㈠ 钢化玻璃是一类性能良好的玻璃,它可以克服玻璃质脆易碎的缺点。离子交换法是玻璃进行钢化的一种重要方法
(1)纯碱;石灰石;Na 2 CO 3 +SiO 2 ![]() (2)4HF+SiO 2 =SiF 4 ↑+2H 2 O (3)化学变化 (4)不能;碳酸氢钾在475℃时会分解得到二氧化碳气体,影响玻璃的质量 |
㈡ 玻璃化学钢化原理
化学钢化玻璃是将玻璃置于熔融的碱盐中,使玻璃表层中的离子与熔盐中的离子交换,由于交换后的体积变化,在玻璃的两表面形成压应力,内部形成张应力,从而达到提高玻璃强度的效果。化学钢化玻璃强度高、热稳定性好、表面不变形、可做适当切裁处理、无爆开现象。
化学钢化玻璃其实是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。
二、化学钢化原理是什么
化学钢化玻璃是采用低温离子交换工艺制造的,所谓低温系是指交换温度不高于玻璃转变温度的范围内,是相对于高温离子交换工艺在转变温度以上,软化点以下的温度范围而言。低温离子交换工艺的简单原理是在400℃左右的碱盐溶液中,使玻璃表层中半径较小的离子与溶液中半径非常大的离子交换,比如玻璃中的锂离子与溶液中的钾或钠离子交换,玻璃中的钠离子与溶液中的钾离子交换,利用碱离子体积上的差别在玻璃表层形成嵌挤压应力。大离子挤嵌进玻璃表层的数量与表层压应力成正比,所以离子交换的数量与交换的表层高层度是增效果好果的关键指标。
离子交换钢化玻璃与物理钢化玻璃的应力分布不同,前者表面层的压应力厚度较小,与其平衡的内部拉应力不大,这是化学钢化玻璃的内部拉应力层达到破坏时也不像物理钢化玻璃那样碎成小片的原因。由于离子交换层较薄,所以化学钢化玻璃方法用于增强薄玻璃效果显著,对厚玻璃的增效果好果不甚明显,特别适合增强2~4mm厚的玻璃。
㈢ 钢化玻璃分几种
按形状分类
1 .钢化玻璃按形状分为平面钢化玻璃和曲面钢化玻璃。
一般平面钢化玻璃厚度有11、12、15、19mm等十二种;曲面钢化玻璃厚度有11、15、19mm等八种,具体加工过后的厚度还是要看各厂家的设备和技术。但曲面(即弯钢化)钢化玻璃对每种厚度都有个最大的弧度限制。即平常所说的R R为半径。
2 .钢化玻璃按其外观分为平钢化和弯钢化 。
3 .钢化玻璃按其平整度分为:优等品,合格品。优等品钢化玻璃用于汽车挡风玻璃;合格品用于建筑装饰。
按工艺分类
⒈物理钢化玻璃又称为淬火钢化玻璃。它是将普通平板玻璃在加热炉中加热到接近玻璃的软化温度(600℃)时,通过自身的形变消除内部应力,然后将玻璃移出加热炉,再用多头喷嘴将高压冷空气吹向玻璃的两面,使其迅速且均匀地冷却至室温,即可制得钢化玻璃。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。
⒉化学钢化玻璃是通过改变玻璃的表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其方法是将含有碱金属离子的硅酸盐玻璃,浸入到熔融状态的锂(Li+)盐中,使玻璃表层的Na+或K+离子与Li+离子发生交换,表面形成Li+离子交换层,由于Li+的膨胀系数小于Na+、K+离子,从而在冷却过程中造成外层收缩较小而内层收缩较大,当冷却到常温后,玻璃便同样处于内层受拉,外层受压的状态,其效果类似于物理钢化玻璃。
按钢化度分类
⒈钢化玻璃:钢化度=2~4N/cm,玻璃幕墙钢化玻璃表面应力α≥95Mpa;
⒉半钢化玻璃:钢化度=2N/cm,玻璃幕墙半钢化玻璃表面应力24Mpa≤α≤69Mpa;
⒊超强钢化玻璃:钢化度>4N/cm。
㈣ 钢化玻璃和普通玻璃有何不同
1、钢化玻璃即安全玻璃,它是通过物料钢化原理,在玻璃升温至接近软化状态的时候在瞬间冷却,是玻璃内部产生钢化应力层,增加玻璃表面的抗压力和抗冲击的能力,破碎后颗粒跟玉米粒大小,对人体基本上没有什么伤害.一般钢化玻璃不是非常的直,有一点弯曲。
2、普通玻璃,表面抗压力和抗冲击力底,很容易就破碎,破碎后什么形状都有,多数为尖刀状、刃口锋利,对人体有较大的伤害.玻璃非常的直,没有弯曲。
(4)离子交换钢化扩展阅读
分类
按形状
1 .钢化玻璃按形状分为平面钢化玻璃和曲面钢化玻璃。
一般平面钢化玻璃厚度有11、12、15、19mm等十二种;曲面钢化玻璃厚度有11、15、19mm等八种,具体加工过后的厚度还是要看各厂家的设备和技术。但曲面(即弯钢化)钢化玻璃对每种厚度都有个最大的弧度限制。即平常所说的R R为半径。
2 .钢化玻璃按其外观分为平钢化和弯钢化 。
3 .钢化玻璃按其平整度分为:优等品,合格品。优等品钢化玻璃用于汽车挡风玻璃;合格品用于建筑装饰。
按工艺
⒈物理钢化玻璃又称为淬火钢化玻璃。它是将普通平板玻璃在加热炉中加热到接近玻璃的软化温度(600℃)时,通过自身的形变消除内部应力,然后将玻璃移出加热炉,再用多头喷嘴将高压冷空气吹向玻璃的两面,使其迅速且均匀地冷却至室温,即可制得钢化玻璃。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。
⒉化学钢化玻璃是通过改变玻璃的表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其方法是将含有碱金属离子的硅酸盐玻璃,浸入到熔融状态的锂(Li+)盐中,使玻璃表层的Na+或K+离子与Li+离子发生交换,表面形成Li+离子交换层,由于Li+的膨胀系数小于Na+、K+离子,从而在冷却过程中造成外层收缩较小而内层收缩较大,当冷却到常温后,玻璃便同样处于内层受拉,外层受压的状态,其效果类似于物理钢化玻璃。
按钢化度
⒈钢化玻璃:钢化度=2~4N/cm,玻璃幕墙钢化玻璃表面应力α≥95Mpa;
⒉半钢化玻璃:钢化度=2N/cm,玻璃幕墙半钢化玻璃表面应力24Mpa≤α≤69Mpa;
⒊超强钢化玻璃:钢化度>4N/cm。
参考资料钢化玻璃_网络
㈤ 化学钢化玻璃的制作原理
化学钢化玻璃的制备:将洁净的浮法玻璃(主要成分硅酸钙)浸泡在已经加热到80度的硝酸内钾或者硫酸钠溶液容里反应60分钟后将玻璃用清水(玻璃清洗机)清洗后就得到化学钢化玻璃。
化学钢化玻璃制作原理:浮法玻璃在硝酸钾(硝酸钠)溶液里浸泡,玻璃表面的钙离子和溶液中的钾离子(钠离子)发生离子置换反应,玻璃表面的硅酸钙反应后生成归硅酸钾(硅酸钠)。
至此,该玻璃表面主要成分为硅酸钾或者硅酸钠,内部主要成分为硅酸钙,硅酸钙与硅酸钾(硅酸钠)力学性能差异致使玻璃内部形成比较大的压应力(物理钢化是通过加热淬火方式改变玻璃内部压应力)从而得到化学钢化玻璃;
化学钢化玻璃和物理钢化玻璃的生产方式各有优缺点,互相为补充满足市场对钢化玻璃产品的需求。
化学钢化与加工物理钢化相比:
缺点:加工难度大,成本高,效率低
优点:钢化玻璃薄板(物理钢化淬火冷却4毫米玻璃就需要30000Pa风压,加工难度和成本急剧上升,3毫米以下厚度物理钢化完全没有工业化);钢化玻璃小片;
㈥ 钢化玻璃分成几种
钢化玻璃可分为物理钢化玻璃和化学钢化玻璃两种。
㈦ 化学钢化玻璃具体怎么操作
什么是化学钢化玻璃
化学钢化是通过离子交换形成玻璃的表面压应力。离子交换工艺的简单原理是在400LC左右碱盐溶液中,使玻璃表层中半径较小的离子与溶液中半径较大的离子交换,比如玻璃中的锂离子与溶液中的钠离子交换,玻璃中的钠离子与溶液中的钾离子交换,利用碱离子体积上的差别产生表层压应力。对厚玻璃的增强效果不甚明显,特别适合增2~4mm厚的玻璃。化学钢化玻璃的优点是,其未经转变温度以上的高温过程,所以不会像物理钢化玻璃那样存在翘曲,表面平整度与原片玻璃一样,同时在强度和耐温度变化有一定提高,并可适当作切裁处理。化学钢化的缺点是随时间易产生应力松弛现象,目前已有保护性工艺措施,使化学钢化玻璃具有其他强化玻璃品种不可替代的应用特点。
玻璃的化学钢化产生于一种称之为离子交换的工艺。将玻璃浸入一个温度低于玻璃退火温度的熔化盐池。玻璃片为钠钙浮法玻璃和钠钙平板玻璃时,盐池中成分为硝酸钾。在浸入周期内,较大的碱性钾离子同较小的钠离子在玻璃表面发生置换,较大的钾离子嵌入由较小的钠离子构成的表面。这种“强化”嵌入玻璃表面的深度只有数千分之一英寸,化学钢化玻璃的压应力可以达到10
000
psi(6.9×107Pa)。
由于表面缺陷的影响,上述压应力水平会大幅降低。许多公布的数据或规范只是平均应力值。这明显意味着玻璃样品可以有较高的应力值,也可以有较低的应力值:在同一盐池生产出的化学钢化玻璃的应力值也会有很大差别。化学钢化玻璃破碎时,不一定碎成小颗粒,其碎片状态可能类似于普通玻璃。因此这种玻璃不能用在需要安全玻璃的地方。
一些技术专家和研究人员宣称:离子交换实际上只有很少的分子在玻璃表面数百万分之一英寸深进行的,而不是像玻璃钢化协会手册上说明的“数千分之一英寸”。尽管化学钢化玻璃在处理完后可以被切割,但是切割过程会使切口两边1
in(25
mm)范围内的压应力彻底丧失,使其回复到普通玻璃状态。化学钢化玻璃广泛应用于眼镜和航空工业以及电子行业中,对要求厚度小于1/8
in(3
mm)又要求有较高强度的玻璃,可以采用化学钢化。这种玻璃还可作为聚碳酸脂保护层使用。
㈧ 玻璃的化学钢化和物理钢化有什么区别
物理钢化玻璃又称为淬火钢化玻璃。它是将普通平板玻璃在加热炉中加热到接近玻璃的软化温度(600℃)时,通过自身的形变消除内部应力,然后将玻璃移出加热炉,再用多头喷嘴将高压冷空气吹向玻璃的两面,使其迅速且均匀地冷却至室温,即可制得钢化玻璃。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。
化学钢化玻璃是通过改变玻璃的表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其方法是将含有碱金属离子的硅酸盐玻璃,浸入到熔融状态的锂(Li+)盐中,使玻璃表层的Na+或K+离子与Li+离子发生交换,表面形成Li+离子交换层,由于Li+的膨胀系数小于Na+、K+离子,从而在冷却过程中造成外层收缩较小而内层收缩较大,当冷却到常温后,玻璃便同样处于内层受拉,外层受压的状态,其效果类似于物理钢化玻璃。