导航:首页 > 净水问答 > 离子交换分离工程pdf

离子交换分离工程pdf

发布时间:2021-03-30 22:36:08

① 谁有电厂化学离子交换系统的原理的课件吗我急需!

你好,为你找了些问答题可能有用
151、 什么叫离子交换树脂?
答:离子交换树脂是人工合成的,具有高分子聚合物骨架和活性基团的物质,因外形呈树脂状,故常称为离子交换树脂。
163、在水处理实际应用中,离子交换树脂选择顺序如何?有什么规律?
答:阳离子交换树脂在稀溶液中的的选择性顺序如下:Fe3+>A13+>Ca2+>Mg2+>K+≈NH4+>Na+>H+
这可归纳为①离子所带电荷越大,越易被吸着;②当离子所带电荷量相同时,离子水合半径较小的易被吸着。
弱酸性阳树脂对H+的选择性向前移动,羧酸型树脂对H+的选择性居于Fe3+之前。
在浓溶液中选择顺序有所不同,某些低价离子会居于高价离子前面。
阴离子交换树脂的选择顺序:在淡水的离子交换除盐处理系统中,即进水是稀酸溶液时,阴离子的选择顺序为SO42-(+HSO4-)>CL->HCO3->HSiO-;
当OH型离子交换树脂失效后,用碱进行再生时,即对于进水是浓碱溶液,阴离子的选择性顺序为:CL—>SO42—>CO32->HSiO3—;
据此,可以推知,OH型离子交换树脂对于水中常见阴离子的选择顺序,遵循以下三条规则:
(1)在强弱酸混合的溶液中,OH型离子交换树脂易吸着强酸阴离子。
(2)浓溶液与稀溶液,前者利于低价离子被吸着,后者利于高价离子被吸取。
(3)在浓度和价数等条件相同的情况下,选择性系数大的易被吸着。
164、试述弱酸阳离子交换树脂的特性。
答:弱酸阳离子交换树脂在水中的特性类似弱酸。它与中性盐类作用的能力较弱(例如SO42—、CL—等强酸阴离子)。它仅能与弱酸性盐类(具有碱度的盐类)反应,反应后产生的是弱酸。用强酸H型离子交换树脂可处理碱度大的水,将水中的碱度所对应的阴离子除去后,再用强酸H型交换树脂来除去强酸根所对应的那部分阴离子。
由于弱酸性阳树脂对H+的亲和力较大,很容易再生,因此它可用强酸H型阴离子交换树脂的再生废液来进行再生。
弱酸性阳树脂的交换容量很大,约为强酸性阳树脂的2倍。由于弱酸性阳树脂的交联度低,所以其机械强度比强酸性阳树脂的要低。
盐型弱酸性阳树脂具有水解能力。
165、简述弱碱性阴离子交换树脂的特性。
答:OH型的弱碱性阳离子交换树脂在水中类似弱碱,其分解中性盐的能力很弱,,其在中性盐溶液中不能和盐类反应,因此只能在酸性溶液中与SO42—、CL—、、NO3—等强酸根进行交换,对弱酸根HCO3—的吸着力很弱,对更弱的HSiO3—则不能吸着。
弱碱性阳树脂对OH—的亲和力较大,很容易再生,可用强碱性阴树脂的再生废液进行再生。
弱碱性阴树脂的交换容量大,相当于强碱性阴树脂的3倍。由于弱碱性阴树脂的交联度低、孔隙大,其机械强度比强碱性阴树脂的要低。但弱碱性阴树脂在运行时吸着的有机物,在再生时易被解吸出来。
盐型的弱碱性阴树脂在水中具有水解能力。
166、 为什么新树脂在使用前应进行预处理? 离子交换树脂如何进行预处理?
答: 因为新树脂中含有少量的低聚合物和未参与聚合,缩合反应的单体。当树脂与水、酸、碱、盐等溶液接触时,上述物质就会转入溶液中,影响出水水质。除了这些有机物外,新树脂往往含有铁、铝、铜等无机杂质。在水质要求较高时,应对新树脂进行预处理。
进行予处理时,如树脂脱水需要食盐水处理:将树脂转入交换器中,用大余树脂体积的10%的食盐溶液浸泡1—2小时。浸泡完后放掉食盐水,用水冲洗树脂,直到排出的水不呈黄色为止。再进行反洗,以除去混在树脂中的机械杂质和细碎树脂粉末。
阳树脂: 用2—4%NaOH溶液浸泡4—8小时,然后进行小流量反洗,至排水澄清、耗氧量稳定为止。再用5%盐酸浸泡4—8小时,进行正洗,至排水氯含量与进水相接近为止。
阴树脂:用5%盐酸浸泡4—8小时,用氢离子交换器出水进行小流量反洗,至排水氯离子含量与进水相接近为止。然后再用4%NaOH溶液浸泡4—8小时,正洗排水接近中性为止。。
167、离子交换树脂如何转型?
答:(1)阳离子交换树脂转型方法:
将阳离子交换树脂浸泡于2—4%的氢氧化钠溶液中,经4一8小时后进行小流量反洗(指器内预处理),至出水澄清,耗氧量稳定为止。然后再浸泡于5%的盐酸溶液中,经4—8小时后,进行正洗,至出水与进水氯根含量相近为止。
(2)阴离子交换树脂转型方法:
将阴离子交换树脂浸泡于5%的盐酸溶液内,经4—8小时后用氢离子交换水进行小流量反洗,直至出水与进水氯根含量相近为止。然后再浸泡于4%的氢氧化钠溶液中,经4—8小时后进行正洗,至出水接近中性为止。
168、如何对不同的树脂进行分离?
答:对混合在一起的不同树脂,主要是利用它们的比重不同进行分离,一种是借自下而上的水流进行树脂分层。另外一种办法是将混合树脂浸泡于一定比重的食盐溶液中,比重小的树脂会浮起来,与比重大的分离。例如,用饱和食盐水即可将强碱、强酸两种树脂分离开。
如果两种树脂的比重差小,分离起来有困难,可以先将树脂转型,再进行分离。这是由于树脂型型式不同,其比重也不同,例如OH型阴树脂的比重小于CL型。
169、试述影响阳离子交换速度的因素。
答:(1)树脂的交换基团:离子间的化学反应速度是很快的,所以一般来说树脂交换基团的不同并不影响到交换速度,但对于会形成弱电解质的离子交换树脂,情况就不同,象H型和盐型的交换速度就会有很大的差别。
(2)树脂的交联度:树脂的交联度大,网孔小,则其颗粒内扩散越慢,交换速度就慢。当水中的粒径较大的离子存在时,对交换速度的影响就更为显著。
(3)树脂的颗粒:树脂颗粒越小,交换速度越快。
(4)溶液的浓度:溶液浓度是影响扩散速度的重要因素,浓度越大扩散速度越快。
(5)水温:提高水温能同时加快内扩散和膜扩散。
(6)搅拌或提高流:在交换过程中的搅拌或提高水的流速,只能加快膜扩散,但不影响内扩散。
(7)离子的本性:离子水合半径越大,内扩散越慢;离子电荷数越多,内扩散越慢。
170、简述离子交换树脂的污染和氧化降解。
答:离子交换树脂在连续进行吸附交换,以及多次循环操作中,其本身也为水中各种杂质所污染;
(1)无机物污染:
阳离子交换树脂用盐酸再生时,银、铅等化合物会积累于树脂颗粒内部;当用硫酸再生时,钙、钡等化合物会积聚于树脂颗粒内部而造成树脂微孔阻塞。
铁离子对阴阳树脂都有污染。
(2) 有机物污染
阴阳树脂都会受到有机物污染。引起阳树脂污染的有油脂、含氮化合物、调节PH时用的有机胺类、微生物细菌等。引起阴树脂污染的物质有油脂、木质碳酸和腐植酸等高分子有机阴离子以及有机铁、微生物、细菌和阳树脂降解后溶出的高分子酸类等。
有机物是高分子有机阴离子,分子量很大,一般凝胶型树脂孔径较小,很容易被大分子的有机物堵住孔隙而使其交换容量下降。尤其是强碱阴树脂,非常容易受有机物污染。
有机物对离子交换树脂的污染与其含量及有机物的组成有关。有机物含量大的、高分子的易污染。树脂的结构对污染程度也有很大影响。
(3)硅酸根污染:
强碱阴离子交换树脂失效后,不及时还原而长期停放或阴离子交换树脂不能彻底还原均可造成硅酸根污染。胶体硅一般不被凝胶型树脂交换,但还有一部分被吸附。因此也会使阴树脂污染。
(4)树脂的氧化:
对于自来水为水源的电厂除盐系统树脂易受活性氯氧化。树脂氧化后,其外观色淡,透明度增加,体积增大,阻力增大,体积交换容量降低。
171、 什么叫树脂的复苏?
答: 树脂在长期的使用过程中,被有机物、铁、胶体等污染,使其交换容量降低甚至全部丧失,故采用酸、碱法或碱、食盐法等进行处理,以恢复其交换性能。这就是树脂的复苏。
172、如何保存需长期储存的离子交换树脂?
答:当要长期储存树脂时,最好把树脂转变成盐型,浸泡在水中,如储存过程中,树脂脱了水,也应先用浓(10%)食盐水浸泡,再逐渐稀释,以免树指急剧膨胀而破碎。储存温度一般在0—40℃为宜,以免冻裂。
173、当离子交换剂遇到电解质水溶液时,电解质对其双电层有哪两种作用?为什么?
答:离子交换树脂可看作是具有胶体型结构的物质,既在离子交换树脂的高分子表面上有许多和胶体表面相似的双电层,我们把它和内层离子符号相同的离子称作同离子,符号相反的称反离子。所以离子交换是树脂中原有反离子和溶液中其它反离子相互交换位置。当离子交换剂遇到含有电解质的水溶液时,电解质对其双电层有两方面的作用。一是交换作用:扩散层中反离子在溶液中的活动较自由,离子交换作用主要在此种反离子和溶液中其它反离子之间进行,因动平衡的关系,溶液中的反离子会先交换至扩散层,然后再与固定层中的反离子互换位置。二是压缩作用:当溶液中盐类浓度增大时,可使扩散层压缩,从而使扩散层中部分反离子变成固定层中的反离子,使得扩散层的活动范围变小。这就说明了为什么当再生溶液的浓度太大时,不仅不能提高再生效果,有时反使效果降低。
174、树脂使用时,应注意哪些问题?
答:保持水分,防止风干,密闭存放,运输和储存应在0℃以上,防止冻裂。使用中阳树脂应防止铁锈污染和活性氯等破坏树脂,阴树脂应防止油类和有机物等污染。
175、如何选择合适的离子交换树脂?
答:首先要根据水源水质所含各种离子的量及在水中的分布规律来选择。在水中强酸根阴离子的含量较大时,应考虑先采用弱碱阴树脂来除去水中大部分强酸根阴离子,而使强碱性阴树脂充分发挥其除硅性能。此外,还应根据水处理交换器的床型的不同而选用不同品种的树脂。同时还要根据树脂的物理及化学性能等综合考虑来选出最适宜的离子交换树脂。
176、如何降低树脂粉碎率?
答:降低压差,降低流速,在保证出水水质的前提下,适当降低树脂层高度,缩短运行周期,延长大反洗周期等。
177、阴树脂为何易变质?如何防止其变质?
答:因为阴树脂的化学稳定性比阳树脂差一些,所以它对氧化剂和高温的抵抗力比阳树脂要差,所以为防止其变质,需将进水中的氧化剂提前除去。
178、离子交换树脂交换容量为什么会下降?
答:树脂交换能力的下降取决于物理性能崩解,化学交换基团的分解,高分子有机物和金属氧化物的污染,如水中的微生物,铁杂质的污染,以及细菌的生长等。这与树脂品种、处理液种类、交换基团、循环基数、有无前置处理、温度高低、及酸性物质的存在等多种因素有关。
179、在使用弱碱性阴树脂处理水时,为什么对水的PH值有一定限制?使用弱碱树脂有什么好处?
答:当采用弱碱树脂处理水时,一般只能在水的PH<9的情况下进行交换。当水的PH值过大时,由于水中OH-离子浓度大,它抑制了树脂的电离,使树脂不再具有可交换的性能。也就是说,水中其它离子无法取代OH-离子。
使用弱碱树脂的好处是:它极易再生,再生剂量不需过大。对于降低碱耗具有很大意义。另外弱碱树脂吸着有机物能力较强,而且可在再生时被洗出来。同时弱碱树脂还具有交换容量大,交换速度快,膨胀性小,机械强度高的优点。
180、如何清洗树脂层所截留下来的污物?
答:有空气擦洗和超声波清洗两种方法。
(1)空气擦洗:即在装有污染树脂的设备中,重复性地通入空气,然后进行正洗。每次通入空气时间为0.5—1分钟,正洗时间为1—2分钟,重复次数为6—30次,空气由底部进入,目的在于疏松树脂层,并使树脂上的污物脱落。正洗时,脱落下的污物随水流由底部排出。空气擦洗应与树脂再生交错进行。
(2)超声波清洗法:可以清除树脂颗粒表面的污物,清洗时污染树脂由设备顶部进入,经中间超声波场后,由底部离开设备。冲洗水由底部进入上部流出,分离出污物及树脂碎屑,随水流由顶部流出。
第九节:除盐
181、简述阴、阳离子交换器的除盐原理。
答: 阴、阳离子交换器一般都联合使用达到其除盐的目的,在阳离子交换器中,阳离子交换反应可表示如下:
Na+ Na
RH + Ca2+ R Ca + H+
Mg2+ Mg
Fe3+ Fe

反应结果是水中阳离子被吸着而交换出的H+ 与水中原有的阴离子HCO3- 、Cl—、SO42- 等形成对应的酸溶液,。
这种阳床出水进入阴床时发生如下反应:
CL— CL
ROH + SO42- R SO4 + OH—
HSiO3- HSiO3
HCO3- HCO3

这样,水中所含盐份其阴、阳离子分别被阴阳树脂交换吸收,从而达到减少水中含盐量的目的。为减少阴床负担,在阳床之后加脱碳器除去碳酸。
182、什么叫“两床三塔+混床”除盐系统?
答:两床系指单元式除盐系统中的阳床和阴床。由于阳床又可称阳塔,阴床称阴塔;所以阳床、阴床,除碳塔,组成了三塔。“两床三塔+混床”为常见的单元式除盐系统。
183、常用的除盐系统有几种形式?各具有什么优缺点?
答:常用的除盐系统有单元式和母管式两种系统。
单元式,即由阳床、除碳器、中间水箱、阴床、混床组成一个单元。
主要优点是:(1)水质容易控制,出水质量好,可靠性高。一般以阴床导电度作为失效标准,再生时适当增加阴床碱量,可保证不“跑硅”。
(2)再生时与其它系统完全隔绝,减少了向除盐水箱和其它系统漏酸、漏碱的危险。
(3)由于是单元操作,易于实现程控和自动化。
缺点:(1)水处理转动设备(泵和风机)的台数较多。
(2)由于阴、阳床失效点不一致,但必须同时再生,单耗(主要是碱耗)较高。
母管式:所有阳床出水汇集到一条母管,阴床出水汇集到一条母管。
优点:(1)各台阳、阴床可以单独进行操作,设备利用率高。
(2)转动设备少。
(3)酸碱单耗相对较低。
缺点:(1)不容易实现程控和自动化。
(2)再生时,向除盐水箱和系统漏酸、漏碱可能性比单元式大
(3)为严格控制水质,必须对阴床出水二氧化硅勤分析
184、混床设备内树脂组合有哪几种方式?其各自的工艺特点是什么?
答:混合床中阴阳树脂有以下几种组合方式:
(1)强酸、强碱式:这种组合方式出水质量最高,导电度小于0.2us/cm。硅酸根低于20ug/L.
(2)强酸、弱碱式:这种组合方式出水质量低,不能除去硅酸根、碳酸根等弱酸离子,出水导电度在0.5—2.0us/cm。但其再生效率高,运行费用低。
(3)弱酸、强碱式:这种组合方式出水质量居中,可除去硅酸根,出水导电度在1—2us/cm,再生效率也较高。此外,某些场合在阴阳树脂间加装一层惰性树脂,构成三层混床,可避免再生时再生液污染异性树脂。·
185、一般软化和除碱离子交换处理方式其系统设计有哪些?
(1)采用强酸性H离子交换剂的H—Na离子交换,此系统又可以分并列H—Na离子交换和串联H—Na离子交换。
(2)采用弱酸性H离子交换剂的H—Na离子交换。
(3)H型交换剂采用贫再生方式的H—Na离子交换。
采用上述方式主要是能除去水中的硬度,又可降低水的碱度,且不增加水中的含盐量。
186、什么叫一级除盐? 二级除盐?
答: 原水经过一次强酸阳离子交换器和强碱阴离子交换系统,称为一级除盐;如果经过两次,称为二级除盐;如果系统中有混床,混床本身算作一级。
187、 什么是叫移动床? 什么叫混合床? 什么叫浮动床?
答: 交换器中的树脂周期性地在交换塔,再生塔和清洗塔之间循环,并分别在各塔中同时完成离子的交换,再生和清洗过程,这种离子交换器称为移动床;混合床就是在一个离子交换器内按一定比例装有阴、阳离子两种树脂的离子交换设备;浮动床是指当水流自下而上经过离子交换器的树脂层时,如水流速度足够大,则整个树脂层向上浮动托起的离子交换设备。
188、什么叫离子交换器的自用水率?
答: 离子交换器每周期中反洗、再生、置换、清洗过程中耗用水量的总和,与其周期制水量的比称为自用水率。
189、混合床一般都设有上、中、下三个窥视窗,它们的作用是什么?
答:上部窥视窗一般用来观察反洗时树脂的膨胀情况;中部窥视窗用于观察设备中树脂的水平面,确定是否需要补充树脂;下部窥视窗用来检测树脂床准备再生前阴阳离子交换树脂的分层情况。
190、说明离子交换除盐再生原理?
答:交换器失效后,需要对树脂进行再生,实际上再生过程是除盐制水过程的的逆反应。
(1)阳树脂的再生。失效的阳树脂用3—5%的盐酸再生,用盐酸再生的反应如下:

Na+ Na
R Ca2+ + HCl RH + Ca CL
Mg2+ Mg
Fe3+ Fe
树脂大部转型为H型,而酸液变为含有残余酸的氯化物或硫酸盐(当用硫酸再生时)混合溶液被排入地沟。
(2)阴树脂的再生,失效的阴树脂用2—4%的NaOH溶液再生,其反应式为
CL Cl
R SO4 + NaOH ROH+Na SO4
HSiO3 HSiO3
HCO3 HCO3
反应结果,树脂大部转型为OH型,而碱液变为含有残余碱的钠盐混合液被排入地沟。
191、 什么叫逆流再生? 什么叫顺流再生?
答: 逆流再生是指制水时,水流方向和再生时再生液流动方向相反的再生方式。顺流再生是指制水时,水流的方向和再生液流动的方向一致。通常流向都是由上向下的再生方式。
192、逆流再生具有什么优点?为什么?
答:逆流再生的主要优点是出水质量好,再生酸碱耗低。这是由于逆流再生时,再生液从底部进入,首先接触的是尚未失效的树脂,这时由于再生液浓度较高,从树脂中交换下的被再生离子浓度很小,可以使树脂得到“深度再生”。再生液到上部时,虽然再生液浓度降低,杂质离子含量增高了,但由于树脂是深度失效的(饱和度高),所以仍然可以获得较好的再生效果,这样再生剂可以得到比较充分的利用。再生结果是,上部树脂再生得差一些,下部树脂再生得比较彻底。
在运行的情况下,水首先接触上部再生度较低的树脂,但此时由于水中杂质离子浓度含量大,所以可发生离子交换。当水进入底部时,虽然水中离子杂质也大为减少,但由于接触的是高再生度的树脂,仍可以进一步除去水中的杂质离子,使水得到深度净化。
193、为什么逆流再生对再生剂纯度要求较高?
答:从离子交换平衡理论可知,再生剂的纯度将会影响到树脂的再生度,从而影响到树脂的交换容量,逆流再生的特点是再生液首先接触出水区树脂,所以再生剂纯度对逆流再生影响较大,若出水区树脂再生度降低,将会直接影响出水水质。
194、逆流再生为什么要进行定期大反洗?
答:在进行逆流再生的设备中,为保证底层树脂始终维持较高的再生度,每次再生时不应将原树脂层打乱,只进行小反洗,既对中排装置上的压脂层进行反洗,而对于中排装置以下的绝大部分树脂不进行反洗。但为避免下部树脂被污染和清除其中的破碎树脂,以及防止因长期运行,树脂被压实结块、粘结等增加了阻力,影响出水流量,而使床内在运行时产“偏流”,或者影响再生效果。一般经15—20个周期需大反洗一次。由于大反洗后原有的树脂层分布遭到破坏,所以大反洗后应以2倍常量的酸、碱液进行再生。
195、顺流再生和逆流再生对再生液浓度的要求有什么不同?
答:一般说来,顺流再生时,再生液浓度应稍高一些,这是由于再生液首先与饱和度高的树脂接触,如果再生液浓度低,下部饱和度低的树脂无法得到充分再生,将会影响出水质量。
对逆流再生,再生液浓度可低一些。这是由于再生液首先与饱和度低的树脂接触,使底层树脂得到充分再生。随再生液向上移动,其浓度下降,但与其接触的是饱和度高的树脂,同样可以得到较好的再生。显然,再生液利用率也较高。
196、逆流再生固定床的中排装置有哪些类型?底部出水装置有哪些类型?
答:中排装置有:(1)母管支管式:母管与支管在同一平面及母管与支管不在同一平面 (2)管插式 (3)鱼刺式 (4)环管式。
底部出水装置有:(1)穹形多孔板加石英砂垫层(2)多孔板上加水帽或夹布形式(3)鱼刺形式(支管上开孔或装水帽)。
197、对逆流再生除盐设备中排管开孔面积有什么要求?
答:为使顶压空气和再生液不会在交换器内“堆积”,必须保证再生液及顶压空气从中排管顺利排出,方可保证再生时不发生树脂乱层。
一般说,中排管的开孔面积是进水面积的2.2—2.5倍,这也是白球压实逆流再生之所以不会乱层的重要保障。

② 离子交换分离法

磺酸型阳离子交换树脂在稀盐酸介质中,可吸附锆氧离子,经1~2mol/LHCl淋洗,仅钍和稀专土留在属交换柱上,钛则部分分离,其他多数元素均能分离。再用4mol/LHCl淋洗,即可使锆与钍和稀土分离。

此外,在盐酸-过氧化氢溶液中,锆(铪)均可吸附于阳离子交换柱上,再用柠檬酸或草酸淋洗可进行定量分离。

某些阴离子交换树脂在盐酸溶液中,能吸附锆、铪、铀和铈,钍不被吸附。在氢氟酸介质中,锆被吸附而与铝、铁分离。

③ 离子交换原理

离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于丙烯酸系弱酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:H+>Fe3+>A13+>Ca2+>Mg2+>K+>Na十。 离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。以D113型离子交换树脂制备硫酸钙晶须为例说明: D113丙烯酸系弱酸性阳离子交换树脂是一种大孔型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当硫酸锌溶液中的Zn2+,S042-扩散到树脂的孔道中时,由于该树脂对Zn2+选择性强于对Ca2+的选择性,,所以Zn2+就与树脂孔道中的交换基团Ca2+发生快速的交换反应,被交换下来的Ca2+遇到扩散进入孔道的S042-发生沉淀反应,生成硫酸钙沉淀。其过程大致为:
(1)边界水膜内的扩散 水中的Zn2+,S042-离子向树脂颗粒表面迁移,并扩散通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Zn2+,S042-离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点;
(3)离子交换 Zn2+与树脂基团上的可交换的Ca2+进行交换反应;
(4)交联网孔内的扩散 被交换下来的Ca2+在树脂内部交联网孔中向树脂表面扩散;部分交换下来的Ca2+在扩散过程中遇到由外部扩散进入孔径的S042-发生沉淀反应,生成CaS04沉淀;
(5)边界水膜内的扩散 没有发生沉淀反应的部分Ca2+扩散通过树脂颗粒表面的边界水膜层,并进入水溶液中。 此外,由于离子交换以及沉淀反应的速度很快,硫酸钙沉淀基本在树脂的孔道里生成,因此树脂的孔道就限制了沉淀的生长及形貌,对其具有一定的规整作用。通过调整搅拌速度、反应温度等外界条件,可以使树脂颗粒及其内部孔道发生相应的变化,这样当沉淀在树脂孔道中生成后,就得到了不同尺寸和形貌的硫酸钙沉淀。

④ 离子交换

钼(Ⅵ)与大量铁(Ⅲ)的0.5mol/LHCl溶液,通过阳离子交换树脂后,可用0.04mol/L硫氰酸铵溶液淋洗钼(Ⅵ版)。钼(Ⅵ)与铼权的氢氧化钠溶液通过阴离子交换树脂后,可用1mol/L草酸钾溶液淋洗钼(Ⅵ),再用7mol/LHCl淋洗铼。

⑤ 求教科书生物分离工程(生物工程下游技术) 中 分离科学作用 谢谢

现代分离科学理论框架的研究
耿信笃, 张养军
(西北大学 现代分离科学研究所ö 现代分离科学陕西省重点实验室, 陕西 西安 710069)
摘要: 分离科学是研究物质在分子水平上的空间分布和移动规律的一门科学。如果这一看法是正确
的话, 那么, 分离科学理论就应该有一个能将各种分离技术原理及支持这些原理的共同理论, 即分
离科学理论框架。既然分离科学是从分子在空间迁移和分布规律的全过程来设计的, 该理论必然要
涉及到溶质分子在流体中的空间迁移和分布, 就必须了解在体系中组分的宏观性质。即①分离过程
中的热力学; ②溶质的迁移和扩散, 因为目前绝大多数组分的分离是在界面(特别是液2固界面)上
完成的, 这就是③分离过程中发生在界面上的计量置换。然而要从微观上深入了解物质能够被分离
的实质便是④平衡分离的分子学基础及⑤疏水效应。在了解了物质的微观、宏观性质及迁移规律
后, 如何才能使分离进行得更好, 这便是⑥分离过程中的最优化和选择分离方法时必须对各种分离
方法的特点有所了解的, ⑦分离方法的简介和比较。上述七部分内容应当成为现代分离科学的理论
骨架。
关 键 词: 分离科学; 热力学; 溶质计量置换保留理论; 疏水效应; 分离方法; 最优化; 理论骨架
中图分类号:O 651 文献标识码:A 文章编号: 10002274Ò (2002) 0520433205
从几千年前我国的炼丹术、酿酒术发展到近一
个世纪以来, 出现了多种分离技术或分离方法。特别
是近年来, 由于精细化工、生命科学和材料科学等新
兴学科的发展, 加之计算机和现代分离手段的广泛
应用, 促使这些新的分离方法的理论日臻完善, 技术
水平不断提高。遗憾的是, 多年来, 这些分离方法各
自讨论其分离原理, 如色谱中就有分配、吸附、离子
交换、反相和疏水色谱等, 故有关分离理论方面的内
容均分散在一些分离方法和其他学科之中。虽然国
外也出版过几本有关“分离方法”的书, 但其只是以
各个“分离方法”为主体分别进行阐述, 对于“分离方
法”的基础理论及各个“分离方法”之间的联系却涉
及甚少。1973 年, B. L. Karger 等 3 人出版了“A n
In t roct ion to Separat ion Science”一书[ 1 ]
, 虽然讲
述分离科学的理论部分不超过全书 1ö 3 的篇幅, 然
而他们的贡献是首次提出了“分离科学”这个概念。
1991 年, 理论色谱学家 J. C. Giddings 写的“A
U n if ied Separat ion Science”一书, 用化学势场和流
这两个各种分离方法共有的参数为纽带, 将原来似
乎毫无关系的、分散在各种分离方法中的分离原理
统一在一起讨论, 并称其为统一的分离科学[ 2 ]
。随着
高技术产业的出现, 特别是生物工程和生物技术及
材料科学的发展, 迫切要求提供更先进、更优化的分
离方法。一些国家和地区, 如美国的加州早在7 年前
就成立了分离科学协会, 其年会规模逐渐扩大, 现已
发展成一个国际性的年会, 还有《专门分离科学》、
《分离科学》及《分离工程杂志》出版, 表明分离科学
作为一个独立的科学分支正在形成和发展。
既然分离科学是一个独立的科学分支, 就必然
有其支撑的理论, 有一个能支持各种分离方法, 至少
是绝大多数的现代分离技术原理的基本理论。1990
年, 笔者之一出版了《现代分离科学理论导引》一
书[ 3 ]
, 对此问题进行了探索, 又经过 10 年的探索和
实践, 对原书作了大幅度的修改, 并增加了新的内容
和章节。最近, 该书已经被教育部研究生办公室推荐
为研究生教学用书, 并由高等教育出版社出版[ 4 ]
。在
该书前言中首次提出了现代分离科学理论框架的论
点。然而, 分离科学作为科学的一个独立分支, 是一
个不断发展和壮大的学科, 理论也在不断发展丰富,
内容也愈来愈丰富。所以,“现代分离科学理论框
架”到底应该包括那些内容, 仍是一个值得进一步探
讨的学术问题。
无论是什么分离方法和多么新的分离工艺, 都
是在研究物质在分子水平上的空间分布和移动规
律, 以及如何更好地实现这一目标。如果这一看法正
确的话, 那么, 现代分离科学理论就应该是为解决这
一问题而所必须的理论基础。
1 分离过程中的热力学
分离过程必然伴随着一种或几种组分的定向移
动以达到分离和浓集的目的, 所以分离过程是一个
组分在空间的再分配过程, 这就存在着一个哪些组
分能够在空间被浓集和哪些组分不能够被浓集, 以
及能够在空间被浓集到什么程度这样两个问题。分
离过程中的热力学就是为了判断这一过程的方向,
确定它的限度以及研究如何运用热力学知识以促使
某个或某些组分向我们期望的方向移动, 实现最大
限度的分离和浓集等有关理论及计算问题。分离过
程中所遇到的某些热力学的基本要点, 则一定会涉
及到相间的分配平衡、在分离过程中作为分子移动
驱动力的外加场作用下的平衡、相平衡、分配平衡、
气2液平衡热力学及溶液模型等方面的理论, 以及如
何将热力学第一和第二定律应用到密闭和开放的体
系中和运用化学势概念来解决问题。化学势是分离
过程中各个组分分离的驱动力, 尽管绝大多数的分
离是在外加场存在下实现的, 但这些外加场都可以
换算成化学势并使其成为总化学势的一部分。活度
系数及标准态是描述该过程中两个很重要的概念,
在应用时容易出现差错, 所以必须引起重视。平衡概
念是描述分离过程应用最多的概念, 其中相平衡原
理被用来描述单组分、双组分及 3 组分相图以及如
何将这些相图应用于简单组分的分离。分配平衡主
要涉及气2固、液2固和气2液 3 种平衡, 常用吸附等
温线对其过程进行描述和表征。由于这3 种平衡不
涉及化学反应, 因此被称之为第一类化学平衡, 而涉
及到利用化学反应进行分离的叫作第二类化学平
衡, 这类平衡在分离过程中亦经常遇到。溶液行为模
型是在研究气2液分离过程中的理论时经常遇到的
问题, 该模型涉及到对气相和液相(理想溶液、真实
溶液和正规溶液)中的某些热力学参数(包括过剩热
力学参数在内)的处理。
2 分离过程中溶质在两相界面上的计
量置换
以往的分离方法中, 在涉及相分离时, 往往只涉
及溶质在两相间的分配系数和化学势差等概念, 而
很少涉及相界面过程和这些过程对分离所作出的贡
献。对于溶质在两相界面上行为的处理, 涉及到近年
来才提出的计量置换的概念[ 5 ]
。计量置换的提出, 实
质上是基于物理学中“能量守恒”和“一个空间不能
同时容纳两个物体”的两个基本原理, 这一概念对于
许多科技工作者来讲并不陌生。例如, 离子交换时,
在某一离子被交换剂吸留的同时, 交换剂上即会释
放出等当量的同电荷符号的另一离子。这就是计量
置换的一个广为人知的事例。随着科学技术的发展,
现已知道, 计量置换可发生在其他许多埸合。例如,
某组分在相间分离过程中, 从 Α相进入 Β相(或表面
或内部)时可能置换的是 Β相中的溶剂分子(如果 Β
相是液相的话)。研究这样的置换过程, 即研究组分
从一相进入另一相时, 在相界面上发生了什么过程,
其组分如何在界面上进行迁移, 而相应的能量又是
如何变化, 如何将计量置换用于组分分离的宏观和
微观变化, 对了解分离机理和提高分离效果是十分
重要的。因为组分可在液2固、液2液、气2液相间进行
分离, 特别是液2固和液2液相间分离用得最多。所
以, 深入了解组分在相界面上迁移时所产生的化学
势突跃及其伴随的计量置换过程必将对组分的分离
有益。液固相界面上的计量置换, 包括新概念的定
义、物理及化学理论基础、计量置换模型的建立及其
在物理化学、生物化学、基因工程和色谱分离中的应
用。它指出了分离过程中, 在相界面上发生的基本过
程——溶质与置换剂(在许多情况下是溶剂)分子间
的计量置换关系。这种关系建立在体系中溶质、置换
剂和吸附剂分子间的多种热力学平衡和计量置换这
一概念的基础上, 从建立理论模型到引用一些数据
对模型进行检验以及通过液2固体系中溶质的计量
置 换 吸 附 理 论, 从 理 论 上 推 导 出 朗 格 缪 尔
(L angm u ir)及弗仑德利希(F reundlich)公式并与之
进行比较, 表明该理论更具有指导意义。因为该理论
是在多个热力学平衡的基础上推导的, 具有坚实的
理论基础。另外, 该理论中的参数皆具有明确的物理
意义, 这些都对它的应用以及对一些现象的解释奠
定了基础。现在, 该理论已经用于对液2液分配等温线的预计和对液相色谱中的溶质保留机理和反相液
相色谱中溶质保留过程的热力学的研究。经检验该
理论, 还可用于除尺寸排阻色谱以外的各类色谱以
及沉淀表面吸附过程。其计量参数既可以用来研究
生物大分子的构象变化, 也可用于蛋白质折叠过程
中自由能的测定, 还可用于表征色谱中作用力的类
型和溶剂强度。由于从热力学角度对柱相比的定义
和准确测定, 使热力学的研究可以更深入地进行。有
关溶质计量置换理论的发展及其应用已有详尽的综
述[ 6 ]

3 溶质的迁移与扩散
溶质在空间的再分配一定涉及到溶质分子的迁
移, 即在外加埸或内部化学势作用下向预定的、趋向
于平衡的方向移动。与此同时, 分子又不可避免地要
随机运动, 而且总是由高浓度向四周的低浓度区扩
散, 使分离开的溶质趋向于混合, 所以扩散是分子的
随机运动, 没有确定方向。迁移是提高分离度和浓集
所必需的, 因而应设法增强, 而扩散则相反, 是阻碍
分离和浓缩的, 所以应设法使其减弱直至最小。为
此, 必须了解在不同介质和不同分离体系中组分迁
移和扩散的基本性质和运动规律, 特别是与分离体
系密切相关的定量关系应有所了解, 以便对选择分
离体系的最优化条件有所帮助。溶质的迁移与扩散
应包括分离过程中动力学方面的问题。将机械运动
与 1 mo l 分子迁移进行比较, 以经典的牛顿力学推
导出分子迁移规律——费克(F ick ) 第一和第二定
律。通过对费克第二定律求解, 可以得出在理想条件
下溶质带迁移过程中的迁移模式——高斯浓度分布
曲线。在此基础上便能理解在气体、电解质溶液、在
流和在填充柱中的迁移与扩散规律以及迁移方程的
物理意义, 并且还可描述分离速度、摩擦系数及分子
参数之间的关系[ 7, 8 ]
。这些都是描述带的形成与扩散
不可缺少的一个重要组成部分。另外, 高斯带、统计
矩、随机过程、理论板高以及在洗脱系统中的板高,
是加深理解对带的迁移和扩散不可缺少的概念, 也
可促进对分离方法的优化研究。而且, 可以不用“理
论塔板”概念, 完全从理论上推导出洗脱曲线的形状
及板高, 这些都有利于从理论高度对分离过程的模
拟和理解。了解带的扩展机理, 计算分离度——峰容
量, 对如何提高分离度也十分有用。除了理想状态
外, 非理想条件下的非高斯带和稳态带的特性及其
数学表达式, 也是组成分离科学理论的重要问题之
一。
4 平衡分离的分子学基础
在利用热力学方法及有关参数来处理和选择分
离的最佳条件时, 有时会遇到分离系统中的一些参
数, 如温度、压力、组成等不总是随时都可知道的。这
样, 就有必要对确定分配系数大小的基础——分子
间相互作用力[ 1 ]
进行深入地了解, 以便选择最佳分
离条件。在许多情况下, 这些分子间的相互作用力又
与它们的分子结构、环境条件等因素有关, 因此从分
子结构的观点阐明溶质在两相间的分配规律, 并从
分子间的相互作用力得出溶解度参数及扩展的溶解
度参数的概念[ 9 ]
、计算方法、从分子水平描述带扩展
机理(色谱动力学)以及它们在分离科学中的应用
等, 是这部分讨论的目的。平衡分离的分子学基础着
重从分子间相互作用力的分类、性质、作用力的大小
计算入手, 对这些作用力与分子结构间的关系以及
结构与分离性质之间的关系进行讨论, 这部分的内
容包括经典的赫尔德布兰德(H ildeb rand)的溶解度
参数概念、计算方法以及扩展的溶解度参数理论。这
样, 就可以给出色散溶解度参数、诱导偶极和定向溶
解度参数和氢键溶解度参数的表达式及实验测定方
法。将这些参数用于描述液相色谱溶质保留行为, 形
成了扩展溶解度参数理论, 依次可以解释各类色谱
的实质性问题。另外, 马丁方程的分子学基础及熔化
熵、弗劳瑞—休金斯(F lo ry2 Huggin s)方程[ 10, 11 ]
及分
配系数对温度的依赖关系的讨论, 以及平衡分离的
分子学的其他概念, 能使分离过程中出现的许多现
象与分子间的作用力及分子结构相互联系起来, 并
能运用这方面的知识设计最优化分离方案, 以期得
到最佳的分离效果。
5 疏水效应
凡是涉及到有水溶液相存在的分离, 如液2固、
液2液分离都涉及到水溶液。为了研究在此条件下分
离过程的本质, 特别是研究生物大分子的分离过程,
必须了解“疏水效应” (hydrophob ic effect) , 或“疏水
相互作用” (hydrophob ic in teract ion, 简写为H I)等
概念。那么, 什么是“疏水效应” ? 什么是“疏水相互
作用”呢? 迄今还无公认的定义。顾名思义, 这是与
水溶液有关的一种特殊现象。人的生命离不开水, 人
体的生化过程几乎全是在体液(水溶液)中进行的。这些生化过程包括生物大分子的构象变化、蛋白折
叠、 酶与底物的结合、几条支链结合形成多支链的
酶、生物大分子高度凝聚形成的生物膜等, 而这些过
程的发生主要是在疏水相互作用力驱动下进行的。
因为分离科学不仅要从宏观上研究溶质间相互分离
的程度(即纯度)及回收率, 而且要考虑到分离过程
中分子构象是否发生了变化(即微观变化)和引起宏
观及微观变化的原因, 所以这不仅涉及到具有生物
活性的生物大分子的分离和纯化, 而且涉及到小分
子的分离机理。疏水相互作用力, 简称疏水力, 它不
是讨论分子间的相互作用力, 主要是讨论吸附力, 是
讨论溶剂对溶质的作用。确切地说, 是溶剂分子对溶
质分子产生的推力, 与分离过程中的分子平衡研究
对象相同, 属微观过程, 但这种微观过程的变化又会
引起宏观热力学量的改变。
从以上所述可知, 疏水相互作用是与范德华力
有关但又不完全相同的一种作用力。基于这一概念,
在现代科技及现代分离科学中十分重要但又不很成
熟的这一特点, 应着重掌握疏水相互作用的基本概
念、基本方程及稀溶液中的疏水相互作用, 并通过标
准迁移自由能及复杂相间溶质迁移的标准化学势计
算, 理解标准迁移化学势的计算方法。还应了解有关
疏水相互作用的一些名词的含意、了解疏水相互作
用大小、对式疏水相互作用、完全成对的相关函数、
溶剂对疏水相互作用自由能的影响和二聚平衡等简
单过程中的热力学函数的测定和计算。多质点间的
疏水相互作用是建立在对式疏水相互作用基础之上
的, 质点数为m 时, 疏水相互作用的近似测量方法
是为了解从简单溶质到蛋白质的疏水相互作用这一
桥梁作用的理解。另外, 还需了解微胞水溶液中的疏
水相互作用及人工合成和生物聚合物中的疏水相互
作用以及疏水相互作用对温度和压力的依赖性, 这
对于了解蛋白质分离过程中分子构象变化及失活的
本质的研究十分重要。疏水相互作用对温度和压力
的依赖关系和实验及测量方法奠定了该理论的基
础, 同时亦能提高对文献中的错误概念、数据可靠性
的判断能力。
6 对分离方法的科学分类
以上是从热力学、动力学以及分子学的基础上
对分离科学的理论框架进行论述的, 其最终目的是
要对分离过程进行优化, 对分离方法进行有效的选
择, 这就涉及到分离科学中的分类和优化问题。分类
学是一门独立的科学, 从研究化学元素周期表对发
现新的化学元素就是一个很好的例证, 表明了分类
学对科学的贡献。分离方法曾有过多种分类。但是,
以Giddings
[ 2 ]
提出的以化学势和流两个因素进行分
类最为科学。通过比较各类分离方法的相似点及不
同点, 探索出各种分离方法之间的内在联系并寻找
出分离科学中普遍存在的规律, 从而将多年来分散
在各个学科和技术领域中的, 表面上看来似乎毫无
联系的各类分离方法, 以这种化学势和流两个因素
将其联系起来进行讨论和比较, 为创立新的分离方
法和分离科学(最优化中选择分离方法)奠定了基
础。了解各种分离方法的内在联系和描述这种内在
联系的数学表达式, 深刻理解在外加场存在下的无
流(静态)分离法——电泳和沉降的特性, 稳态流中
的二相分离——萃取和有关方法, 流的辅助分离作
用即平行流分离——淘析、超滤、区带熔融和有关方
法以及垂直流分离——场级分流、色谱和有关方法。
7 分离科学中的优化
分离科学中的最优化就是如何在最短的时间
内, 用最低的消耗以获得最佳的分离效果, 获得一个
能表征各类分离方法的统一的优化模型, 这是一个
迄今尚未解决的问题。它涉及到一个分离体系的优
化目标, 又涉及到多方面的局部优化, 如分离方法的
选择、实验方法的建立、实验方案中每一单元操作的
优化, 以及各个单元操作之间的最佳组合, 如此等
等。一般说来, 用于分析测试及工业制备对分离最优
化的要求是不完全相同的, 前者因消耗很少, 多以在
追求最佳分离效果的前提下, 以尽可能地缩短分离
时间为主, 辅之以低消耗; 而工业生产上的优化则是
追求最大经济效益——获取最高利润为惟一目的,
故对于后者, 一切分离方法及选择分离工艺的优化
均以此为基础。例如删除一步分离就能达到质量要
求的简单工艺, 但因成本高工业生产上就不会采纳,
而会采纳成本很低的, 那怕是多 2~ 3 步的分离方
案。上述事例说明, 既便是局限于分离这一狭窄领域
中的每一个细节, 也难用一个通用的模型来描述其
最优化。分离科学中的最优化是通过对单元分离共
用的、最关键的参数进行优化, 辅之以工业上的整体
优化。无论哪一种分离方法, 从原则上讲: ①通过增
大外加场; ②减小分离过程中欲分离物质熵的增大;
③加大难分离物质对之间化学势的差异这 3 个最重
要的因素, 以及通过对这 3 个方面进行协同作用使分离过程达到最优化, 才是达到提高分离效率, 降低
生产成本的至关重要的优化因素。
综上所述, 分离科学是一门内容极其丰富的学
科, 对于工农业生产和基础科学研究十分重要。随着
高技术产业的出现, 特别是生物工程和新材料科学
的发展, 必将对分离科学提出更高的要求和新的挑
战, 也必然会推动分离科学迅猛发展, 为人类的健康
和幸福作出更大的贡献。

⑥ 离子交换分离法包括哪几个过程

【1】树脂的选择与处理;
【2】装柱过程;
【3】交换过程;
【4】洗脱过程;

⑦ 离子交换与吸附树脂_何炳林 黄文强.pdf

我好像在豆丁网上见过,你可以去试试

⑧ 离子交换分离

将含来铍的9mol/L盐酸溶液通过强碱性自阴离子交换树脂时,可以有效地分离铜、钴、镍、镉、铬、铁、锰、锆和铀离子。铍和铝离子则保留于溶液中。

将pH3.5并含有EDTA和过氧化氢的溶液通过强酸性阳离子交换树脂(钠型),此时铍不形成稳定的EDTA配合物,而被吸附;铝及铁的EDTA配合物和钛与过氧化氢及EDTA的配合物都不被吸收,而与铍分离,被吸附的铍再用3mol/L盐酸淋洗。

⑨ 离子交换分离法的原理是什么

离子交换是用一种称为离子交换树脂的物质来进行的。离子交换树脂遇水专溶液时,能属够从水溶液中吸着某种(类)离子,而把本身所具有的另外一种相同电荷符号的离子等摩尔量地交换到溶液中去,这种现象称为离子交换。
希望有用

阅读全文

与离子交换分离工程pdf相关的资料

热点内容
福克斯车内净化器怎么开 浏览:117
净水机光制水不冲水是什么原因 浏览:506
水垢醋酸碱中和反应 浏览:281
什么是反渗透后的校正流量 浏览:463
污水管线先安管后浇筑检查井 浏览:431
pvc树脂和pvc糊树脂的区别 浏览:591
罐体式污水处理零件更换周期 浏览:862
速腾净水器不上水是什么原因啊 浏览:681
mc全世界都是核废水该怎么生存 浏览:876
老式沁园饮水机多少钱 浏览:907
利尊潜水污水泵价格 浏览:260
东风m3的空气滤芯在哪里 浏览:66
饮水机里出来的絮状东西是什么 浏览:29
杭州污水池环氧防腐漆价格 浏览:732
如何提升路由器上传速度 浏览:117
超滤净水设备厂商代理 浏览:827
edi按功能分为有哪几种 浏览:634
惠普康反渗透纯水机 浏览:226
空气滤芯是滤什么的 浏览:124
长按出水的饮水机怎么按 浏览:872