导航:首页 > 净水问答 > 离子交换吸附作用名词解释

离子交换吸附作用名词解释

发布时间:2021-03-21 02:58:59

1. 吸附法和离子交换

以各类阴、阳离子交换树脂为固定相的离子交换法,以萃淋树脂为固定专相的萃淋法,以螯合树属脂、螯合纤维、活性炭、聚氨酯泡沫塑料、巯基棉及黄原脂棉等固定相的螯合-吸附法以广泛用于贵金属的分离与富集。

在HCl介质中,贵金属氯配阴离子与阴离子交换树脂相互作用的强度决定于配阴离子的电荷数,其中双电荷的[PtCl42-、[PdCl42-、[PtCl62-、[IrCl62-、[RuCl62-、[OsCl62-牢固地吸附于树脂上,而三电荷的[IrCl63-、[RhCl63-、[RuCl63-仅有很弱的亲和力。铑、钌的配合物。由于其配合物在溶液中电荷的可变性,因此它们的吸附强度也随其电荷数而变化。在实际应用中应考虑这一特性。

2. 离子交换法 的名词解释

离子交换抄法是通过离子交换剂上袭的离子与水中离子交换以去除水中阴离子的方法。
离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。

3. 离子交换器的名词解释

离子交换器主抄要用于纯水和高纯水的制备,在医药、化工、电子、涂装、饮料及中高压锅炉给水等诸多工领域中已有十分广泛的应用。用于锅炉、热电站、化工、轻工、纺织、医药、生物、电子、原子能及纯水处理的前道处理,工业生产所需进行硬水软化去离子水制备的场合,还可用于食品药物的脱色提纯,贵重金属、化工原料的回收,电镀废水的处理等。

4. 请问离子交换的作用是什么啊

您问的太笼统了啊。
(1)按骨架材料分类
按合成离子交换树脂骨架材料的不同,离子交换树脂可分为苯乙烯系、丙烯酸系、酚醛系、环氧系等。
(2)按交换基团的性质分类
根据交换基团的性质不同,离子交换树脂可分为两大类:凡与溶液中阳离子进行交换反应的树脂,称为阳离子交换树脂,阳离子交换树脂可电离的反离子是氢离子及金属离子;凡与溶液中的阴离子进行交换反应的树脂,称为阴离子交换树脂,阴离子交换树脂可电离的反离子是氢氧根离子和酸根离子。
离子交换树脂同低分子酸碱一样,根据它们的电离度不同又可将阳离子交换树脂分为强酸性阳树脂和弱酸性阳树脂;可将阴离子交换树脂分为强碱性阴树脂和弱碱性阴树脂。表1中归纳了离子交换树脂的类别。
表1 离子交换树脂的类别
树脂名称
交换基团
酸碱性
化学式
名称
阳离子交换树脂
—SO3-H+
磺酸基
强酸性
—COO-H+
羧酸基
弱酸性
阴离子交换树脂
—N+OH-
季铵基
强碱性
—NH+OH-
—NH2+OH-
—NH3+OH-
叔胺基
仲胺基
伯胺基
弱碱性

此外,还可以根据交换基团中反离子的不同,将离子交换树脂冠以相应的名称,例如:氢型阳树脂、钠型阳树脂、氢氧型阴树脂、氯型阴树脂等。离子交换树脂由钠型转变为氢型或由氯型转变为氢氧型称为树脂的转型。
(3)按离子交换树脂的微孔型态分类
由于制造工艺的不同,离子交换树脂内部形成不同的孔型结构。常见的产品有凝胶型树脂和大孔型树脂。
a)凝胶型树脂。这种树脂是均相高分子凝胶结构,所以统称凝胶型离子交换树脂。在它所形成的球体内部,由单体聚合成的链状大分子在交联剂的链接下,组成了空间结构。这种结构像排布错乱的蜂巢,存在着纵横交错的“巷道”,离子交换基团就分布在巷道的各个部位。由巷道所构成的空隙,并非我们想象的毛细孔,而是化学结构中的空隙,所以称为化学孔或凝胶孔。其孔径的大小与树脂的交联度和膨胀程度有关,交联度越大,孔径就越小。当树脂处于水合状态时,水分子链舒伸,链间距离增大,凝胶孔就扩大;树脂干燥失水时,凝胶孔就缩小。反离子的性质、溶液的浓度及pH值的变化都会引起凝胶孔径的改变。
凝胶孔的特点是孔径极小,平均孔径约1~2nm,而且大小不一,形状不规则。它只能通过直径很小的离子,直径较大的分子通过时,则容易堵塞孔道而影响树脂的交换能力。凝胶型树脂的缺点是抗氧化性和机械强度较差,特别是阴树脂易受有机物的污染。
b)大孔型树脂。这种树脂在制造过程中,由于加入了致孔剂,因而形成大量的毛细孔道,所以称为大孔树脂。在大孔树脂的球体中,高分子的凝胶骨架被毛细孔道分割成非均相凝胶结构,它同时存在着凝胶孔和毛细孔。其中毛细孔的体积一般为0.5mL(孔)/g(树脂)左右,孔径在20~200nm以上,比表面积从几m2/g到几百m2/g。由于这样的结构,大孔型树脂可以使直径较大的分子通行无阻,所以用它去除水中高分子有机物具有良好的效果。
大孔型树脂由于孔隙占据一定的空间,骨架的实体部分就相对减少,离子交换基团含量也相应减少,所以交换能力比凝胶型树脂低。大孔型树脂的吸附能力强,与交换的离子结合较牢固,不容易充分恢复其交换能力。但大孔树脂的抗氧化性能比较好,因为它的交联度较大,大分子不易降解。再者,大孔树脂具有较好的抗有机物污染性能,因为被树脂截留的有机物,易于在再生操作中,从树脂的孔眼中清除出去。
离子交换原理
应用离子交换树脂进行水处理时,离子交换树脂可以将其本身所具有的某种离子和水中同符号电荷的离子相互交换而达到净化水的目的。
如H型阳离子交换树脂遇到含有Ca2+、Na+的水时,发生如下反应:
2RH + Ca2+ R2Ca + 2H+
RH + Na+ RNa + H+
当OH型阴离子交换树脂遇到含有Cl-、SO42-的水时,其反应为:
ROH + Cl- RCl + OH-
2ROH + SO42- R2SO4 +2OH-
反应的结果是水中的杂质离子(Ca2+、Na+、Cl-、SO42-等)分别被吸着在树脂上,树脂由H型和OH型变为Ca型、Na型和Cl型SO4型,而树脂上的H+、OH-则进入水中,相互结合成为水,从而除去水中的杂质离子,制得纯水。
H+ + OH- H2O
离子交换树脂的离子与水中的离子之间所以能进行交换,是在于离子交换树脂有可交换的活动离子。而且因为离子交换树脂是多孔的,即在树脂颗粒中存在着许多水能渗入其内的微小网孔,这样使树脂和水有很大的接触面,不仅能在树脂颗粒的外表面进行交换,而且在与水接触的网孔内也可以进行这一交换。
如前所述,合成的离子交换树脂是一种带有交联剂的高分子化合物,有许多水能渗入的网孔,交换剂的内部是一个立体的网状结构作为骨架,这些网组成了无数的四通八达的孔隙,孔隙里面充满了水。在孔隙的一定部位上有一个可以自由活动的交换离子。当离子交换树脂和水溶液接触时,水溶液即通过这些网状结构的孔渗入其内,离子交换树脂进行离解,结果是一定数量的离子(H型离子交换树脂为氢离子,OH型离子交换树脂为氢氧根离子)进入围绕离子交换树脂颗粒四周的水溶液中,形成离子雾。
离子交换树脂与水溶液中离子的交换过程,实际上就是离子雾中的离子与水溶液中的离子的相互交换过程,其机理可以用双电层理论进行解释。
这种理论是将离子交换树脂看作具有胶体型结构的物质,即在离子交换树脂的高分子表面上有和胶体表面相似的双电层。也就是说,在离子交换树脂的高分子表面有两层离子,紧挨着高分子表面的一层离子(如强酸性阳树脂中的—SO3-),称为内层离子,在其外面的是一层符号相反的离子层(如强酸性阳树脂中的H+)。和内层离子符号相同的离子称为同离子,符号相反的称为反离子。
根据胶体结构的概念,双电层中的离子按其活动性的大小,可划分为吸附层和扩散层。那些活动性较差,紧紧地被吸附在高分子表面的离子层,称为吸附层,它包括内层离子和部分反离子;在吸附层外侧,那些活动性较大,向溶液中逐渐扩散的离子,称为扩散层。
内层离子依靠化学键结合在高分子的骨架上,吸附层中的反离子依靠异电荷的吸引力被固定着。而在扩散层中的反离子,由于受到异电荷的吸引力较小,热运动比较显著,所以这些反离子有向水溶液中渐渐扩散的现象。
当离子交换树脂遇到含有电解质的水溶液时,电解质对其双电层有以下的作用:
(1)交换作用
扩散层中的离子与胶核距离大,受胶核电荷吸引力小,在溶液中活动较自由,离子交换作用主要是由扩散层中的反离子和溶液中其它离子互换位置所致。
在H型阳离子交换树脂与溶液中Na+的交换中,树脂内部网孔间的水中有很多从树脂上离解下来的H+,形成了很大的H+浓度,但在流动的水中H+浓度却很小;相反在流动的水中,Na+浓度很大,而树脂内部网孔水溶液中原来没有Na+。浓度大的地方的离子要向浓度小的地方运动,这就是扩散。所以水溶液中的Na+要扩散到树脂颗粒内部去,而H+要从树脂颗粒内部扩散到水溶液中去。这就是离子交换的过程。
上述的交换过程并不局限于扩散层。溶液中也有一些反离子先交换至扩散层,然后再与吸附层中的反离子互换位置;吸附层中的反离子,也会先与扩散层的反离子互换位置后,再完成上述的交换过程。
(2)压缩作用
当水溶液中盐类浓度增大时,可以使扩散层受到压缩,从而使原来处于扩散层中的部分反离子变成吸附层中的反离子,以及使扩散层的活动范围变小。这使扩散层中的反离子活性减弱,不利于进行离子交换。这也可以说明为什么当再生溶液的浓度太大时,不仅不能提高再生效果,有时反使效果降低。
上述将离子交换树脂看作具有胶体型结构的物质,用扩散理论对其交换过程进行解释,适合与水处理工艺的离子交换过程。但关于离子交换过程的机理,有多种说法,现尚还不能统一。

5. 离子交换名词解释

离子交换是溶液中的离子与某种离子交换剂上的离子进行交换的作用或现象,是借助于固体离子交换剂中的离子与稀溶液中的离子进行交换,以达到提取或去除溶液中某些离子的目的,是一种属于传质分离过程的单元操作。

6. 阳离子交换作用

岩石颗粒的表面往往带负电荷,因此能吸附某些阳离子。当某种成分的地下水与岩石颗粒接触时,水中某些阳离子被岩石颗粒表面吸附,以代替原来被吸附的阳离子,而原来被吸附的阳离子则进入水中,改变了地下水的化学成分,这种作用称为阳离子交换吸附作用。

阳离子交换的强度取决于很多因素,其中主要的是岩石的粒度、交换阳离子的性质、介质的pH值和水中电解质的浓度。

1.粒度

一般岩石的粒度越细,它的交换性能越强。因此,在黏土和黏土岩中,阳离子交换对水化学成分的影响明显。

2.离子性质

不同阳离子的吸附能不同,在其他条件相同的情况下,吸附能的大小取决于它们的离子价,离子价越高吸附能越强,并易留在岩石上。如果阳离子的电价相同,吸附能随原子量的增加而增大。部分离子吸附能强弱的顺序如下:

H+>Fe3+>Al3+>Ba2+>Ca2+>Mg2+>K+>Na+

由上可见,Ca2+的吸附能大于Na+,因此在自然界中常可见到地下水中的Ca2+交换吸附岩石颗粒表面的Na+

水文地球化学基础

阳离子交换吸附作用在含水层中广泛地进行,并且对改变地下水的化学成分及地下水的性质有重大意义。这种作用使硬度大的地下水变为硬度小的软水,形成低矿化度的钠水,如SO4—Na型、HCO3—Na型以及一些其他过渡型水。

3.pH值

在阳离子交换反应中,氢离子有着特殊的作用。它的交换能量不仅高于一价的阳离子,还高于二价和三价的阳离子。介质的pH值影响阳离子的吸附数量,水中的氢离子越多,对其他阳离子进入胶状综合体的阻力越强。增加与土壤处于平衡状态的溶液pH值,土壤的交换性能增强。当介质的pH值由6增加到11时,交换容量增加1~2倍。

4.电解质浓度

离子交换吸附作用并不仅决定于离子的性质,在吸附交换过程中,水中电解质浓度也起着重要作用,浓度大的离子比浓度小的离子易被吸附。因此,如果钠的浓度相当大时,吸附综合体中的部分钙离子将被钠离子排挤出去,水中的Na+与岩石颗粒表面的Ca2+就发生交换吸附的现象,例如海水入侵过程中的Na+与Ca2+的交换吸附。

水文地球化学基础

天然水中的交换主要是阳离子交换,而不是阴离子交换。这是由于岩石和土壤的胶体成分主要是由SiO2、Al2O3和其他带负电的胶粒所组成,它们吸附带正电的阳离子。除阳离子吸附外,在某些情况下也能发生阴离子吸附作用(例如砖红壤),但是对这种过程研究很少。

7. 交换吸附的作用原理

简单的说句是阴阳离子的结合,因此植物吸收矿物质元素都是以离子的形式吸收:
阴————阳

8. 什么是土壤离子吸附与交换作用

植物在生活状态下抄,根细胞呼吸作用释放大量二氧化碳,这些二氧化碳溶于土壤溶液生成的碳酸,可以离解成氢离子和碳酸氢根离子,并吸附在根细胞的表面.在土壤溶液中也含有一些阳离子和阴离子.根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附.离子交换后,盐类离子吸附在根细胞的表面,为根系进一步吸收离子做了准备.而根系附近土壤溶液中的阳离子和阴离子,又会从较远处得到进一步的补充.交换吸附不需要消耗代谢能量,与温度无关,发生的速度也很快.是属于非代谢性的.农业生产上及时中耕,防止土壤板结,其作用之一就是促进根系的呼吸,以大量产生可供交换的氢离子和碳酸氢根离子.
离子交换
借助于固体离子交换剂中的离子与稀溶液中的离子进行交换,以达到提取或去除溶液中某些离子的目的,是一种属于传质分离过程的单元操作.离子交换是可逆的等当量交换反应.

9. 什么是表面吸附作用,离子交换吸附作用和专属吸附作用

表面吸附作用来指的是在固体源表面有吸附水中溶解及胶体物质的能力,比表面积很大的活性炭等具有很高的吸附能力,可用作吸附剂。吸附可分为物理吸附和化学吸附。如果吸附剂与被吸附物质之间是通过分子间引力(即范德华力)而产生吸附,称为物理吸附;如果吸附剂与被吸附物质之间产生化学作用,生成化学键引起吸附,称为化学吸附。离子交换实际上也是一种吸附。物理吸附和化学吸附并非不相容的,而且随着条件的变化可以相伴发生,但在一个系统中,可能某一种吸附是主要的。

10. 吸附-解吸作用

吸附-解吸是水-岩(土)系统调节氟浓度的一种重要作用。除了由母岩和风化壳转移而进入土壤的氟化物大部分作为土壤的原生矿物而存在外,土壤中其余的氟多以胶体吸附态的离子(简单阴离子或复杂配离子)和分子(主要是氟化物)形式存在于土壤。

关于吸附解吸的机理相当复杂,基本包括机械吸附、物理化学吸附和生物吸附。土壤是多孔体系,有大孔隙,也有小孔隙,孔隙的状况极其复杂,如大小孔隙相互连接,孔径弯曲多种多样,因而可以对进入其中的氟化物起机械阻留作用。机械吸附对可溶性的分子和离子,如水溶性养分等不起保存作用。物理化学吸附是发生在土壤溶液和土壤胶体界面上的一种物理化学反应,土壤胶体借助于极大的表面积和电性,把土壤溶液中的离子吸附在胶体的表面上而保存下来。

在氟迁移和转化过程中,由于氟与一些金属离子的配合作用以及含氟矿物或氟化物沉淀和溶解作用,使土壤中一些束缚态的氟以氟阴离子或氟配合物的形式游离于水-岩(土)系统,而水-岩(土)系统是一个非常复杂的多相复合系统,土壤中存在大量的黏土矿物和沉淀的氢氧化铁、无定形硅酸以及有机物和腐殖质,它们在水-岩(土)系统中会发生不同程度的电离,而使它们带电,根据吸附作用的本质,游离于土壤溶液中的氟阴离子或氟配合物在它们随淋滤液迁移时会与水-岩(土)系统中的黏土矿物和沉淀的氢氧化铁、无定形硅酸、有机物以及腐殖质等发生不同程度的物理、化学或物理化学吸附作用。

土壤中黏土矿物和沉淀的氢氧化铁、无定形硅酸以及有机物等是F-主要吸附剂。在岩土中,由于氟离子和羟基离子的大小相近,电性相同,所以氟可以和金属氧化物中与金属离子配位的羟基、水合基以及腐殖质含有的—COOH和—OH等官能团发生离子交换,把这种作用过程称为离子交换吸附,并且这种反应过程是可逆的,其反应式如下:

河南省地下水中氟的分布及形成机理研究

以氧化铁为例,其交换方式可用下式表示。

(1)与配位羟基交换:

河南省地下水中氟的分布及形成机理研究

(2)与配位水合基交换:

河南省地下水中氟的分布及形成机理研究

土壤腐殖质也是土壤中氟的重要吸附剂。土壤腐殖质主要是由在分子的三维方向上带有很多活性基团的芳烃所组成,故具有较强的吸附表面。土壤腐殖质与氟的吸附,主要通过与腐殖质中的—COOH和—OH等功能团的离子交换反应进行。反应式如下:

河南省地下水中氟的分布及形成机理研究

研究表明,被吸附离子半径越接近OH-的离子半径(r=1.32~1.40×10-10m),其交换吸附能力愈大。由于氟的离子半径与OH-非常接近,所以土壤对F-交换吸附能力与其他一些阴离子相比,确实要大得多。下面是土壤中阴离子吸附能力大小的排列顺序:

河南省地下水中氟的分布及形成机理研究

除沉淀等因素的影响,一般来说,岩土中氟与相应阴离子或水分子的交换能力与岩土中羟基等可交换离子的物质的量有关,而岩土中的羟基等可交换离子的物质的量又与迁移液的pH、岩土本身的酸碱性、岩土中铁铝氧化物胶体、腐殖质以及氟的阳离子配合物的物质的量密切相关,所以,单位质量的岩土颗粒所含的羟基越多,对氟的吸附量就越大;岩土中腐殖质越多,岩土的pH越大,对氟的吸附量也愈大。

从以上分析可以看出,溶液中F-取代了土壤胶体上的OH-,由于土壤溶液中增加了OH-,势必导致土壤pH值的增高,从而使土壤向碱性反应发展。有研究表明,土壤氟的数量即氟离子吸附量随OH-的释放而明显增加。不过,土壤溶液中OH-的增加量与土壤胶体上F的吸附量之间并不存在简单的数量关系,这可能是因为土壤中形成一定量的酸碱使土壤具有较大的缓冲能力。

在土壤中,被胶体静电吸附的阳离子,一般都可以被溶液中另一种阳离子交换而从胶体表面解吸。对这种能相互交换的阳离子称为交换性阳离子,把发生在土壤胶体表面的交换反应称为阳离子交换作用。而土壤对于金属-氟配合物的吸附就是通过这一作用来实现的。通常高价阳离子的交换能力大于低价阳离子,就同价离子而言,水化半径较小的阳离子的交换能力较强。土壤中常见的几种交换性阳离子的交换能力顺序如下:

Fe3+、Al3+>H+>Ca2+>Mg2+>K+>Na+

衡量土壤阳离子交换能力的指标为阳离子交换容量(CEC),它指土壤所能吸附和交换的阳离子的容量。它与土壤胶体的比表面积和表面电荷有关。按照土壤的交换能力,一般将土壤划分为三个等级:一般认为阳离子交换容量为20cmol/kg以上的为交换能力强的土壤;20~10cmol/kg为交换能力中等的土壤;小于10cmol/kg的为交换能力弱的土壤。对周口开封地区取样坑的土壤测定其阳离子交换容量,结果见表7-3。

表7-3中显示,本区域土壤的阳离子交换容量均在20cmol/kg以上,属于交换性比较强的土壤,为吸附金属-氟配合物提供了有利条件。

总之,土壤吸附性氟包括对氟阴离子(F-)和金属-氟配合物阳离子(如 AlF2+

、FeF2+

、CoF2+

等)的吸附。其中,对F-吸附主要是通过与黏土矿物和土壤腐殖质上OH-的交换实现吸附,对金属-氟配合物阳离子的吸附则主要通过与黏土矿物或土壤腐殖质上的阳离子交换实现吸附。在红壤和黄壤等酸性、富铁铝土壤上吸附态氟主要是氟配合离子,而在石灰性土壤和盐碱土上的吸附态氟主要是F。

表7-3 周口开封地区取样坑阳离子交换量统计表

阅读全文

与离子交换吸附作用名词解释相关的资料

热点内容
液相用溶剂过滤器 浏览:674
纳滤水导电率 浏览:128
反渗透每小时2吨 浏览:162
做一个纯净水工厂需要多少钱 浏览:381
最终幻想4回忆技能有什么用 浏览:487
污水提升器采通 浏览:397
反渗透和不发渗透净水器有什么区别 浏览:757
提升泵的扬程 浏览:294
泽德提升泵合肥经销商 浏览:929
饮水机后盖漏水了怎么办 浏览:953
小型电动提升器 浏览:246
半透膜和细胞膜区别 浏览:187
废水拖把池 浏览:859
十四五期间城镇污水处理如何提质增效 浏览:915
怎么测试空气净化器的好坏 浏览:519
提升泵是干嘛的 浏览:744
布油做蒸馏起沫咋办 浏览:252
广州工业油烟净化器一般多少钱 浏览:204
喜哆哆空气净化器效果怎么样 浏览:424
油烟净化器油盒在什么位置 浏览:582