤膜丝的长度;
n为超滤膜丝的根数。
内压式和外压式中空纤维超滤膜
一支超滤膜由成百到上千根细小的中空纤维丝组成,一般将中空纤维膜内径在0.6-6mm之间的超滤膜称为毛细管式超滤膜,毛细管式超滤膜因内径较大,不易被大颗粒物质堵塞。 1. 流量范围:40~2400 m3/h
2. 过滤精度: 100~2000 μm
3. 工作压力:0.1~1.6 MPa
4. 压力损失:≤ 0.016 MPa
5. 排污阀口径: DN 50 mm
6. 排污时间:10~60 s
7. 排污耗水量: <1%
8. 适用温度:≤ 85 ℃
9. 电源:交流三相380V/50Hz
10.控制界面:数显、旋钮、开关
11.滤网类型: 316不锈钢

❼ 何谓透析在实际工作中的应用及原理如何

血液透析(Hemodialysis,HD)通过其生物物理机制,完成对溶质及水的清除和转运,其基本原理是通过弥散(Diffusion)、对流(Convection)及吸附(Absorption)清除血液中各种内源性和外源性“毒素”;通过超滤(Ultrafiltration)和渗透(Osmosis)清除体内潴留的水分,同时纠正电解质和酸碱失衡,使机体内环境接近正常从而达到治疗的目的。
1. 溶质转运
a. 弥散转运
溶质依靠浓度梯度从高浓度一侧向低浓度一侧转运,称此现象为弥散。溶质的弥散转运能源来自溶质的分子或微粒自身的不规则运动(布朗运动)。在两种溶液之间放置半透膜,溶质通过半透膜从高浓度溶液向低浓度溶液中运动,称为透析。这种运动的动力是浓度梯度。HD的溶质交换主要是通过弥散转运来完成的。血液中的代谢废物向透析液侧移动,从而减轻尿毒症症状;透析液中钙离子和碱基移入血液中,以补充血液的不足。为叙述方便,一般提到的是净物质转运,实际上通过膜的溶质交换是双向性的。
b. 对流转运
溶质伴随含有该溶质的溶剂一起通过半透膜的移动,称对流。溶质和溶剂一起移动是磨擦力作用的结果。不受溶质分子量和其浓度梯度差的影响。跨膜的动力是膜两侧的水压差,即所谓溶质牵引作用(Solvent Drag)。HD和血液过滤(Hemofiltration,HF)时,水分从血液侧向透析侧或滤液侧移动(超滤)时,同时携带水分中的溶质通过透析膜。超滤液中的溶质转运,就是通过对流的原理进行的。反映溶质在超滤时可被滤过膜清除的指标是筛选系数,它是超滤液中某溶质的浓度除以其血中浓度。因此,利用对流清除溶质的效果主要由超滤率和膜对此溶质筛选系数决定。
c. 吸附
吸附是通过正负电荷的相互作用或范德华(Van der Wassls)力和透析膜表面的亲水性基团选择性吸附某些蛋白质、毒物及药物(如b2-M、补体、炎症介质、内毒素等)。膜吸附蛋白质后可使溶质的扩散清除率降低。在血液透析过程中,血液中某些异常升高的蛋白质、毒物和药物等选择性地吸附于透析膜表面,使这些致病物质被清除,从而达到治疗目的。
2. 水的转运
液体在水力学压力梯度或渗透压梯度作用下通过半透膜的运动,称超滤。临床透析时,超滤是指水分从血液侧向透析液侧移动;反之,如果水分从透析液侧向血液侧移动,则称反超滤。
3. 酸碱平衡紊乱的纠正
透析患者每天因食物代谢产生50~100mEq的非挥发性酸,由于患者的肾功能障碍,这些酸性物质不能排出体外,只能由体内的碱基中和。体内中和酸性产物的主要物质是碳酸氢盐,因此尿毒症患者血浆中的H2CO3浓度常降低,平均为20~ 22mEq/L左右。透析时常利用透析液中较血液浓度高的碱基弥散入血来中和体内的酸性产物。
二 影响透析效率的因素
1. 透析器类型
目前各种类型透析器对中、小分子物质的清除以及对水分超滤的效率较大程度上取决于透析膜性能。如聚砜膜、聚甲基丙烯酸甲脂膜和聚丙烯膜等对中分子物资和水分清除效果优于铜仿膜透析器。此外,透析效率尚与透析器有效透析面积成正比。一般应选用透析面积为1.2~1.5m2的透析器为宜。
2. 透析时间
透析时间与透析效率呈正比。使用中空纤维透析器,一般每周透析时间为12~15h。
3. 血液和透析液的流量
每分钟流入透析器内的血液和透析液流量与透析效果密切相关。HD过程中,体内某些代谢产物如肌酐或尿素氮的清除率,一般可由简化的清除率公式计算:
清除率=
Ci=某溶质流入透析器浓度;
Co=某容质流出透析器的浓度;
QB=入透析器的血流量(ml/min )。
从公式中可以看出:(1)血流量越大,清除率越高;(2)在透析过程中,血液内某一溶质的清除与该物质在血液侧与透析液侧的浓度的梯度差呈正比,为保持最大的浓度梯度差,可以增加透析液流量。此外,清除效果尚与透析液通过透析器时接触透析膜的量、面积、时间有关。血流与透析液在透析器内反向流动,可增加接触时间。故透析液流量亦直接影响溶质的清除。常规HD要求血流量为200~ 300ml/min,透析液流量为500ml/min。若能提高血流量至300ml/min,或必要时提高透析液流量至600~ 800ml/min,则更可提高透析效率。
4. 跨膜压力
HD过程中体内水分的清除,主要靠超滤作用。超滤率与跨膜压(TMP)密切相关。TMP越大,超滤作用越强。在常规HD时为扩大TMP,一般在透析液侧加上负压,通常为20~ 26.6kPa(150~200mmHg),使水分从血液侧迅速向透析液侧流动。因此,在透析过程中,及时调节TMP甚为重要。血压正常患者,在血流量为200ml/min时,入口端平均动脉压(MAP)小于10.6~12kPa(80~ 90mmHg)。而出口端MAP小于6.6~ 8kPa(50~60mmHg)。若出口端M

❽ 超滤净水器的工作原理

超滤是一种利用膜分离技术的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。
每米长的超滤膜丝管壁上约有60亿个0.01微米的微孔,其孔径只允许水分子、水中的有益矿物质和微量元素通过,而最小细菌的体积都在0.02微米以上,因此细菌以及比细菌体积大得多的胶体、铁锈、悬浮物、泥沙、大分子有机物等都能被超滤膜截留下来,从而实现了净化过程。 在单位膜丝面积产水量不变的情况下,滤芯装填的膜面积越大,则滤芯的总产水量越多,
其计算公式为:
S内=πdL×n
S外=πDL×n
其中:S内为膜丝总内表面积,d为超滤膜丝的内径;
S外为膜丝总外表面积,D为超滤膜丝的外径;
L为超滤膜丝的长度;
n为超滤膜丝的根数。
内压式和外压式中空纤维超滤膜
一支超滤膜由成百到上千根细小的中空纤维丝组成,一般将中空纤维膜内径在0.6-6mm之间的超滤膜称为毛细管式超滤膜,毛细管式超滤膜因内径较大,不易被大颗粒物质堵塞。
技术参数
1. 流量范围:40~2400 m3/h
2. 过滤精度: 100~2000 μm
3. 工作压力:0.1~1.6 MPa
4. 压力损失:≤ 0.016 MPa
5. 排污阀口径: DN 50 mm
6. 排污时间:10~60 s
7. 排污耗水量: <1%
8. 适用温度:≤ 85 ℃
9. 电源:交流三相380V/50Hz
10.控制界面:数显、旋钮、开关
11.滤网类型: 316不锈钢
超滤膜表面密布的微孔进行物理筛分,滤除水中的铁锈、微粒、细菌、部分病毒、胶体及部分有机物等有害物质,保持出水pH值不变,同时保留水中溶解氧及人体所需微量矿物质。超滤膜净水器提供符合安全、健康概念的饮用水:
1、没有污染的水——无毒、无害、无异味;
2、没有退化的水——含有微量溶解氧、具有生命活力的水;
3、符合人体生理需要的水——pH值6.5~8.5,含有一定有益矿物质等。
超滤净水器的过滤过程是把细菌阻挡在膜的另外一侧,然后通过冲洗排污的方法将细菌冲走,因此避免细菌被灭杀后分解造成硝酸盐超标的问题。

❾ 爱惠浦超滤净水的最新的几个型号的功课和选择

爱惠浦净水机的过滤原理:爱惠浦净水机是以超滤膜为过滤介质的。超滤是一种利用膜分离技术的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。每米长的超滤膜丝管壁上约有60亿个0.01微米的微孔,其孔径只允许水分子、水中的有益矿物质和微量元素通过,而最小细菌的体积都在0.02微米以上,因此细菌以及比细菌体积大得多的胶体、铁锈、悬浮物、泥沙、大分子有机物等都能被超滤膜截留下来,从而实现了净化过程。爱惠浦净水机的净水过程:
1、超滤膜的制水流程自来水先进入超滤膜管内,在水压差的作用下,膜表面上密布的许多0.01微米的微孔只允许水分子、有益矿物质和微量元素透过,成为净化水。而细菌、铁锈、胶体、泥沙、悬浮物、大分子有机物等有害物质则被截留在超滤膜管内,在超滤膜进行冲洗时排出。
2、超滤膜冲洗流程超滤膜使用一段时间后,被截留下来的细菌、铁锈、胶体、悬浮物、大分子有机物等有害物质会依附在超滤膜的内表面,使超滤膜的产水量逐渐下降,尤其是自来水质污染严重时,更易引起超滤膜的堵塞,定期对超滤膜进行冲洗可有效恢复膜的产水量。
3、超滤膜滤芯将成束的超滤膜丝经过浇铸工艺后制成超滤芯,滤芯由ABS外壳、外壳两端的环氧封头和成束的超滤膜丝三部分组成。环氧封头填充了膜丝与膜丝之间的空隙,形成原液与透过液之间的隔离,原液首先进入超滤膜孔内,经超滤膜过滤后成为透过液,防止了原液不经过滤直接进入到透过液中。技术参数:
1、流量范围:40~2400
m3/h
2、
过滤精度:
100~2000
μm
3、工作压力:0.1~1.6
MPa
4、压力损失:≤
0.016
MPa
5、排污阀口径:
DN
50
mm
6、排污时间:10~60
s
7、
排污耗水量:
<1%
8、适用温度:≤
85

9、电源:交流三相380V/50Hz
10、控制界面:数显、旋钮、开关
11、滤网类型:
316不锈钢

❿ 超滤膜元件如何进行供水水质调整

供水温度的调来整
源超滤膜透水性能的发挥与温度高低有直接的关系,超滤膜组件标定的透水速率一般是用纯水在25℃条件下测试的,超滤膜的透水速率与温度成正比,温度系数约为0.02/1℃,即温度每升高1℃,透水速率约相应增加2.0%。因此当供水温度较低时(如<5℃),可采用某种升温措施,使其在较高温度下运行,以提高工作效率。但当温度过高时,同样对膜不利,会导致膜性能的变化,对此,可采用冷却措施,降低供水温度。
供水pH值的调整
用不同材料制成的超滤膜对PH值的适应范围不同,例如醋酸纤维素适合pH=4~6,PAN和PVDF等膜,可在pH=2~12的范围内使用,如果进水超过使用范围,需要加以调整,目前常用的pH调节剂主要有酸(HCl和H2SO4)等和碱(NaOH等)。
由于溶液中无机盐可以透过超滤膜,不存在无机盐的浓度极化和结垢问题,因此在预处理水质调整过程中一般不考虑它们对膜的影响,而重点防范的是胶质层的生成、膜污染和堵塞的问题。
操作参数正确的掌握和执行操作参数对超滤系统的长期和稳定运行是极为重要的,操作参数一般主要包括:流速、压力、压力降、浓水排放量、回收比和温度。

与h2超滤膜相关的资料

热点内容
空气过滤棉海关编码 浏览:318
污水处理项目属于什么项目工程 浏览:1
蚯蚓加工的污水怎么处理 浏览:268
湖北公共场所用净水机哪个好 浏览:492
高分子吸水树脂如何展示 浏览:65
污水管道测量报告 浏览:483
饮水机的水为什么不停 浏览:440
离子交换树脂洗不到中性 浏览:438
1万吨污水厂是什么规模 浏览:429
大货车空气滤芯灯亮怎么回事 浏览:41
滤芯ro膜上错了型号 浏览:732
花伞除垢小妙招 浏览:186
污水排污费收费标准 浏览:809
09款凯美瑞空调滤芯原装什么牌子 浏览:94
铃木跨骑摩托车怎么换空气滤芯器 浏览:766
石灰石湿法脱硫废水排放标准 浏览:13
棋牌室用什么饮水机 浏览:79
超低压反渗透膜压力 浏览:1
屯昌县城污水 浏览:602
磷脂油废水 浏览:452
© Arrange www.bh1978.com 2017-2021
温馨提示:资料来源于互联网,仅供参考