Ⅰ 盐酸盐与钠盐进行离子交换反应,最后形成什么化学键
这需要看情况回答。
离子交换反应原则上是在(水)溶液中进行的。那么盐酸盐与专钠盐反应,需要属生成难溶物质或弱电解质(气体在这里的可能性不是很大)。最后形成的NaCl和另一种新盐,由于在水溶液中,实际上的状态是溶液中的阴阳离子均被水分子包裹,因此不能说有离子键。只有沉淀,以及将溶液蒸发后形成的晶体内,是(新的)离子键。
Ⅱ 请问聚六亚甲基胍盐酸盐和单胍、双胍有什么区别
主要区别是分子结构不同
Ⅲ 易解石、黑稀金矿物和褐钇铌矿分析
易解石(Ce、Ca、Th、Fe、…)(Ti、Nb)2O6、黑稀金矿(La、U、Y、…)(Ti、Ta、Nb)2O6、褐钇铌矿(RE、U、Th)(Nb、Ta)O4均是稀土元素与铀、钍的铌钽钛酸盐矿物,成分和含量复杂多变,主要的伴生元素有W、Pb、Fe、Ca、Mg和F等。
稀土元素、铀和钍,以及铌和钽等分析难度很大的元素均共生于这类矿物中。试样用氢氟酸-硫酸或氟化氢钾分解,然后用萃取或离子交换分离方法进行多次分离,最后进行各个组分的测定。
70.4.5.1 萃取分离-微量分析法
5mg试样用氢氟酸-硫酸分解,制成盐酸-草酸溶液,移取部分溶液测定Fe、Ti和W,另取部分溶液通过萃取-反萃取,测定Nb、Ta、Th、U、REEs、Al、Ca、Mg、Mn和Pb等,其分析流程见图70.18。
图70.18 黑稀金矿、易解石和褐钇铌矿单矿物萃取分离-微量分析法分析流程
试剂
苯甲酰苯胲溶液1g苯甲酰苯胲溶于100mL丁醇,加200mL三氯甲烷,混合后使用,如浑浊可过滤。
分析步骤
(1)试样溶液的制备
称取5mg(精确至0.001mg)试样,置于10mL铂坩埚中,以少许水润湿,加入5~6滴(1+1)H2SO4和5~6滴HF,在控温电炉上分解试样。温度由低升高,蒸发冒硫酸烟,中间再加少许(1+1)H2SO4,最后保留少许H2SO4,使呈湿盐状。取下坩埚放入100mL烧杯中,加入10mL8mol/LHCl-20g/L草酸溶液,温热浸取(如遇有不纯杂质可加少许焦硫酸钾,浓硫酸1~2滴,在喷灯上熔融后再浸取。含锑、锡试样,可先经碘化铵处理后,酸溶)。用同样溶液洗净坩埚,转移溶液至50mL容量瓶中并稀释到刻度,为溶液(A)。
移取20.0mL溶液(A),放入50mL分液漏斗中,加入10mL苯甲酰苯胲溶液,在震荡机上萃取10min,放置分层后,有机相转入50mL容量瓶中。水相再加入5mL苯甲酰苯胲溶液萃取一次,分层后与有机相合并,用三氯甲烷稀释至刻度(称有机相),水相放入50mL铂皿中(称水相)。
分取有机相20.0mL放入50mL分液漏斗中,加入15mL3mol/LH2SO4,在震荡机上反萃取10min,分层后有机相进入铂坩埚中。水相用5mL苯甲酰苯胲溶液萃洗3min,放置分层后,有机相合并于铂坩埚中。用红外灯蒸发除去有机溶剂后,放入低温灰化炉中由低温升至600℃,灼烧5min,取出,放冷。以少许水洗埚壁,加1mLHF、0.5mL(1+1)HClO4蒸发冒烟至剩下约0.1mL溶液,取下坩埚再加入10滴(1+1)H2SO4,继续蒸发至剩下约0.1mL溶液。加入10mL100g/L酒石酸溶液,加盖加热溶解。冷却后转入25mL容量瓶中,用9mL60g/L酒石酸溶液洗坩埚数次,用水稀释至刻度,摇匀。此溶液为60g/L酒石酸溶液(B)。
(2)铌的测定
移取部分溶液(B),使五氧化二铌量不大于70μg,放于50mL容量瓶中,不足5mL时,用60g/L酒石酸溶液补足。加入1滴对硝基酚,用50g/LNaOH溶液滴至黄色,再用(1+2)HCl调至黄色褪去,加入0.5mL0.025mol/LEDTA、12.5mL4mol/LHCl、2mL1g/LPAR溶液,用水稀释至刻度,摇匀。1h后,用1cm比色皿,于波长540nm处测量吸光度。
校准曲线0~70μgNb2O5。
(3)钽的测定
移取部分溶液(B)使五氧化二钽量在20μg以下,放于25mL无硼比色管中,不足5mL时,用60g/L酒石酸溶液补足,加入9mL含25g/L草酸铵的(1+1)H2SO4溶液,冷却后加入2mL1g/L丁基罗丹明B溶液,摇匀。加5mL苯,用塑料吸管加入2mL60g/LKF溶液,在震荡机上摇动30s,放置5min后,立即吸取苯层,放入预先准确加入1mL乙醇的干燥的10mL比色管中,控制体积在5mL。混匀后,用0.5cm比色皿,于波长570nm处测量吸光度。
校准曲线0~20μgTa2O5。
将BPHA的三氯甲烷溶液萃取铌、钽、锆、钛、铁、钨之后的水相,置于50mL铂皿中,在红外灯下蒸发至干。再放入高温炉中由低温逐渐升至550℃灼烧10min。残渣用5mL(1+1)HCl温热溶解(必要时可加入1~2滴过氧化氢)。溶液转入50mL容量瓶中,以水稀释至刻度,摇匀。此溶液为(5+95)HCl溶液(C)。
(4)钍的测定
分取5.0mL溶液(C),置于50mL分液漏斗中,放入1滴1g/L2,4-间硝基苯酚指示剂,用(1+1)氨水调至黄色。加入2.8mL(1+1)HCl,用水稀释至10mL,加入10mL0.1mol/LPMBP-苯,在震荡机上萃取5min,放置分层后,水相放入另一分液漏斗,再用5mL0.1mol/LPMBP-苯萃取一次。水相保留,有机相合并。有机相中加入2mL1mol/LHCl萃洗一次,萃洗液与水相合并。
含有钍的有机相加入10mL6mol/LHCl,在震荡机上反萃取5min,放置分层后,水相放入50mL烧杯中。有机相再用5mL6mol/LHCl反萃取一次,水相合并后,在电热板上蒸发至近干,加入2mLHNO3、1mLHClO4,破坏有机物。残渣溶于水中,用(1+1)氨水中和到对硝基酚指示剂变色后,加入10mL(1+1)HCl,转入25mL比色管中。加入1mL1g/L偶氮胂Ⅲ溶液,用水稀释至刻度,摇匀。用1cm比色皿,于波长665nm处测量吸光度。
校准曲线0~30μgThO2。
(5)稀土元素总量的测定
在萃取钍以后的水相中,加入2mL200g/L磺基水杨酸溶液、2mL20g/L抗坏血酸溶液,用(1+1)氨水调节到溴甲酚绿指示剂变为蓝绿色,加入3mL缓冲溶液(pH5.5),用15mL0.01mol/LPMBP-苯在震荡机上萃取3min。放置分层后,水相放入另一分液漏斗中,用5mL0.01mol/LPMBP-苯再萃取一次。有机相合并,加入2mL缓冲溶液(pH5.5)萃洗1min,弃去水相。
含有稀土元素和铀的有机相,加入0.3mL乙酰丙酮溶液(稳定铀),摇匀。用15mL!(CHOOH)=0.4%(pH2.6)在振荡机上反萃取2min。放置分层后,水相放入50mL容量瓶中(低量稀土元素可直接放入比色管)。有机相再加入0.2mL乙酰丙酮溶液,再用5mL!(CHOOH)=0.4%反萃取一次。水相合并,用!(CHOOH)=0.4%稀释至刻度。分取部分溶液(含稀土元素氧化物不超过30μg),置于25mL比色管中,加入1mL1g/L偶氮胂Ⅲ溶液,用!(CHOOH)=0.4%稀释到刻度,摇匀。用1cm比色皿,于波长650nm处测量吸光度。
校准曲线0~30μgRE2O3(根据单矿物中稀土元素类似组成比例配制)。
(6)铀的测定
甲酸(pH2.6)反萃取稀土元素以后的有机相加入10mL1mol/LHCl溶液。在震荡机上反萃取2min。放置分层后,水相放入25mL容量瓶(低量铀可直接放入25mL比色管)中。有机相用5mL1mol/LHCl再反萃取一次。水相合并,并以1mol/LHCl稀释至刻度,摇匀。分取部分溶液,含铀量不超过30μg,放入25mL比色管中,用1mol/LHCl补足15mL,加入0.5mL1g/L偶氮氯膦Ⅲ溶液,用水稀释至刻度,摇匀。用1cm比色皿,于波长655nm处测量吸光度。
校准曲线0~30μgU。
(7)钙、镁、锰的测定
移取10.0mL溶液(C)置于10mL干燥比色管中,准确加入2mL氯化锶溶液,摇匀,此溶液酸度约为!(HCl)=4%,分别在波长422.7nm、285.2nm、279.5nm处,用空气-乙炔火焰原子吸收光谱法测定钙、镁、锰。
(8)铝的测定
移取5.0mL溶液(C)置于25mL比色管中,加1滴1g/L对硝基酚,用80g/LNaOH溶液调至黄色,立即用(1+9)HCl调至无色,加2mL3mol/L乙酸(掩蔽钍、稀土元素和铀的影响),用水稀释到10mL,摇匀。加1mL10g/L抗坏血酸溶液,摇匀。沿比色管壁准确加入0.5mL1g/L铬天青S溶液,小心摇匀。加入5mL0.5mol/L六次甲基四胺,用水稀释至刻度,摇匀。放置10min,用1cm比色皿,于波长568nm处测量吸光度。
校准曲线0~12μgAl2O3。
(9)铅的测定
在溶液(C)中,直接用原子吸收光谱法在波长283.3nm处,空气-乙炔火焰测定。
校准曲线0~6μgPb。
(10)钛的测定
移取2.0mL溶液(A)(含二氧化钛不大于50μg,含有草酸可掩蔽铌、钽、钨)置于50mL容量瓶中,加5mL50g/L抗坏血酸、2滴80g/LCuCl2、5mL(1+1)HCl,加水至约35mL。加10mL25g/L二安替比林甲烷溶液,水稀释至刻度,摇匀。放置40min后,用2cm比色皿,于波长420nm处测量吸光度。
校准曲线0~50μgTiO2。
(11)全铁的测定
移取5.0mL溶液(A)置于50mL容量瓶中,水稀释至20mL左右。加4mL8mol/LNaOH溶液、3mL100g/L柠檬酸铵、1滴对硝基酚指示剂,用(1+1)HCl调至无色,加2mL100g/L盐酸羟铵,2mL2g/L1,10-邻二氮菲溶液,5mL3mol/L六次甲基四胺溶液,水稀释至刻度,摇匀。1h后,用3cm比色皿,于波长510nm处测量吸光度。
校准曲线0~35μgFe2O3。
(12)钨的测定
移取5.0mL溶液(A)于25mL比色管中,加入5mL混合液、1.5mL硫氰酸钾溶液,用20g/LSnCl2-(1+3)HCl溶液稀释至刻度,摇匀。待硫氰酸铁的颜色消失,加1滴三氯化钛溶液,15min后,用3cm比色皿,在波长405nm处测量吸光度。
校准曲线0~20μgWO3。
(13)亚铁的测定
称取1~5mg(精确至0.01mg)试样,放入50mL聚乙烯瓶中,加1~2滴水润湿,盖好内层盖,卡紧外层帽,使内外层盖的小孔重合。将接氮气管的塑料尖嘴插入小孔中,送气2~3min,排尽瓶内空气。从另一小孔中加入1mLH2SO4,1mLHF。当见到酸蒸汽外溢时,拉开塑料尖嘴。迅速旋转外层帽,错开内外层盖的小孔,使成封闭状态。将瓶倾斜放入沸水中,不时加以摇动。经25~30min后取出,在冷水中强冷0.5min,旋转外层帽使内外层盖小孔重合,迅即加入10mL混合溶液(50mL50g/L硼酸溶液、30mL100g/L柠檬酸铵溶液、20mL2g/L1,10-邻二氮菲溶液,混合均匀),摇匀,加入20mL3mol/L六次甲基四胺溶液。转移溶液到50mL容量瓶中,用水稀释至刻度,摇匀。用1cm比色皿,以水为参比,于波长510nm处测量吸光度。
校准曲线0~300μgFeO。
(14)氟的测定
称取2mg(精确至0.01mg)试样于银坩埚中,Na2O2熔融。于pH8~9与氢氧化物分离后在二苯胍存在下萃取氟-镧-茜素配位剂三元配合物后用光度法测定。
校准曲线0.1~4μgF。
(15)硅、钡的测定
称取5mg(精确至0.01mg)试样,在石墨坩埚中,用Na2O2-NaOH熔融。硅钼蓝光度法测定硅、无火焰原子吸收光谱法测定钡。
校准曲线5~60μgSiO2;0.05~0.4μgBa。
(16)二氧化碳、结晶水
称取2mg(精确至0.01mg)试样,气相色谱法或电量法测定。
70.4.5.2 离子交换分离-微量分析法
2~3mg试样用氟化氢钾熔融,然后分别用阳离子交换树脂和阴离子交换树脂进行分离富集后测定铌、钽等9个组分。其分析流程见图70.19。
图70.19 黑稀金矿、易解石和褐钇铌矿单矿物离子交换分离-微量分析法分析流程图
试剂
阳离子交换树脂柱强酸1×18,H+型,100~200目,0.8cm×10cm,流速4~5滴/min。每次使用前,均用25mL40g/L草酸铵溶液及20mL3.0mol/LHCl再生,最后用10mL1.0mol/LHCl平衡。
阴离子交换树脂柱强碱201×8,F-型,100~200目,0.8cm×10cm,流速4~5滴/min。每次使用前,均用25mL2.0mol/LNH4Cl-1.0mol/LNH4F溶液及20mL1.0mol/LHF再生。交换柱用有机玻棒加工制成,上端装塑料漏斗。
分析步骤
称取2~3mg(精确至0.001mg)试样放入小的铂坩埚中,加入0.1gKHF2,于750~850℃熔5~10min,取出,冷却。加入3mLHF,低温加热蒸至近干。加入1mLHF,低温加热片刻,加入3mL水,保温30min,放置1h以上,用预先以(1+2)HCl和!(HF)=15%溶液洗涤过的致密定量滤纸过滤。用!(HF)=15%洗涤铂坩埚及沉淀,总体积约40mL。滤液及洗液用塑料杯承接;沉淀连同滤纸移入原铂坩埚中,置于高温炉中,慢慢升温至550℃并保持30min,使滤纸灰化完全,取出,冷却。沿壁滴加1mLHClO4,加热至冒白烟。用水冲洗内壁,继续加热至冒白烟,取下,加入2mL1.25mol/LHCl、1滴H2O2,温热片刻,取下冷却。倾入阳离子树脂交换柱中,水洗铂坩埚壁。然后依次用120mL1.25mol/LHCl淋洗钙;30mL3.0mol/LHCl淋洗稀土;45mL40g/L草酸铵溶液淋洗钍。
氟化物沉淀过滤后所得溶液,移入铂皿中,低温加热蒸发至近干,取下,沿壁加入0.5mLHF、10mL水,温热片刻,取下,冷却。溶液倾入阴离子树脂交换柱,用少量1.0mol/LHF洗铂皿。然后用45mL1.0mol/LHF淋洗铁和锰;50mL8.0mol/LHCl-0.002mol/LHF淋洗钛;45mL6.0mol/LHCl-0.06mol/LHF淋洗铌;30mL0.1mol/LHCl-0.06mol/LHF淋洗铀。最后用5mL2.0mol/LNH4Cl-1.0mol/LNH4F溶液淋洗钽。
(1)钙的测定
将1.25mol/LHCl流出液置于电热板上,低温加热蒸发至小体积,用原子吸收光谱法测定。
(2)稀土总量的测定
将3.0mol/LHCl流出液置于电热板上,低温加热蒸发至小体积,移入25mL容量瓶中,用水稀释至刻度,分取部分溶液,用偶氮胂Ⅲ光度法测定。
(3)钍的测定
将40g/L草酸铵流出液移入50mL容量瓶中,用水稀释至刻度。分取部分溶液,用偶氮胂Ⅲ光度法测定。
(4)铁和锰的测定
将1.0mol/LHF流出液移入铂皿中,加入1mL(1+1)H2SO4,加热至冒白烟,冷却,用水洗皿壁,再加热至白烟冒完,转换成!(HCl)=2%的介质,用原子吸收光谱法测定。
(5)钛的测定
将8.0mol/LHCl-0.002mol/LHF流出液移入铂皿中,加1mL(1+1)H2SO4,加热至冒白烟,取下,冷却,用水洗皿壁,再加热至冒白烟,用二安替比林甲烷或过氧化氢光度法测定。
(6)铌的测定
将6.0mol/LHCl-0.06mol/LHF流出液移入50mL容量瓶中并以该溶液稀释至刻度。分取部分溶液用PAR或硫氰酸盐萃取光度法测定。
(7)铀的测定
将1.0mol/LHCl-0.06mol/LHF流出液移入50mL容量瓶中,用水稀释至刻度。分取部分溶液用偶氮胂Ⅲ-二苯胍萃取光度法测定。
(8)钽的测定
将2.0mol/LNH4Cl-1.0mol/LNH4F流出液移入50mL容量瓶中,用上述溶液稀释至刻度。分取部分溶液,用苏木色精-溴化十六烷基吡啶光度法测定。
注意事项
1.25mol/LHCl和3.0mol/LHCl均应标定。
Ⅳ 磺酸基阳离子交换柱的磺酸基阳离子交换柱产品
Venusil SCX HPLC Columns强阳离子交换柱
粒径5um 孔径300A 比表面积50m2/g
强阳离子交换柱:以超纯硅胶为基质,表面键合有芳内香族磺酸基团。容300A,5um;比表面积50m2/g。可用于分离碱性、水溶性化合物和生物分子。中国药典2005版中,盐酸二甲双胍的有关物质测定方法即使用磺酸基阳离子交换(SCX)色谱柱。
Venusil SCX HPLC Columns 4.6*100mm/5um
Venusil SCX HPLC Columns 4.6*150mm/5um
Venusil SCX HPLC Columns 4.6*250mm/5um
三聚氰胺VSc 958505-m Venusil scx4.6*250mm/5um
(建议配保护柱卡套使用寿命更长)
Ⅳ 二甲双胍的药典介绍
【鉴别】(1)取本品约10mg,加水10ml溶解后,加10%亚硝基铁氰化钠溶液-铁氰化钾试液-10%氢氧化钠溶液(等体积混合,放置20分钟使用)10ml,3分钟内溶液呈红色。(2)本品的红外光吸收图谱应与对照的图谱(光谱集631图)一致。(3)本品显氯化物的鉴别反应(附录Ⅲ)。【检查】有关物质 取本品,精密称定,加流动相溶解并定量稀释制成每lml中约含5mg的溶液,作为供试品溶液;精密量取lml,置200ml量瓶中,用流动相稀释至刻度,摇匀,作为对照溶液;另取双氰胺对照品,精密称定,加水溶解并定量稀释制成每lml中约含0.lmg的溶液,精密量取适量,用流动相定量稀释制成每lml中约含lμg的溶液,作为对照品溶液。照高效液相色谱法(附录Ⅴ D)试验,用磺酸基阳离子交换键合硅胶为填充剂,以1.7%磷酸二氢铵溶液(用磷酸调节pH值至3.0)为流动相,检测波长为218nm。取盐酸二甲双胍与三聚氰胺,加水溶解并稀释制成每lml中含盐酸二甲双胍0. 25mg与三聚氰胺0.lmg的溶液,取lml,用流动相稀释至50ml ,摇匀,取lOμl注入液相色谱仪,记录色谱图,盐酸二甲双胍峰与三聚氡胺峰的分离度应大于10.0。取对照品溶液10μl注入液相色谱仪,调节检测灵敏度,使双氰胺色谱峰的峰高约为满量程的25%。再精密量取供试品溶液、对照溶液与对照品溶液各lOμl,分别注入液相色谱仪,记录色谱图至盐酸二甲双胍峰保留时间的2倍。供试品溶液的色谱图中如有与对照品溶液色谱图中双氡胺峰保留时间一致的峰,按外标法以峰面积计算,不得过0.02%,其他单个杂质峰面积不得大于对照溶液主峰面积的0.2倍(0.1%),其他杂质峰面积的和不得大于对照溶液主峰面积(0.5%)。干燥失重 取本品,在105℃干燥至恒重,减失重量不得过0.5%(附录Ⅷ L)。炽灼残渣 不得过0.1%(附录Ⅷ N )。重金属 取本品l.Og,依法检査(附录Ⅷ H第一法,含重金属不得过百万分之二十。【含量测定】取本品约60mg,精密称定,加无水甲酸4ml使溶解,加醋酐50ml,充分混匀,照电位滴定法(附录Ⅶ A),用高氯酸滴定液(0.lmol/L)滴定,并将滴定的结果用空白试验校正。每lml高氯酸滴定液(0.lmol/L) 相当于8.282mg的C4H11N5·HC1。【类别】降血糖药。【贮藏】密封保存。
Ⅵ 阴离子交换树脂价格
随着科技的进步,一种新型的用于提取的材料出现。现今,工业上利用阴离子交换树脂进行水的净化处理以及纯水的制作,甚至污水的处理过程都开始运用阴离子交换树脂。这不可谓是一种新材料的应用进步,新式的材料正逐渐走进我们的生活,从工业领域慢慢过渡到我们日常生活的方方面面。下面小编就来带大家了解一下阴离子交换树脂的具体内容。
阴离子交换树脂价格
含有氢氧根离子的树脂,根据电离常数的大小,可分为强碱性、中等碱性和弱碱性三类。强碱性阴离子交换树脂,主要是分子中含有季铵基-N(CH₃)3OH的树脂。弱碱性阴离子交换树脂,有间苯二胺-甲醛树脂、三聚氰胺-胍·甲醛树脂等。
圣泉酸性离子交换树脂001×7、201×7混床专用阴阳离子交换树脂¥2.5
疁星201x7(717)强碱性阴离子交换树脂¥1
恒泰专业生产201X7强碱性阴离子交换树脂¥9
阴离子交换树脂分类介绍
离子交换树脂交换能力依其交换能力特征可分:
1.强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,一般上使用盐酸以1:10的比例稀释后清洗,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
2.弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。
阴离子交换树脂用途
阴离子交换树脂主要用于纯水、高纯水的制备,废水处理,生化制品的提取,放射性元素提炼,抗菌素分离等及湿法冶金中钨、钼的提取。例如:工业水处理,热电厂硬水软化,高纯水制备,脱盐脱碱水制备,凝结水处理,工业废水处理等领域。
以上就是小编分享的关于阴离子交换树脂的相关内容,在进行使用时,我们也要注意,保持一定水分并且保持一个适合温度,在正常使用时保持杂质去除。而且不能忘记定期活化处理以及对新树脂预处理,这些工序都是要进行细致的操作的,细微的错误都可能导致最后的失败,希望大家慎重的来挑选材料。以上就是我们的分享,希望对大家有所帮助。
Ⅶ 氨基胍与氨基胍盐酸盐有什么区别
基本信息:中文名称 氨基胍半硫酸盐中文别名 氨基胍硫酸盐;硫酸氨基胍;英文名称 Aminoguanidine Hemisulfate英文别名 AMINOGUANIDINE HEMISULFATE;CAS号 996-19-0分子式 C2H14N8O4S分子量 246.24900物化性质:外观性状 白色或无色晶体闪点 111.9oC熔点 200 °C沸点 261.4oC at 760mmHg氨基胍半硫酸盐的用途:有机合成,医药中间体。
Ⅷ 如何利用透析法进行脱盐浓缩蛋白
二、蛋白质的分离纯化
蛋白质的分离纯化方法很多,主要有:
(一)根据蛋白质溶解度不同的分离方法
1、蛋白质的盐析
中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。
影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。
蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。
其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。
蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。
2、等电点沉淀法
蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用。
3、低温有机溶剂沉淀法
用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。
(二)根据蛋白质分子大小的差别的分离方法
1、透析与超滤
透析法是利用半透膜将分子大小不同的蛋白质分开。
超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质。
2、凝胶过滤法
也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一。柱中最常用的填充材料是葡萄糖凝胶(Sephadex
ged)和琼脂糖凝胶(agarose gel)。
(三)根据蛋白质带电性质进行分离
蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开。
1、电泳法
各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开。值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质。
2、离子交换层析法
离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM-纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE?FONT
FACE="宋体"
LANG="ZH-CN">纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。(详见层析技术章)
(四)根据配体特异性的分离方法-亲和色谱法
亲和层析法(aflinity
chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合。其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)
和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。
细胞的破碎
1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。
2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。
3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。
4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。
5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好。
无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。
浓缩、干燥及保存
一、样品的浓缩
生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。常用的浓缩方法的:
1、减压加温蒸发浓缩
通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。
2、空气流动蒸发浓缩
空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。
3、冰冻法
生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液。
4、吸收法
通过吸收剂直接收除去溶液中溶液分子使之浓缩。所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。
5、超滤法
超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。Diaflo
超滤膜的分子量截留值:
膜名称分子量截留值孔的大的平均直径
XM-300300,000140
XM-200100,00055
XM-5050,00030
PM-30 30,00022
UM-2020,00018
PM-1010,00015
UM-21,00012
UM05500 10
用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。然后将纤维管浸入待透析的蛋白质溶液中。当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能。这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍。
Ⅸ 蛋白质纯化技术的方法有哪几种
电泳是蛋白纯化过程中一种检测方式。
主要步骤:
第一步富集:如果是有标签的蛋白,一般用亲和色谱(affinity chromatography)是利用生物大分子间所具有的特异性亲和能力进行富集,然后用咪唑洗脱。要是没有标签的,基本是先超滤浓缩,然后再通过盐析的方式去富集。
第二步初级分离:主要是利用离子交换色谱法,是通过蛋白表面电荷来分离。楼上的说的很清楚。
第三步精细纯化:主要通过分子筛,通过蛋白空间结构和分子量不同来达到分离效果。
Ⅹ 包涵体染色的方法有哪些原理是什么
包涵体染色的方法有哪些?原理是什么
包涵体染色的方法有哪些?原理是什么
包涵体染色的方法有哪些?原理是什么
蛋白包涵体-溶解原理及方法2009年03月15日;维持包涵体内蛋白质结构的作用力是分子内的作用力,;1.遵循标准;包涵体蛋白质的溶解同样是一个工艺的关键的步骤;(1)快速溶解的动力学;;(2)与蛋白质的结合是可逆的;;(3)对细胞碎片的分离方法没有干扰作用;;(4)对温度没有依赖作用;;(5)抑制蛋白质酶的降解作用;;(6)与蛋白质的氨基没有化学修饰作用;;
维持包涵体内蛋白质结构的作用力是分子内的作用力,这种作用力也维持天然蛋白质的稳定性的结构。先前有报道这种作用力是共价键结合的,但是,现在趋向于一致,就是维持包涵体内部的蛋白质的紧密的结构的是非共价键的作用力。二硫键,无论是正确的还是错误的二硫键,在维持内部蛋白质的紧密的结构中都没有发挥直接的作用。最经常的获得活性蛋白质的第一步是溶解这些包涵体蛋白质,溶解液是使这些包涵体蛋白质完全变性的成分,当蛋白质被溶解以后,则进入到蛋白质的体外折叠的过程。
1. 遵循标准
包涵体蛋白质的溶解同样是一个工艺的关键的步骤。溶剂的选择会影响后续的操作、最终的各种蛋白质的收率以及最终的成本,必须遵循以下的标准:
(1) 快速溶解的动力学;
(2) 与蛋白质的结合是可逆的;
(3) 对细胞碎片的分离方法没有干扰作用;
(4) 对温度没有依赖作用;
(5) 抑制蛋白质酶的降解作用;
(6) 与蛋白质的氨基没有化学修饰作用;
(7) 在可能的情况下,选择最低的溶解浓度和廉价的溶剂,并适于以后的复性方法。
2. 溶解包涵体的试剂
最经常使用溶解包涵体的试剂包括离液剂或者去垢剂。
最经常使用的溶解和制备蛋白质的离子型的离液剂最早于1969年Hatefi等人发展的离子型的去垢剂如SDS是另外一种溶解包涵体蛋白质和膜蛋白质的试剂,但是一般不用来大规模的生产,而是用来定性。除了强酸、强碱和利用有机溶剂来提取疏水性很强的蛋白质以外,其他的变性方法如非可逆的共价修饰在工业的大规模生产中很少用到。一旦蛋白质被溶解,蛋白质中的巯基很容易快速地氧化并形成共价的聚集体或者分子内错配的二硫键,然后这些蛋白质就不能再进行折叠。为了防止氧化,可以使这些基团或者利用缓冲液中含有低分子量的疏基试剂保持在还原的状态或形成磺酸盐或者形成混合的二硫键。
(1)去垢剂
去垢剂是一种最经济的溶解包涵体蛋白质的方法,一个最大的优点是溶解的蛋白质有可能保持全部的生物活性,说明在此条件下保持了蛋白质的四级结构。最重要的是稀释以后蛋白质的聚集比其它溶剂生成的很
少。阳离子型、阴离子型的和非离子型的去垢剂都可以使用,使用时的浓度一般高于去垢剂的临界胶束浓度(CMC ),通常是0.5-5%。
SDS仅仅在大量生产牛生长激素、干扰素和白介素-2中用到。SDS由于具有较低的临界胶束浓度(CMC)而使得结合到蛋白质分子上的SDS比较难于除去。由于N-十二烷肌氨酸它的CMC比SDS高0.4%,也被用来溶解包涵体蛋白质并可用稀释的方法使蛋白质复性,残余的去垢剂可以使用阴离子交换色谱或者超滤的方法除去。这种去垢剂是一种比较温和的去垢剂,可以选择性地溶解一些包涵体,但是不能溶解完全的变性的蛋白质的聚集体和大肠杆菌的内膜的蛋白质分子。使用去垢剂一个主要的缺点是对以后的纯化和复性的步骤的干扰,去垢剂结合到蛋白质上的强度大离子交换色谱复性蛋白质小不同,比较难于除去,并干扰离子交换和疏水相互作用色谱的过程,在变性的浓度时超滤膜会吸附这些变性剂。所以复性后需要尽量洗涤这些去垢剂,也可以使用环状糊精链状糊精或者环状淀粉从复性缓冲液中提取去垢剂。
一个不容忽视的问题是去垢剂可以溶解全部的膜蛋白质中的蛋白质酶,这些蛋白质酶的活性在去垢剂的存在的情况下被活化,可能造成溶解和复性过程的收率的降低。蛋白质复性的收率可以通过以下的方法来提高: a) 先期使用可以溶解膜蛋白质但是不溶解包涵体蛋白质的溶剂尽量洗涤包涵体蛋白质;
b) 包涵体的含有的菌体碎片被完全除去;
c) 溶解包涵体的液体中含有蛋白质酶的抑制剂,如EDTA,苯甲基磺酰氟(PMSF )等 。
(2)离液剂
其它的离液剂也被用来溶解包涵体蛋白质,最主要的溶解包涵体蛋白质的离液剂是盐酸胍和尿素,这是最经常使用的溶解试剂,一般情况下选择6-8mo1/L的浓度,蛋白质浓度在1-10mg/mL。
在溶解色氨酸合成酶A的过程,发现阳离子的溶解能力顺序是Gdm+ > Li+ > K+ > Na+,阴离子的顺序是SCN- > I- > Br- >Cr-。一些离液剂由于它们的溶液比盐酸胍和尿素有更高的密度和黏度而不适合用于溶解包涵体,因为利用离心和色谱分离起来比较困难。
为了溶解包涵体蛋白质需要的尿素或者盐酸胍的浓度根据蛋白质的不同而不同。如果蛋白质天然形态需要溶解的变性剂的浓度不能获得,则在溶解包涵体时需要首先确定离液剂的浓度。
盐酸胍由于比较贵,所以一般用来溶解一些附加值比较高的药物蛋白质分子,选择盐酸胍作为溶解试剂,是因为盐酸胍是一种比脲更为强烈的变性剂,甚至可以溶解脲所不能溶解的包涵体;尿素,由于可能被自发的形成的氰酸盐或者已有的氰酸盐的污染,特别是在碱性环境中,从而造成蛋白质的自由的氨基被不可逆的修饰。消除此种影响的方法是用阴离子的缓冲系统如Tris-HCl溶解脲或者脲在使用之前利用阴离子交换色谱纯化,并且配制的溶解和复性的缓冲液在当天使用。脲溶液中影响蛋白质变性的因素与盐酸胍的不同。溶在脲中的蛋白质受到pH和离子强度的影响,从而影响电荷的蛋白质残基之间的电荷作用,但是由于盐酸胍含有高浓度的离子强度,所以这两个因素的影响很少。
(3)混合溶剂
一般情况下去垢剂并不联合使用,Lilly等人发现去垢剂和尿素的混合液有效的摩尔浓度较低。尿素和去垢
剂型的盐混合可以使蛋白质变性,但是尿素和非去垢剂的盐如氯化钠反而降低包涵体蛋白质的溶解性,所以要避免使用。
去垢剂结合其他的试剂或者溶解增强剂也被使用,发现尿素和乙酸,尿素和二甲亚枫,尿素和高pH等是比较有效的溶解包涵体蛋白质的方法。
高压(1-2kbar)、超声也可以溶解包涵体蛋白质,此时使用的溶解试剂浓度可以比较低,便于后续的复性步骤。
3. 极端pH
酸碱度也是比较廉价的有效的溶解包涵体的方法。最经常使用酸的是有机酸,浓度在5-80%之间。Gavif和Better使用低的(pH≤2.6)和高温(85℃ )溶解抗真菌的重组蛋白质的肤段,低温和高PH需要溶解时间要长。Reddy和合作者也使用20%乙酸溶解一种麦芽糖结合的蛋白质。但是,同样的一些不可逆的修饰作用或者酸降解会在极端pH下发生,所以此种方法并不是经常使用的溶解包涵体的方法。
高pH(≥12)也被用来溶解生长激素和原胰岛素。在高pH下一些蛋白质同样可能发生非可逆的变性,原因在于半胱氨酸在碱性条件下的脱硫过程。所以这种方法尽管比较简单、廉价,同样仅仅用于一些特定的蛋白质,特别对于药用蛋白质一般不采用这种方法。
再登陆http://www.biox.cn/content/20050415/10541.htm
摘要 基因重组蛋白在大肠杆菌中表达时,由于表达量高,往往形成无生物活性的包涵体。包涵体必须经过变性和复性的过程才能获得有活性的重组蛋白。如何提高基因重组蛋白质的复性率,是生物工程技术的一个研究热点。对近年来的重组蛋白质的复性方法做一评述,为研究蛋白质折叠以及复性技术的进一步应用提供依据。
关键词 重组蛋白 包涵体 复性 二硫键
到目前为止,人们表达的重组蛋白质已有4000多种,其中用E.coli表达的蛋白质要占90%以上,尽管基因重组技术为大规模生产目标蛋白质提供了崭新的途径,然而人们在分离纯化时却遇到了意想不到的困难,即这些蛋白质在E.coli中绝大多数是以包涵体形式存在,重组蛋白不仅不能分泌到细胞外,反而在细胞内聚集成没有生物活性的直径约0.1~3.0μm的固体颗粒[1]。自从应用大肠杆菌体系表达基因工程产品以来,人们就一直期望得到高活性、高产量的重组蛋白。不可溶、无生物活性的包涵体必须经过变性、复性才能获得天然结构以及生物活性,因此应该选择一个合适的复性过程来实现蛋白质的正确折叠,获得生物活性,近年来的研究可以使复杂的疏水蛋白、多结构域蛋白、寡聚蛋白、含二硫键蛋白在体外成功复性。
包涵体形成的原因
重组蛋白在宿主系统中高水平表达时,无论是原核表达体系或真核表达体系甚至高等真核表达体系,都会形成包涵体[2]。主要因为在重组蛋白的表达过程中,缺乏某些蛋白质折叠过程中需要的酶和辅助因子,或环境不适,无法形成正确的次级键等原因形成的[3]。
1、 表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。
2、 重组蛋白的氨基酸组成,一般说来含硫氨基酸越多越容易形成包涵体。
3、 重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。
4、 重组蛋白是大肠杆菌的异源蛋白,由于缺少真核生物中翻译后修饰所需酶类,致使中间体大量积累,容易形成包涵体沉淀。
5、 有报道认为,丰富的培养基有利于活性蛋白质的表达,当培养条件不佳时,容易形成包涵体。
减少包涵体形成的策略
1、 降低重组菌的生长温度,降低培养温度是减少包涵体形成的最常用的方法,较低的生长温度降低了无活性聚集体形成的速率和疏水相互作用,从而可减少包涵体的形成[4]。
2、 添加可促进重组蛋白质可溶性表达的生长添加剂,培养E.coli时添加高浓度的多醇类、蔗糖或非代谢糖可以阻止分泌到周质的蛋白质聚集反应,在最适浓度范围内添加这些添加剂不会影响细胞的生长、蛋白质的合成或运输,其它促重组蛋白质可溶性表达的生长添加剂还有乙醇(诱导热休克蛋白的表达)、低分子量的巯基或二硫化合物(影响细胞周质的还原态,从而影响二硫键的形成)和NaCl[5]。
3、 供给丰富的培养基,创造最佳培养条件,如供氧、pH等。
包涵体的分离及溶解
对于生物制药工业来说,包涵体的形成也是有利的,不仅可获得高表达、高纯度的重组蛋白质,还可避免细胞水解酶对重组蛋白质的破坏。由于包涵体是蛋白质聚集而成的致密颗粒,分离的第一步是对培养收集的细胞进行破碎,比较有效的方法是高压匀浆结合溶菌酶处理,然后5000~20000g离心,可使大部分包涵体沉淀,与可溶性蛋白分离,接着,包涵体沉淀需用去污剂(Triton X-100或脱氧胆酸钠)和低浓度变性剂(2mol/L尿素或盐酸胍等)洗涤除去脂类和膜蛋白,这一步很重要,否则会导致包涵体溶解和复性的过程中重组蛋白质的降解[6、7、8]。
包涵体的溶解必须用很强的变性剂,如8mol/L尿素、6~8mol/L盐酸胍,通过离子间的相互作用破坏包涵体蛋白间的氢键而增溶蛋白。其中尿素的增溶效果稍差,异氰盐酸胍最强;去污剂,如SDS[7],可以破坏蛋白内的疏水键,可以增溶几乎所有的蛋白,但由于无法彻底去除而不允许用在制药行业中;酸,如70%甲酸[9],可以破坏蛋白的次级键从而增溶蛋白,这种方法只适合少数蛋白质。对于含有半胱氨酸的蛋白,在增溶时应加入还原剂(如DTT、GSH、β-ME)打开蛋白质中所有二硫键,对于目标蛋白没有二硫键的有时也应使用还原剂,为含二硫键的杂蛋白会影响包涵体的溶解,同时还应加入金属螯合剂,如EDTA或EGTA,用来螯合Cu2+、Fe3+等金属离子与还原状态的巯基发生氧化反应[10]。
蛋白质的折叠机理
包涵体蛋白在变性剂作用下,为可溶性伸展态,在变性剂去除或浓度降低时,就会自发的从变性的热不稳
状态向热力学稳定状态转变,形成具有生物活性的天然结构[11]。然而在去除变性剂的同时,重组蛋白质在体外折叠,分子间存在大量错误折叠和聚合,复性效率往往很低,包涵体蛋白折叠复性的效率实际上取决于正确折叠过程与聚集过程之间的竞争[1]。对于蛋白质的折叠机制,目前有多种不同的假设,但很多学者认为有一个“熔球态”的中间状态,在“熔球态”中,蛋白质的二级结构已经基本形成,其空间结构也初具规模,再做一些局部调整就可形成正确的立体结构,总之,蛋白质的具体步骤可用下式描述[12、13、14]:
伸展态→中间体→后期中间体→天然态体→聚集体
在折叠反应中,从伸展态到中间体的速度是非常快的,只需要几毫秒,但从中间体转变为天然态的过程比较缓慢,是一个限速过程。聚集过程与复性过程相互竞争,故而应尽量避免聚集体的产生。一般认为,蛋白质在复性过程中涉及两种疏水作用,一是分子内的疏水相互作用,可促进蛋白质正确折叠;一是部分折叠的肽链分子间的疏水相互作用,在复性过程中,部分折叠的中间体的疏水簇外露,分子间的疏水相互作用会导致蛋白质聚集。蛋白质的立体结构虽然由其氨基酸的顺序决定,然而伸展肽链折叠为天然活性结构的过程还受到周围环境的影响,如温度、pH值、离子强度、复性时间等因素的影响。
提高重组蛋白质折叠复性的方法
一个有效的、理想的折叠复性方法应具备以下几个特点:活性蛋白质的回收率高;正确复性的产物易于与错误折叠蛋白质分离;折叠复性后应得到浓度较高的蛋白质产品;折叠复性方法易于放大;复性过程耗时较少[15]。
1、 透析、稀释和超滤复性法:这三种方法是最传统也是应用最普遍的蛋白质折叠复性方法,复性活性回收率低,而且难于与杂蛋白分离。透析法耗时长,易形成无活性蛋白质聚集体;超滤法在膜上聚集变性,易造成膜污染;稀释法处理量太大,不利于工业放大[16]。
2、 高蛋白浓度下的复性方法:一个成功的复性过程在于能够在高蛋白浓度下仍能得到较高的复性率。一个方法是把变性蛋白缓慢连续或不连续地加入到复性液中[17]。在两次蛋白加入之间,应有足够的时间间隔使蛋白质折叠通过了易聚集的中间体阶段。这是由于完全折叠的蛋白通常不会与正在折叠的蛋白一起聚集。第二种方法是用温度跳跃策略[4]。变性蛋白在低温下复性折叠以减少聚集,直到易聚集的中间体大都转化为不易聚集的后期中间体后,温度快速升高来促进后期中间体快速折叠为蛋白的天然构象。第三种方法是复性在中等的变性剂浓度下进行[18],变性剂浓度应高到足以有效防止聚集,同时又必须低到能够引发正确复性。
3、 添加促进剂的复性方法:包涵体蛋白质折叠复性促进剂的促进作用可以分为:稳定正确折叠蛋白质的天然结构、改变错误折叠蛋白质的稳定性、增加折叠复性中间体的溶解性、增加非折叠蛋白质的溶解性。通常使用的添加剂有:a、共溶剂:如PEG6000~20000,通过与中间体特异的形成非聚集的复合物,可以阻止蛋白质分子间的相互碰撞机会,减少蛋白质的聚集;b、去污剂及表面活性剂:如Trition X-100、CHAPs、磷脂、磺基甜菜碱等对蛋白质复性有促进作用,但它们能与蛋白质结合,很难去除;c、氧化-还原剂:对于含有二硫键的蛋白,复性过程中应加入氧化还原体系,如GSH/GSSG、DTT/GSSG、DTE/GSSG等,氧化还原系统通过促进不正确形成的二硫键快速交换反应,提高了正确配对的二硫键的产率[19];d、小分子的添加剂:如盐酸胍或尿素、烷基脲、碳酸酰胺类等,都可阻止蛋白聚集,它们的作用可能为:稳定蛋白的活性状态、降低非正确折叠的稳定性、增加折叠中间体的稳定性、增加解折叠状态的稳定性。e、0.4~0.6M L-Arg:L-Arg能使得不正确折叠的蛋白质结构以及不正确连接的二硫键变得不稳定,使折叠向正确方向进行,可大幅度地提高包涵体蛋白质的折叠效率。f、添加分子伴侣和折叠酶:分子伴侣是指能够结合和稳定