① 高中化学必修二、有机化学 知识点总结
化学:高中有机化学知识点总结
1.需水浴加热的反应有:
(1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解
(5)、酚醛树脂的制取(6)固体溶解度的测定
凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行。
2.需用温度计的实验有:
(1)、实验室制乙烯(170℃) (2)、蒸馏 (3)、固体溶解度的测定
(4)、乙酸乙酯的水解(70-80℃) (5)、中和热的测定
(6)制硝基苯(50-60℃)
〔说明〕:(1)凡需要准确控制温度者均需用温度计。(2)注意温度计水银球的位置。
3.能与Na反应的有机物有: 醇、酚、羧酸等——凡含羟基的化合物。
4.能发生银镜反应的物质有:
醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖——凡含醛基的物质。
5.能使高锰酸钾酸性溶液褪色的物质有:
(1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物
(2)含有羟基的化合物如醇和酚类物质
(3)含有醛基的化合物
(4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2等)
6.能使溴水褪色的物质有:
(1)含有碳碳双键和碳碳叁键的烃和烃的衍生物(加成)
(2)苯酚等酚类物质(取代)
(3)含醛基物质(氧化)
(4)碱性物质(如NaOH、Na2CO3)(氧化还原――歧化反应)
(5)较强的无机还原剂(如SO2、KI、FeSO4等)(氧化)
(6)有机溶剂(如苯和苯的同系物、四氯甲烷、汽油、已烷等,属于萃取,使水层褪色而有机层呈橙红色。)
7.密度比水大的液体有机物有:溴乙烷、溴苯、硝基苯、四氯化碳等。
8、密度比水小的液体有机物有:烃、大多数酯、一氯烷烃。
9.能发生水解反应的物质有
卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐。
10.不溶于水的有机物有:
烃、卤代烃、酯、淀粉、纤维素
11.常温下为气体的有机物有:
分子中含有碳原子数小于或等于4的烃(新戊烷例外)、一氯甲烷、甲醛。
12.浓硫酸、加热条件下发生的反应有:
苯及苯的同系物的硝化、磺化、醇的脱水反应、酯化反应、纤维素的水解
13.能被氧化的物质有:
含有碳碳双键或碳碳叁键的不饱和化合物(KMnO4)、苯的同系物、醇、醛、酚。
大多数有机物都可以燃烧,燃烧都是被氧气氧化。
14.显酸性的有机物有:含有酚羟基和羧基的化合物。
15.能使蛋白质变性的物质有:强酸、强碱、重金属盐、甲醛、苯酚、强氧化剂、浓的酒精、双氧水、碘酒、三氯乙酸等。
16.既能与酸又能与碱反应的有机物:具有酸、碱双官能团的有机物(氨基酸、蛋白质等)
17.能与NaOH溶液发生反应的有机物:
(1)酚:
(2)羧酸:
(3)卤代烃(水溶液:水解;醇溶液:消去)
(4)酯:(水解,不加热反应慢,加热反应快)
(5)蛋白质(水解)
18、有明显颜色变化的有机反应:
1.苯酚与三氯化铁溶液反应呈紫色;
2.KMnO4酸性溶液的褪色;
3.溴水的褪色;
4.淀粉遇碘单质变蓝色。
5.蛋白质遇浓硝酸呈黄色(颜色反应)
一、物理性质
甲烷:无色 无味 难溶
乙烯:无色 稍有气味 难溶
乙炔:无色 无味 微溶
(电石生成:含H2S、PH3 特殊难闻的臭味)
苯:无色 有特殊气味 液体 难溶 有毒
乙醇:无色 有特殊香味 混溶 易挥发
乙酸:无色 刺激性气味 易溶 能挥发
二、实验室制法
甲烷:CH3COONa + NaOH →(CaO,加热) → CH4↑+Na2CO3
注:无水醋酸钠:碱石灰=1:3
固固加热 (同O2、NH3)
无水(不能用NaAc晶体)
CaO:吸水、稀释NaOH、不是催化剂
乙烯:C2H5OH →(浓H2SO4,170℃)→ CH2=CH2↑+H2O
注:V酒精:V浓硫酸=1:3(被脱水,混合液呈棕色)
排水收集(同Cl2、HCl)控温170℃(140℃:乙醚)
碱石灰除杂SO2、CO2
碎瓷片:防止暴沸
乙炔:CaC2 + 2H2O → C2H2↑ + Ca(OH)2
注:排水收集 无除杂
不能用启普发生器
饱和NaCl:降低反应速率
导管口放棉花:防止微溶的Ca(OH)2泡沫堵塞导管
乙醇:CH2=CH2 + H2O →(催化剂,加热,加压)→CH3CH2OH
(话说我不知道这是工业还实验室。。。)
注:无水CuSO4验水(白→蓝)
提升浓度:加CaO 再加热蒸馏
三、燃烧现象
烷:火焰呈淡蓝色 不明亮
烯:火焰明亮 有黑烟
炔:火焰明亮 有浓烈黑烟(纯氧中3000℃以上:氧炔焰)
苯:火焰明亮 大量黑烟(同炔)
醇:火焰呈淡蓝色 放大量热
四、酸性KMnO4&溴水
烷:都不褪色
烯 炔:都褪色(前者氧化 后者加成)
苯:KMnO4不褪色 萃取使溴水褪色
五、重要反应方程式
烷:取代
CH4 + Cl2 →(光照)→ CH3Cl(g) + HCl
CH3Cl + Cl2 →(光照)→ CH2Cl2(l) + HCl
CH2Cl + Cl2 →(光照)→ CHCl3(l) + HCl
CHCl3 + Cl2 →(光照)→ CCl4(l) + HCl
现象:颜色变浅 装置壁上有油状液体
注:4种生成物里只有一氯甲烷是气体
三氯甲烷 = 氯仿
四氯化碳作灭火剂
烯:1、加成
CH2=CH2 + Br2 → CH2BrCH2Br
CH2=CH2 + HCl →(催化剂) → CH3CH2Cl
CH2=CH2 + H2 →(催化剂,加热) → CH3CH3 乙烷
CH2=CH2 + H2O →(催化剂,加热加压) → CH3CH2OH 乙醇
2、聚合(加聚)
nCH2=CH2 →(一定条件) → [-CH2-CH2-]n
(单体→高聚物)
注:断双键→两个“半键”
高聚物(高分子化合物)都是【混合物】
炔:基本同烯。。。
苯:1.1、取代(溴)
◎ + Br2 →(Fe或FeBr3)→ ◎-Br + HBr
注:V苯:V溴=4:1
长导管:冷凝 回流 导气
防倒吸
NaOH除杂
现象:导管口白雾、浅黄色沉淀(AgBr)、CCl4:褐色不溶于水的液体(溴苯)
1.2、取代——硝化(硝酸)
◎ + HNO3 → (浓H2SO4,60℃)→ ◎-NO2 + H2O
注:先加浓硝酸再加浓硫酸 冷却至室温再加苯
50℃-60℃ 【水浴】 温度计插入烧杯
除混酸:NaOH
硝基苯:无色油状液体 难溶 苦杏仁味 毒
1.3、取代——磺化(浓硫酸)
◎ + H2SO4(浓) →(70-80度)→ ◎-SO3H + H2O
2、加成
◎ + 3H2 →(Ni,加热)→ ○(环己烷)
醇:1、置换(活泼金属)
2CH3CH2OH + 2Na → 2CH3CH2ONa + H2↑
钠密度大于醇 反应平稳
{cf.}钠密度小于水 反应剧烈
2、消去(分子内脱水)
C2H5OH →(浓H2SO4,170℃)→ CH2=CH2↑+H2O
3、取代(分子间脱水)
2CH3CH2OH →(浓H2SO4,140度)→ CH3CH2OCH2CH3 (乙醚)+ H2O
(乙醚:无色 无毒 易挥发 液体 麻醉剂)
4、催化氧化
2CH3CH2OH + O2 →(Cu,加热)→ 2CH3CHO(乙醛) + 2H2O
现象:铜丝表面变黑 浸入乙醇后变红 液体有特殊刺激性气味
酸:取代(酯化)
CH3COOH + C2H5OH →(浓H2SO4,加热)→ CH3COOC2H5 + H2O
(乙酸乙酯:有香味的无色油状液体)
注:【酸脱羟基醇脱氢】(同位素示踪法)
碎瓷片:防止暴沸
浓硫酸:催化 脱水 吸水
饱和Na2CO3:便于分离和提纯
卤代烃:1、取代(水解)【NaOH水溶液】
CH3CH2X + NaOH →(H2O,加热)→ CH3CH2OH + NaX
注:NaOH作用:中和HBr 加快反应速率
检验X:加入硝酸酸化的AgNO3 观察沉淀
2、消去【NaOH醇溶液】
CH3CH2Cl + NaOH →(醇,加热)→ CH2=CH2↑ +NaCl + H2O
注:相邻C原子上有H才可消去
加H加在H多处,脱H脱在H少处(马氏规律)
醇溶液:抑制水解(抑制NaOH电离)
六、通式
CnH2n+2 烷烃
CnH2n 烯烃 / 环烷烃
CnH2n-2 炔烃 / 二烯烃
CnH2n-6 苯及其同系物
CnH2n+2O 一元醇 / 烷基醚
CnH2nO 饱和一元醛 / 酮
CnH2n-6O 芳香醇 / 酚
CnH2nO2 羧酸 / 酯
七、其他知识点
1、天干命名:甲乙丙丁戊己庚辛壬癸
2、燃烧公式:CxHy + (x+y/4)O2 →(点燃)→ x CO2 + y/2 H2O
CxHyOz + (x+y/4-z/2)O2 →(点燃)→ x CO2 + y/2 H2O
3、反应前后压强 / 体积不变:y = 4
变小:y < 4
变大:y > 4
4、耗氧量:等物质的量(等V):C越多 耗氧越多
等质量:C%越高 耗氧越少
5、不饱和度(欧买嘎~)=(C原子数×2+2 – H原子数)/ 2
双键 / 环 = 1,三键 = 2,可叠加
6、工业制烯烃:【裂解】(不是裂化)
7、医用酒精:75%
工业酒精:95%(含甲醇 有毒)
无水酒精:99%
8、甘油:丙三醇
9、乙酸酸性介于HCl和H2CO3之间
食醋:3%~5%
冰醋酸:纯乙酸【纯净物】
10、烷基不属于官能团
② 塑料有哪些种类啊
塑料的分类、成分及特性
塑料是一种用途广泛的合成高分子材料,在我们的日常生活中塑料制品比比皆是。从我们起床后使用的洗漱用品、早餐时用的餐具,到工作学习时用的文具、休息时用的座垫、床垫,以及电视机、洗衣机、计算机的外壳,还有夜晚给我们带来光明的各种造型的灯具……
塑料以它优异的性能逐步地代替了许多已经使用了几十年、几百年的材料和器皿,成为人们生活中不可缺少的助手。塑料集金属的坚硬性、木材的轻便性、玻璃的透明性、陶瓷的耐腐蚀性,橡胶的弹性和韧性于一身,因此除了日常用品外,塑料更广泛地应用于航空航天、医疗器械、石油化工、机械制造、国防、建筑等各行各业。
一、塑料的分类
塑料种类很多,到目前为止世界上投入生产的塑料大约有三百多种。塑料的分类方法较多,常用的有两种:
1、根据塑料受热后的性质不同分为热塑性塑料和热固性塑料
热塑性塑料分子结构都是线型结构,在受热时发生软化或熔化,可塑制成一定的形状,冷却后又变硬。在受热到一定程度又重新软化,冷却后又变硬,这种过程能够反复进行多次。如聚氯乙烯、聚乙烯、聚苯乙烯等。热塑性塑料成型过程比较简单,能够连续化生产,并且具有相当高的机械强度,因此发展很快。
热固性塑料的分子结构是体型结构,在受热时也发生软化,可以塑制成一定的形状,但受热到一定的程度或加入少量固化剂后,就硬化定型,再加热也不会变软和改变形状了。热固性塑料加工成型后,受热不再软化,因此不能回收再用,如酚醛塑料、氨基塑料、环氧树脂等都属于此类塑料。热固性塑料成型工艺过程比较复杂,所以连续化生产有一定的困难,但其耐热性好、不容易变形,而且价格比较低廉。
2、根据塑料的用途不同分为通用塑料和工程塑料
通用塑料是指产量大、价格低、应用范围广的塑料,主要包括聚烯烃、聚氯乙烯、聚苯乙烯、酚醛塑料和氨基塑料五大品种。人们日常生活中使用的许多制品都是由这些通用塑料制成。
工程塑料是可作为工程结构材料和代替金属制造机器零部件等的塑料。例如聚酰胺、聚碳酸酯、聚甲醛、ABS树脂、聚四氟乙烯、聚酯、聚砜、聚酰亚胺等。工程塑料具有密度小、化学稳定性高、机械性能良好、电绝缘性优越、加工成型容易等特点,广泛应用于汽车、电器、化工、机械、仪器、仪表等工业,也应用于宇宙航行、火箭、导弹等方面。
二、塑料的成分
我们通常所用的塑料并不是一种纯物质,它是由许多材料配制而成的。其中高分子聚合物(或称合成树脂)是塑料的主要成分,此外,为了改进塑料的性能,还要在聚合物中添加各种辅助材料,如填料、增塑剂、润滑剂、稳定剂、着色剂等,才能成为性能良好的塑料。
1、合成树脂
合成树脂是塑料的最主要成分,其在塑料中的含量一般在40%~100%。由于含量大,而且树脂的性质常常决定了塑料的性质,所以人们常把树脂看成是塑料的同义词。例如把聚氯乙烯树脂与聚氯乙烯塑料、酚醛树脂与酚醛塑料混为一谈。其实树脂与塑料是两个不同的概念。树脂是一种未加工的原始聚合物,它不仅用于制造塑料,而且还是涂料、胶粘剂以及合成纤维的原料。而塑料除了极少一部分含100%的树脂外,绝大多数的塑料,除了主要组分树脂外,还需要加入其他物质。
2、填料
填料又叫填充剂,它可以提高塑料的强度和耐热性能,并降低成本。例如酚醛树脂中加入木粉后可大大降低成本,使酚醛塑料成为最廉价的塑料之一,同时还能显著提高机械强度。填料可分为有机填料和无机填料两类,前者如木粉、碎布、纸张和各种织物纤维等,后者如玻璃纤维、硅藻土、石棉、炭黑等。
3、增塑剂
增塑剂可增加塑料的可塑性和柔软性,降低脆性,使塑料易于加工成型。增塑剂一般是能与树脂混溶,无毒、无臭,对光、热稳定的高沸点有机化合物,最常用的是邻苯二甲酸酯类。例如生产聚氯乙烯塑料时,若加入较多的增塑剂便可得到软质聚氯乙烯塑料,若不加或少加增塑剂(用量<10%),则得硬质聚氯乙烯塑料。
4、稳定剂
为了防止合成树脂在加工和使用过程中受光和热的作用分解和破坏,延长使用寿命,要在塑料中加入稳定剂。常用的有硬脂酸盐、环氧树脂等。
5、着色剂
着色剂可使塑料具有各种鲜艳、美观的颜色。常用有机染料和无机颜料作为着色剂。
6、润滑剂
润滑剂的作用是防止塑料在成型时不粘在金属模具上,同时可使塑料的表面光滑美观。常用的润滑剂有硬脂酸及其钙镁盐等。
除了上述助剂外,塑料中还可加入阻燃剂、发泡剂、抗静电剂等,以满足不同的使用要求。
三、塑料的特性
1、塑料具有可塑性
顾名思义,塑料就是可以塑造的材料。所谓塑料的可塑性就是可以通过加热的方法使固体的塑料变软,然后再把变软了的塑料放在模具中,让它冷却后又重新凝固成一定形状的固体。塑料的这种性质也有一定的缺陷,即遇热时容易软化变形,有的塑料甚至用温度较高的水烫一下就会变形,所以塑料制品一般不宜接触开水。
2、塑料具有弹性
有些塑料也像合成纤维一样,具有一定的弹性。当它受到外力拉伸时,卷曲的分子就由柔韧性而被拉直,但一旦拉力取消后,它又会恢复原来的卷曲状态,这样就使得塑料具有弹性,例如聚乙烯和聚氯乙烯的薄膜制品。但是有些塑料是没有弹性的。
3、塑料具有较高的强度
塑料虽然没有金属那样坚硬,但与玻璃、陶瓷、木材等相比,还是具有比较高的强度及耐磨性。塑料可以制成机器上坚固的齿轮和轴承。
4、塑料具有耐腐蚀性
塑料既不像金属那样在潮湿的空气中会生锈,也不像木材那样在潮湿的环境中会腐烂或被微生物侵蚀,另外塑料耐酸碱的腐蚀。因此塑料常常被用作化工厂的输水和输液管道,建筑物的门窗等。
5、塑料具有绝缘性
塑料的分子链是原子以共价键结合起来的,分子既不能电离,也不能在结构中传递电子,所以塑料具有绝缘性。塑料可用来制造电线的包皮、电插座、电器的外壳等。
附:常用塑料的种类有:
①聚氯乙烯(PVC)
它是建筑中用量最大的一种塑料。硬质聚氯乙烯的密度为1.38~1.43g/cm3,机械强度高,化学稳定性好,使用温度范围一般在-15~+55℃之间,适宜制造塑料门窗、下水管、线槽等。
②聚乙烯(PE)
聚乙烯塑料在建筑上主要用于给排水管、卫生洁具。
③聚丙烯(PP)
聚丙烯的密度在所有塑料中是最小的,约为0.90左右。 聚丙烯常用来生产管材、卫生洁具等建筑制品。
④聚苯乙烯(PS)
聚苯乙烯为无色透明类似玻璃的塑料。 聚苯乙烯在建筑中主要用来生产泡沫隔热材料、透光材料等制品。
⑤ABS塑料
ABS塑料是改性聚苯乙烯塑料,以丙烯睛(A)、丁二烯(B)及苯乙烯(S) 为基础的三组分所组成。ABS塑料可制作压有花纹图案的塑料装饰板等。
③ 塑料有哪些种类
塑料的分类:
1、根据塑料受热后的性质不同分为热塑性塑料和热固性塑料
热塑性塑料分子结构都是线型结构,在受热时发生软化或熔化,可塑制成一定的形状,冷却后又变硬。在受热到一定程度又重新软化,冷却后又变硬,这种过程能够反复进行多次。如聚氯乙烯、聚乙烯、聚苯乙烯等。热塑性塑料成型过程比较简单,能够连续化生产,并且具有相当高的机械强度,因此发展很快。
热固性塑料的分子结构是体型结构,在受热时也发生软化,可以塑制成一定的形状,但受热到一定的程度或加入少量固化剂后,就硬化定型,再加热也不会变软和改变形状了。热固性塑料加工成型后,受热不再软化,因此不能回收再用,如酚醛塑料、氨基塑料、环氧树脂等都属于此类塑料。热固性塑料成型工艺过程比较复杂,所以连续化生产有一定的困难,但其耐热性好、不容易变形,而且价格比较低廉。
2、根据塑料的用途不同分为通用塑料和工程塑料
通用塑料是指产量大、价格低、应用范围广的塑料,主要包括聚烯烃、聚氯乙烯、聚苯乙烯、酚醛塑料和氨基塑料五大品种。人们日常生活中使用的许多制品都是由这些通用塑料制成。
工程塑料是可作为工程结构材料和代替金属制造机器零部件等的塑料。例如聚酰胺、聚碳酸酯、聚甲醛、ABS树脂、聚四氟乙烯、聚酯、聚砜、聚酰亚胺等。工程塑料具有密度小、化学稳定性高、机械性能良好、电绝缘性优越、加工成型容易等特点,广泛应用于汽车、电器、化工、机械、仪器、仪表等工业,也应用于宇宙航行、火箭、导弹等方面。
(3)离子交换树脂壬基酚扩展阅读:
塑料特性:
1、重量轻
塑料是较轻的材料,相对密度分布在0.90—2.2之间。很显然,塑料能不能浮到水面上?特别是发泡塑料,因内有微孔,质地更轻,相对密度仅为0.01。这种特性使得塑料可用于要求减轻自重的产品生产中。
2、优良的化学稳定性
绝大多数的塑料对酸、碱等化学物质都具有良好的抗腐蚀能力。特别是俗称为塑料王的聚四氟乙烯(F4),它的化学稳定性甚至胜过黄金,放在“王水”中煮十几个小时也不会变质。由于F4具有优异的化学稳定性,是理想的耐腐蚀材料。如F4可以作为输送腐蚀性和粘性液体管道的材料。
3、优异的电绝缘性能
普通塑料都是电的不良导体,其表面电阻、体积电阻很大,用数字表示可达109一1018欧姆。击穿电压大,介质损耗角正切值很小。因此,塑料在电子工业和机械工业上有着广泛的应用。如塑料绝缘控制电缆。
④ 常用高分子聚合物名称缩写(希望对大家有用!!!)
PA 聚酰胺(尼龙)
PA-1010 聚癸二酸癸二胺(尼龙1010)
PA-11 聚十一酰胺(尼龙11)
PA-12 聚十二酰胺(尼龙12)
PA-6 聚己内酰胺(尼龙6)
PA-610 聚癸二酰乙二胺(尼龙610)
PA-612 聚十二烷二酰乙二胺(尼龙612)
PA-66 聚己二酸己二胺(尼龙66)
PA-8 聚辛酰胺(尼龙8)
PA-9 聚9-氨基壬酸(尼龙9)
PAA 聚丙烯酸
PAAS 水质稳定剂
PABM 聚氨基双马来酰亚胺
PAC 聚氯化铝
PAEK 聚芳基醚酮
PAI 聚酰胺-酰亚胺
PAM 聚丙烯酰胺
PAMBA 抗血纤溶芳酸
PAMS 聚α-甲基苯乙烯
PAN 聚丙烯腈
PAP 对氨基苯酚
PAPA 聚壬二酐
PAPI 多亚甲基多苯基异氰酸酯
PAR 聚芳酰胺
PAR 聚芳酯(双酚A型)
PAS 聚芳砜(聚芳基硫醚)
PB 聚丁二烯-〔1,3〕
PBAN 聚(丁二烯-丙烯腈)
PBI 聚苯并咪唑
PBMA 聚甲基丙烯酸正丁酯
PBN 聚萘二酸丁醇酯
PBR 丙烯-丁二烯橡胶
PBS 聚(丁二烯-苯乙烯)
PBS 聚(丁二烯-苯乙烯)
PBT 聚对苯二甲酸丁二酯
PC 聚碳酸酯
PC/ABS 聚碳酸酯/ABS树脂共混合金
PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金
PCD 聚羰二酰亚胺
PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯)
PCE 四氯乙烯
PCMX 对氯间二甲酚
PCT 聚对苯二甲酸环己烷对二甲醇酯
PCT 聚己内酰胺
PCTEE 聚三氟氯乙烯
PD 二羟基聚醚
PDAIP 聚间苯二甲酸二烯丙酯
PDAP 聚对苯二甲酸二烯丙酯
PDMS 聚二甲基硅氧烷
PE 聚乙烯
PEA 聚丙烯酸酯
PEAM 苯乙烯型聚乙烯均相离子交换膜
PEC 氯化聚乙烯
PECM 苯乙烯型聚乙烯均相阳离子交换膜
PEE 聚醚酯纤维
PEEK 聚醚醚酮
PEG 聚乙二醇
PEHA 五乙撑六胺
PEN 聚萘二酸乙二醇酯
PEO 聚环氧乙烷
PEOK 聚氧化乙烯
PEP 对-乙基苯酚聚全氟乙丙烯薄膜
PES 聚苯醚砜
PET 聚对苯二甲酸乙二酯
PETE 涤纶长丝
PETP 聚对苯二甲酸乙二醇酯
PF 酚醛树脂
PF/PA 尼龙改性酚醛压塑粉
PF/PVC 聚氯乙烯改性酚醛压塑粉
PFA 全氟烷氧基树脂
PFG 聚乙二醇
PFS 聚合硫酸铁
PG 丙二醇
PGEEA 乙二醇(甲)乙醚醋酸酯
PGL 环氧灌封料
PH 六羟基聚醚
PHEMA 聚(甲基丙烯酸-2-羟乙酯)
PHP 水解聚丙烯酸胺
PI 聚异戊二稀
PIB 聚异丁烯
PIBO 聚氧化异丁烯
PIC 聚异三聚氰酸酯
PIEE 聚四氟乙烯
PIR 聚三聚氰酸酯
PL 丙烯
PLD 防老剂4030
PLME 1:1型十二(烷)酸单异丙醇酰胺
PMA 聚丙烯酸甲酯
PMAC 聚甲氧基缩醛
PMAN 聚甲基丙烯腈
PMCA 聚α-氧化丙烯酸甲酯
PMDETA 五甲基二乙烯基三胺
PMI 聚甲基丙烯酰亚胺
PMMA 聚甲基丙烯酸甲酯(有机玻璃)
PMMI 聚均苯四甲酰亚胺
PMP 聚4-甲基戊烯-1
PNT 对硝基甲苯
PO 环氧乙烷
POA 聚己内酰胺纤维
POF 有机光纤
POM 聚甲醛
POP 对辛基苯酚
POR 环氧丙烷橡胶
PP 聚丙烯
PPA 聚己二酸丙二醇酯
PPB 溴代十五烷基吡啶
PPC 氯化聚丙烯
PPD 防老剂4020
PPG 聚醚
PPO 聚苯醚(聚2,6-二甲基苯醚)
PPOX 聚环氧丙烷
PPS 聚苯硫醚
PPSU 聚苯砜(聚芳碱)
PR 聚酯
PROT 蛋白质纤维
PS 聚苯乙烯
PSAN 聚苯乙烯-丙烯腈共聚物
PSB 聚苯乙烯-丁二烯共聚物
PSF(PSU) 聚砜
PSI 聚甲基苯基硅氧烷
PST 聚苯乙烯纤维
PT 甲苯
PTA 精对苯二甲酸
PTBP 对特丁基苯酚
PTFE 聚四氟乙烯
PTMEG 聚醚二醇
PTMG 聚四氢呋喃醚二醇
PTP 聚对苯二甲酸酯
PTX 苯(甲苯、二甲苯)
PTX 苯(甲苯、二甲苯)
PU 聚氨酯(聚氨基甲酸酯)
PVA 聚乙烯醇
PVAC 聚醋酸乙烯乳液
PVAL 乙烯醇系纤维
PVB 聚乙烯醇缩丁醛
PVC 聚氯乙烯
PVCA 聚氯乙烯醋酸酯
PVCC 氯化聚氯乙烯
PVDC 聚偏二氯乙烯
PVDF 聚偏二氟乙烯
PVE 聚乙烯基乙醚
PVF 聚氟乙烯
PVFM 聚乙烯醇缩甲醛
PVI 聚乙烯异丁醚
PVK 聚乙烯基咔唑
PVM 聚烯基甲醚
PVP 聚乙烯基吡咯烷酮
⑤ 塑料的种类有几种
用途分类:
①通用塑料
一般是指产量大、用途广、成型性好、价格便宜的塑料。通用塑
颗粒
料有五大品种,即聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)及丙烯腈─丁二烯─苯乙烯共聚合物(ABS)。这五大类塑料占据了塑料原料使用的绝大多数,其余的基本可以归入特殊塑料品种,如:PPS、PPO、PA、PC、POM等,它们在日用生活产品中的用量很少,主要应用在工程产业、国防科技等高端的领域,如汽车、航天、建筑、通讯等领域。塑料根据其可塑性分类,可分为热塑性塑料和热固性塑料。通常情况下,热塑性塑料的产品可再回收利用,而热固性塑料则不能,根据塑料的光学性能来分,可分为透明、半透明及不透明原料,如PS、PMMA、AS、PC等属于透明塑料,而其它大多数塑料都为不透明塑料。
常用塑料品种性能及用途
1.聚乙烯:常用聚乙烯可分为低密度聚乙烯(LDPE)、高密度聚乙烯(HD
特种塑料
PE)和线性低密度聚乙烯(LLDPE)。三者当中,HDPE有较好的热性能、电性能和机械性能,而LDPE和LLDPE有较好的柔韧性、冲击性能、成膜性等。LDPE和LLDPE主要用于包装用薄膜、农用薄膜、塑料改性等,而HDPE 的用途比较广泛,薄膜、管材、注射日用品等多个领域。
2.聚丙烯:相对来说,聚丙烯的品种更多,用途也比较复杂,领域繁多,品种主要有均聚聚丙烯(homopp),嵌段共聚聚丙烯(copp)和无规共聚聚丙烯(rapp),根据用途的不同,均聚主要用在拉丝、纤维、注射、BOPP膜等领域,共聚聚丙烯主要应用于家用电器注射件,改性原料,日用注射产品、管材等,无规聚丙烯主要用于透明制品、高性能产品、高性能管材等。
3.聚氯乙烯:由于其成本低廉,产品具有自阻燃的特性,故在建筑领域里用途广泛,尤其是下水道管材、塑钢门窗、板材、人造皮革等用途最为广泛。
4.聚苯乙烯:作为一种透明的原材料,在有透明需求的情况下,用途广泛,如汽车灯罩、日用透明件、透明杯、罐等。
5.ABS:是一种用途广泛的工程塑料,具有杰出的物理机械和热性能,广泛应用于家用电器、面板、面罩、组合件、配件等,尤其是家用电器,如洗衣机、空调、冰箱、电扇等,用量十分庞大,另外在塑料改性方面,用途也很广。
②工程塑料
一般指能承受一定外力作用,具有良好的机械性能和耐高、低温性能,尺寸稳定性较好,可以用作工程结构的塑料,如聚酰胺、聚砜等。在工程塑料中又将其分为通用工程塑料和特种工程塑料两大类。工程塑料在机械性
工程塑料(2张)
能、耐久性、耐腐蚀性、耐热性等方面能达到更高的要求,而且加工更方便并可替代金属材料。工程塑料被广泛应用于电子电气、汽车、建筑、办公设备、机械、航空航天等行业,以塑代钢、以塑代木已成为国际流行趋势。
通用工程塑料包括:聚酰胺、聚甲醛、聚碳酸酯、改性聚苯醚、热塑性聚酯、超高分子量聚乙烯、甲基戊烯聚合物、乙烯醇共聚物等。
特种工程塑料又有交联型的非交联型之分。交联型的有:聚氨基双马来酰胺、聚三嗪、交联聚酰亚胺、耐热环氧树指等。非交联型的有:聚砜、聚醚砜、聚苯硫醚、聚酰亚胺、聚醚醚酮(PEEK)等。
③特种塑料
一般是指具有特种功能,可用于航空、航天等特殊应用领域的塑料。如氟塑料和有机硅具有突出的耐高温、自润滑等特殊功用,增强塑料和泡沫塑料具有高强度、高缓冲性等特殊性能,这些塑料都属于特种塑料的范畴。
a.增强塑料:
增强塑料原料在外形上可分为粒状(如钙塑增强塑料)、纤维状(如玻璃纤维或玻璃布增强塑料)、片状(如云母增强塑料)三种。按材质可分为布基增强塑料(如碎布增强或石棉增强塑料)、无机矿物填充塑料(如石英或云母填充塑料)、纤维增强塑料(如碳纤维增强塑料)三种。
b.泡沫塑料:
泡沫塑料可以分为硬质、半硬质和软质泡沫塑料三种。硬质泡沫塑料没有柔韧性,压缩硬度很大,只有达到一定应力值才产生变形,应力解除后不能恢复原状;软质泡沫塑料富有柔韧性,压缩硬度很小,很容易变形,应力解除后能恢复原状,残余变形较小;半硬质泡沫塑料的柔韧性和其他性能介于硬质与软质泡沫塑料之间。
理化分类:
根据各种塑料不同的理化特性,可以把塑料分为热固性塑料和热塑性塑料两种类型。
(1)热塑性塑料
热塑性塑料(Thermo plastics ):指加热后会熔化,可流动至模具冷却后成型,再加热后又会熔化的塑料;即可运用加热及冷却,使其产生可逆变化(液态←→固态),是所谓的物理变化。通用的热塑性塑料其连续的使用温度在100℃以下,聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯并称为四大通用塑料。热塑料性塑料又分烃类、含极性基因的乙烯基类、工程类、纤维素类等多种类型。受热时变软,冷却时变硬,能反复软化和硬化并保持一定的形状。可溶于一定的溶剂,具有可熔可溶的性质。热塑性塑料具有优良的电绝缘性,特别是聚四氟乙烯(PTFE)、聚苯乙烯(PS)、聚乙烯(PE)、聚丙烯(PP)都具有极低的介电常数和介质损耗,宜于作高频和高电压绝缘材料。热塑性塑料易于成型加工,但耐热性较低,易于蠕变,其蠕变程度随承受负荷、环境温度、溶剂、湿度而变化。为了克服热塑性塑料的这些弱点,满足在空间技术、新能源开发等领域应用的需要,各国都在开发可熔融成型的耐热性树脂,如聚醚醚酮(PEEK)、聚醚砜(PES)、聚芳砜(PASU)、聚苯硫醚(PPS)等。以它们作为基体树脂的复合材料具有较高的力学性能和耐化学腐蚀性,能热成型和焊接,层间剪切强度比环氧树脂好。如用聚醚醚酮作为基体树脂与碳纤维制成复合材料,耐疲劳性超过环氧/碳纤维。它的耐冲击性好,在室温下具有良好的耐蠕变性,加工性好,可在240~270℃连续使用,是一种非常理想的耐高温绝缘材料。用聚醚砜作为基体树脂与碳纤维制成的复合材料在 200℃具有较高的强度和硬度,在-100℃尚能保持良好的耐冲击性;无毒,不燃,发烟最少,耐辐射性好,预期可用它作航天飞船的关键部件,还可模塑加工成雷达天线罩等。
甲醛交联型塑料包括酚醛塑料、氨基塑料(如脲-甲醛-三聚氰胺-甲醛等)。
塑料薄膜
其他交联型塑料包括不饱和聚酯、环氧树脂、邻苯二甲二烯丙酯树脂等。
(2)热固性塑料
热固性塑料是指在受热或其他条件下能固化或具有不溶(熔)特性的塑料,如酚醛塑料、环氧塑料等。热固性塑料又分甲醛交联型和其他交联型两种类型。热加工成型后形成具有不熔不溶的固化物,其树脂分子由线型结构交联成网状结构。再加强热则会分解破坏。典型的热固性塑料有酚醛、环氧、氨基、不饱和聚酯、呋喃、聚硅醚等材料,还有较新的聚苯二甲酸二丙烯酯塑料等。它们具有耐热性高、受热不易变形等优点。缺点是机械强度一般不高,但可以通过添加填料,制成层压材料或模压材料来提高其机械强度。
以酚醛树脂为主要原料制成的热固性塑料,如酚醛模压塑料(俗称电木),具有坚固耐用、尺寸稳定、耐除强碱外的其他化学物质作用等特点。可根据不同用途和要求,加入各种填料和添加剂。如要求高绝缘性能的品种,可采用云母或玻璃纤维为填料;如要耐热的品种,可采用石棉或其他耐热填料;如要求抗震的品种,可采用各种适当的纤维或橡胶为填料及一些增韧剂以制成高韧性材料。此外还可以采用苯胺、环氧、聚氯乙烯、聚酰胺、聚乙烯醇缩醛等改性的酚醛树脂以满足不同用途的要求。用酚醛树脂还可以制成酚醛层压板,其特点是机械强度高,电性能良好,耐腐蚀,易于加工,广泛应用于低压电工设备。
氨基塑料有脲甲醛、三聚氰胺甲醛、脲素三聚氰胺甲醛等。它们具有质地坚硬、耐刮痕、无色、半透明等优点,加入色料可制成彩色鲜艳的制品,俗称电玉。由于它耐油,不受弱碱和有机溶剂的影响(但不耐酸),可在70℃下长期使用,短期可耐110~120℃,可用于电工制品。三聚氰胺甲醛塑料比脲甲醛塑料硬度高,有更好的耐水、耐热、耐电弧性,可作耐电弧绝缘材料。
以环氧树脂为主要原料制成的热固性塑料品种很多,其中以双酚A型环氧树脂为基材的约占90%。它具有优良的粘接性、电绝缘性、耐热性和化学稳定性,收缩率和吸水率小,机械强度好等特点。
不饱和聚酯和环氧树脂都可以制成玻璃钢,具有优异的机械强度。如不饱和聚酯的玻璃钢,其机械性能良好,密度小(只有钢的1/5至1/4,铝的1/2),易于加工成各种电器零件。以苯二甲酸二丙烯酯树脂制成的塑料的电性能和机械性能均优于酚醛和氨基热固性塑料。它吸湿性小,制品尺寸稳定,成型性能好,耐酸碱及沸水和一些有机溶剂。模塑料适于制造结构复杂的、既耐温又有高绝缘性的零件。一般可在-60~180℃的温度范围长期使用,耐热等级可达F级到H级,比酚醛和氨基塑料的耐热性都高。
聚硅醚结构形式的有机硅塑料在电子、电工技术中的应用较多。有机硅层压塑料多以玻璃布为补强材料;有机硅模压塑料多以玻璃纤维和石棉为填料,用以制造耐高温、高频或潜水电机、电器、电子设备的零部件等。这类塑料的特点是介电常数和tgδ值较小,受频率影响小,用于电工和电子工业中耐电晕和电弧,即使放电引起分解,产物是二氧化硅而不是能导电的碳黑。这类材料有突出的耐热性,可以在250℃连续使用。聚硅醚的主要缺点是机械强度低,胶粘性小,耐油性差。已开发出许多改性有机硅聚合物,例如聚酯改性有机硅塑料等在电工技术上得到应用。有的塑料既是热塑性又是热固性的塑料。例如聚氯乙烯,一般为热塑性塑料,日本已研制出一种新型液态聚氯乙烯是热固性的,模塑温度为60~140℃;美国一种叫伦德克斯的塑料,既有热塑性加工的特征,又有热固性塑料的物理性能。
①烃类塑料。属非极性塑料,具有结晶性和非结晶性之分,结晶性烃类塑料包括聚乙烯、聚丙烯等,非结晶性烃类塑料包括聚苯乙等。
②含极性基因的乙烯基类塑料。除氟塑料外,大多数是非结晶型的透明体,包括聚氯乙烯、聚四氟乙烯、聚醋酸乙烯酯等。乙烯基类单体大多数可以采用游离基型催化剂进行聚合。
③热塑性工程塑料。主要包括聚甲醛、聚酰胺、聚碳酸酯、ABS、聚苯醚、聚对苯二甲酸乙二酯、聚砜、聚醚砜、聚酰亚胺、聚苯硫醚等。聚四氟乙烯。改性聚丙烯等也包括在这个范围内。
④热塑性纤维素类塑料。主要包括醋酸纤维素、醋酸丁酸纤维素、塞璐珞、玻璃纸等。
加工方法分类:
根据各种塑料不同的成型方法,可以分为膜压、层压、注射、挤出、吹塑、浇铸塑料和反应注射塑料等多种类型。
膜压塑料多为物性的加工性能与一般固性塑料相类似的塑料;层压塑料是指浸有树脂的纤维织物,经叠合、热压而结合成为整体的材料;注射、挤出和吹塑多为物性和加工性能与一般热塑性塑料相类似的塑料;浇铸塑料是指能在无压或稍加压力的情况下,倾注于模具中能硬化成一定形状制品的液态树脂混合料,如MC尼龙等;反应注射塑料是用液态原材料,加压注入膜腔内,使其反应固化成一定形状制品的塑料,如聚氨酯等。
⑥ 请问研究气体流量领域的专家,在气体切割过程中的气体耗量问题。
制取溴苯的装置需注意
1.导管要长,即导气又冷凝气体;
2.导管口不能插入锥形瓶液面以下,防止倒吸;
四、常见气体的实验室制备
1、气体发生装置的类型
(2)装置基本类型:
装置类型 固体反应物(加热) 固液反应物(不加热) 固液反应物(加热)
装置示意图
主要仪器
典型气体 O2、NH3、CH4等 H2、CO2、H2S等。 Cl2、HCl、CH2=CH2等
操作要点 (l)试管口应稍向下倾斜,以防止产生的水蒸气在管口冷凝后倒流而引起试管破裂。(2)铁夹应夹在距试管口 l/3处。(3)胶塞上的导管伸入试管里面不能太长,否则会妨碍气体的导出。 (1)在用简易装置时,如用长颈漏斗,漏斗颈的下口应伸入液面以下,否则起不到液封的作用;(2)加入的液体反应物(如酸)要适当。(3)块状固体与液体的混合物在常温下反应制备气体可用启普发生器制备。 (1)先把固体药品加入烧瓶,然后加入液体药品。(2)要正确使用分液漏斗。
几种气体制备的反应原理
1、O2 2KClO3 2KCl+3O2↑
2KMnO4 K2MnO4+MnO2+O2↑
2H2O2 2H2O+O2↑
2、NH3 2NH4Cl+Ca(OH)2 CaCl2+2NH3↑+2H2O
NH3·H2O NH3↑+H2O
3、CH4 CH3COONa+NaOH Na2CO3+CH4↑
4、H2 Zn+H2SO4(稀)=ZnSO4+H2↑
5、CO2 CaCO3+2HCl=CaCl2+CO2↑+H2O
6、H2S FeS+H2SO4(稀)=FeSO4+H2S↑
7、SO2 Na2SO4+H2SO4(浓)=Na2SO4+SO2↑+H2O
8、NO2 Cu+4HNO3(浓)=Cu(NO3)2+2NO2↑+2H2O
9、NO 3Cu+8HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O
10、C2H2 CaC2+2H2O→Ca(OH)2+CH≡CH↑
11、Cl2 MnO2+4HCl(浓) MnCl2+Cl2↑+2H2O
12、HCl NaCl(固)+H2SO4(浓) NaHSO4+HCl↑
NaCl(固)+NaHSO4 Na2SO4+HCl↑
2NaCl(固)+H2SO4(浓) Na2SO4+2HCl↑
13、C2H4 C2H5OH CH2=CH2↑+H2O
14、N2 NaNO2+NH4Cl NaCl+N2↑+2H2O
2、收集装置
(1)设计原则:根据氧化的溶解性或密度
(2)装置基本类型:
装置类型 排水(液)集气法 向上排空气集气法 向下排空气集气法
装 置示意图
适用范围 不溶于水(液)的气体 密度大于空气的气体 密度小于空气的气体
典型气体 H2、O2、NO、CO、CH4、CH2=CH2、CH≡CH Cl2、HCl、CO2、SO2、H2S H2、NH3、CH4
3、净化与干燥装置
(1)设计原则:根据净化药品的状态及条件
(2)装置基本类型:
装置类型 液体除杂剂(不加热) 固体除杂剂(不加热) 固体除杂剂(加热)
适用范围
装 置示意图
(3)气体的净化剂的选择
选择气体吸收剂应根据气体的性质和杂质的性质而确定,所选用的吸收剂只能吸收气体中的杂质,而不能与被提纯的气体反应。一般情况下:①易溶于水的气体杂质可用水来吸收;②酸性杂质可用碱性物质吸收;③碱性杂质可用酸性物质吸收;④水分可用干燥剂来吸收;⑤能与杂质反应生成沉淀(或可溶物)的物质也可作为吸收剂。
(4)气体干燥剂的类型及选择
常用的气体干燥剂按酸碱性可分为三类:
①酸性干燥剂,如浓硫酸、五氧化二磷、硅胶。酸性干燥剂能够干燥显酸性或中性的气体,如CO2、SO2、NO2、HCI、H2、Cl2 、O2、CH4等气体。
②碱性干燥剂,如生石灰、碱石灰、固体NaOH。碱性干燥剂可以用来干燥显碱性或中性的气体,如NH3、H2、O2、CH4等气体。
③中性干燥剂,如无水氯化钙等,可以干燥中性、酸性、碱性气体,如O2、H2、CH4等。
在选用干燥剂时,显碱性的气体不能选用酸性干燥剂,显酸性的气体不能选用碱性干燥剂。有还原性的气体不能选用有氧化性的干燥剂。能与气体反应的物质不能选作干燥剂,如不能用CaCI2来干燥NH3(因生成 CaCl2·8NH3),不能用浓 H2SO4干燥 NH3、H2S、HBr、HI等。
气体净化与干燥注意事项
一般情况下,若采用溶液作除杂试剂,则是先除杂后干燥;若采用加热除去杂质,则是先干燥后加热。
对于有毒、有害的气体尾气必须用适当的溶液加以吸收(或点燃),使它们变为无毒、无害、无污染的物质。如尾气Cl2、SO2、Br2(蒸气)等可用NaOH溶液吸收;尾气H2S可用CuSO4或NaOH溶液吸收;尾气CO可用点燃法,将它转化为CO2气体。
4、气体实验装置的设计
(1)装置顺序:制气装置→净化装置→反应或收集装置→除尾气装置
(2)安装顺序:由下向上,由左向右
(3)操作顺序:装配仪器→检验气密性→加入药品
五、常见物质的分离、提纯和鉴别
化学方法分离和提纯物质
对物质的分离可一般先用化学方法对物质进行处理,然后再根据混合物的特点用恰当的分离方法(见化学基本操作)进行分离。
用化学方法分离和提纯物质时要注意:
①最好不引入新的杂质;
②不能损耗或减少被提纯物质的质量
③实验操作要简便,不能繁杂。用化学方法除去溶液中的杂质时,要使被分离的物质或离子尽可能除净,需要加入过量的分离试剂,在多步分离过程中,后加的试剂应能够把前面所加入的无关物质或离子除去。
对于无机物溶液常用下列方法进行分离和提纯:
(1)生成沉淀法 例如NaCl溶液里混有少量的MgCl2杂质,可加入过量的NaOH溶液,使Mg2+离子转化为Mg(OH)2沉淀(但引入新的杂质OH-),过滤除去Mg(OH)2,然后加入适量盐酸,调节pH为中性。
(2)生成气体法 例如Na2SO4溶液中混有少量Na2CO3,为了不引入新的杂质并增加SO42-,可加入适量的稀H2SO4,将CO32-转化为CO2气体而除去。
(3)氧化还原法 例如在 FeCl3溶液里含有少量 FeCl2杂质,可通入适量的Cl2气将FeCl2氧化为FeCl3。若在 FeCl2溶液里含有少量 FeCl3,可加入适量的铁粉而将其除去。
(4)正盐和与酸式盐相互转化法 例如在Na2CO3固体中含有少量NaHCO3杂质,可将固体加热,使NaHCO3分解生成Na2CO3,而除去杂质。若在NaHCO3溶液中混有少量Na2CO3杂质,可向溶液里通入足量CO2,使Na2CO3转化为NaHCO3。
(5)利用物质的两性除去杂质 例如在Fe2O3里混有少量的Al2O3杂质,可利用Al2O3是两性氧化物,能与强碱溶液反应,往试样里加入足量的 NaOH溶液,使其中 Al2O3转化为可溶性 NaAlO2,然后过滤,洗涤难溶物,即为纯净的Fe2O3。
(6)离子交换法 例如用磺化煤(NaR)做阳离子交换剂,与硬水里的Ca2+、Mg2+进行交换,而使硬水软化。
2、物质的鉴别
物质的检验通常有鉴定、鉴别和推断三类,它们的共同点是:依据物质的特殊性质和特征反应,选择适当的试剂和方法,准确观察反应中的明显现象,如颜色的变化、沉淀的生成和溶解、气体的产生和气味、火焰的颜色等,进行判断、推理。
鉴定通常是指对于某一种物质的定性检验,根据物质的化学特性,分别检出阳离子、阴离子,鉴别通常是指对分别存放的两种或两种以上的物质进行定性辨认,可根据一种物质的特性区别于另一种,也可根据几种物质的颜色、气味、溶解性、溶解时的热效应等一般性质的不同加以区别。推断是通过已知实验事实,根据性质分析推求出被检验物质的组成和名称。我们要综合运用化学知识对常见物质进行鉴别和推断。
1.常见气体的检验
常见气体 检验方法
氢气 纯净的氢气在空气中燃烧呈淡蓝色火焰,混合空气点燃有爆鸣声,生成物只有水。不是只有氢气才产生爆鸣声;可点燃的气体不一定是氢气
氧气 可使带火星的木条复燃
氯气 黄绿色,能使湿润的碘化钾淀粉试纸变蓝(O3、NO2也能使湿润的碘化钾淀粉试纸变蓝)
氯化氢 无色有刺激性气味的气体。在潮湿的空气中形成白雾,能使湿润的蓝色石蓝试纸变红;用蘸有浓氨水的玻璃棒靠近时冒白烟;将气体通入AgNO3溶液时有白色沉淀生成。
二氧化硫 无色有刺激性气味的气体。能使品红溶液褪色,加热后又显红色。能使酸性高锰酸钾溶液褪色。
硫化氢 无色有具鸡蛋气味的气体。能使Pb(NO3)2或CuSO4溶液产生黑色沉淀,或使湿润的醋酸铅试纸变黑。
氨气 无色有刺激性气味,能使湿润的红色石蕊试纸变蓝,用蘸有浓盐酸的玻璃棒靠近时能生成白烟。
二氧化氮 红棕色气体,通入水中生成无色的溶液并产生无色气体,水溶液显酸性。
一氧化氮 无色气体,在空气中立即变成红棕色
二氧化碳 能使澄清石灰水变浑浊;能使燃着的木条熄灭。SO2气体也能使澄清的石灰水变混浊,N2等气体也能使燃着的木条熄灭。
一氧化碳 可燃烧,火焰呈淡蓝色,燃烧后只生成CO2;能使灼热的CuO由黑色变成红色。
甲烷 无色气体,可燃,淡蓝色火焰,生成水和CO2;不能使高锰酸钾溶液、溴水褪色。
乙烯 无色气体、可燃,燃烧时有明亮的火焰和黑烟,生成水和CO2。能使高锰酸钾溶液、溴水褪色。
乙炔 无色无臭气体,可燃,燃烧时有明亮的火焰和浓烟,生成水和 CO2,能使高锰酸钾溶液、溴水褪色。
2.几种重要阳离子的检验
(l)H+ 能使紫色石蕊试液或橙色的甲基橙试液变为红色。
(2)Na+、K+ 用焰色反应来检验时,它们的火焰分别呈黄色、浅紫色(通过钴玻片)。
(3)Ba2+ 能使稀硫酸或可溶性硫酸盐溶液产生白色BaSO4沉淀,且沉淀不溶于稀硝酸。
(4)Mg2+ 能与NaOH溶液反应生成白色Mg(OH)2沉淀,该沉淀能溶于NH4Cl溶液。
(5)Al3+ 能与适量的NaOH溶液反应生成白色Al(OH)3絮状沉淀,该沉淀能溶于盐酸或过量的NaOH溶液。
(6)Ag+ 能与稀盐酸或可溶性盐酸盐反应,生成白色AgCl沉淀,不溶于稀 HNO3,但溶于氨水,生成〔Ag(NH3)2〕+。
(7)NH4+ 铵盐(或浓溶液)与NaOH浓溶液反应,并加热,放出使湿润的红色石蓝试纸变蓝的有刺激性气味NH3气体。
(8)Fe2+ 能与少量NaOH溶液反应,先生成白色Fe(OH)2沉淀,迅速变成灰绿色,最后变成红褐色Fe(OH)3沉淀。或向亚铁盐的溶液里加入KSCN溶液,不显红色,加入少量新制的氯水后,立即显红色。2Fe2++Cl2=2Fe3++2Cl-
(9)Fe3+ 能与 KSCN溶液反应,变成血红色 Fe(SCN)3溶液,能与 NaOH溶液反应,生成红褐色Fe(OH)3沉淀。
(10)Cu2+ 蓝色水溶液(浓的CuCl2溶液显绿色),能与NaOH溶液反应,生成蓝色的Cu(OH)2沉淀,加热后可转变为黑色的 CuO沉淀。含Cu2+溶液能与Fe、Zn片等反应,在金属片上有红色的铜生成。
3.几种重要的阴离子的检验
(1)OH- 能使无色酚酞、紫色石蕊、橙色的甲基橙等指示剂分别变为红色、蓝色、黄色。
(2)Cl- 能与硝酸银反应,生成白色的AgCl沉淀,沉淀不溶于稀硝酸,能溶于氨水,生成[Ag(NH3)2]+。
(3)Br- 能与硝酸银反应,生成淡黄色AgBr沉淀,不溶于稀硝酸。
(4)I- 能与硝酸银反应,生成黄色AgI沉淀,不溶于稀硝酸;也能与氯水反应,生成I2,使淀粉溶液变蓝。
(5)SO42- 能与含Ba2+溶液反应,生成白色BaSO4沉淀,不溶于硝酸。
(6)SO32- 浓溶液能与强酸反应,产生无色有刺激性气味的SO2气体,该气体能使品红溶液褪色。能与BaCl2溶液反应,生成白色BaSO3沉淀,该沉淀溶于盐酸,生成无色有刺激性气味的SO2气体。
(7)S2- 能与Pb(NO3)2溶液反应,生成黑色的PbS沉淀。
(8)CO32- 能与BaCl2溶液反应,生成白色的BaCO3沉淀,该沉淀溶于硝酸(或盐酸),生成无色无味、能使澄清石灰水变浑浊的CO2气体。
(9)HCO3- 取含HCO3-盐溶液煮沸,放出无色无味CO2气体,气体能使澄清石灰水变浑浊。或向HCO3-盐酸溶液里加入稀MgSO4溶液,无现象,加热煮沸,有白色沉淀 MgCO3生成,同时放出 CO2气体。
(10)PO43- 含磷酸根的中性溶液,能与AgNO3反应,生成黄色Ag3PO4沉淀,该沉淀溶于硝酸。
(11)NO3- 浓溶液或晶体中加入铜片、浓硫酸加热,放出红棕色气体。
4.几种重要有机物的检验
(1)苯 能与纯溴、铁屑反应,产生HBr白雾。能与浓硫酸、浓硝酸的混合物反应,生成黄色的苦杏仁气味的油状(密度大于1)难溶于水的硝基苯。
(2)乙醇 能够与灼热的螺旋状铜丝反应,使其表面上黑色CuO变为光亮的铜,并产生有刺激性气味的乙醛。乙醇与乙酸、浓硫酸混合物加热反应,将生成的气体通入饱和Na2CO3溶液,有透明油状、水果香味的乙酸乙酯液体浮在水面上。
(3)苯酚 能与浓溴水反应生成白色的三溴苯酚沉淀。能与FeCl3溶液反应,生成紫色溶液。
(4)乙醛 能发生银镜反应,或能与新制的蓝色Cu(OH)2加热反应,生成红色的 Cu2O沉淀。
5.用一种试剂或不用试剂鉴别物质
用一种试剂来鉴别多种物质时,所选用的试剂必须能和被鉴别的物质大多数能发生反应,而且能产生不同的实验现象。常用的鉴别试剂有FeCl3溶液、NaOH溶液、Na2CO3溶液、稀H2SO4、Cu(OH)2悬浊液等。
不用其他试剂来鉴别一组物质,一般情况从两个方面考虑:
①利用某些物质的特殊性质(如颜色、气味、溶解性等),首先鉴别出来,然后再用该试剂去鉴别其他物质。
②采用一种试剂与其他物质相互反应的现象不同,进行综合分析鉴别。
2006年高考有机化学复习资料
* 有机计算和燃烧规律
1.有机物燃烧的化学方程式通式
① CxHy + (x+y/4)O2 xCO 2 + y/2 H2O
② CxHyOz + (x+y/4-z/2) O2 xCO2 + y/2 H2O
③ CnH2n+2 + (3n+1)/2 O2 nCO2+ (n+1) H2O
④ CnH2n + 3n/2 O2 nCO2 + nH2O
⑤ CnH2n-2 + (3n-1)/2 O2 nCO2 + (n-1) H2O
2.气态烃燃烧前后总体积变化情况:
在1个大气压,100 ℃ 以上(水为气态)时:(水为液态时又怎样?)
=4,总体积不变
烃分子中氢原子个数 <4,总体积减少
>4,总体积增大
3、等质量的烃完全燃烧,需氧气的量最多的是:含氢量最大,例:CH4生成二氧化碳最多的是含碳量最大的,例:乙炔、 苯
4.等物质的量的烃CxHy完全燃烧,生成二氧化碳最多的是分子中x 值
最大的,需氧气最多的是(x+y/4)值 最大的
5.具有相同最简式的烃,无论以何种比例混合,只要总质量一定,完全燃烧时生成二氧化碳和水的量 也一定
烃的衍生物中耗氧量比较:
------通常,把烃的衍生物的分子式进行变形,然后,再进行比较。
练习1:等物质的量的下列物质完全燃烧时,耗氧量相同的是___生成CO2的量相同的是___,生成水的量相同的是__。
A.乙烯、乙醇 B.乙炔、乙酸
C.乙炔、苯 D.甲酸、氢气
E.葡萄糖、甲醛 F.甲苯、甘油
G.甲烷、甲酸甲酯
练习2.把例1中的等物质的量换成等质量,结论又如何?
* 官能团的引入:
1、引入卤素原子
(1)加成反应: (C=C、C≡C加Cl2、HCl等)
CH2=CH2 + Cl2→CH2Cl-CH2Cl
CH≡CH+HCl→CH2=CHCl(催——HgCl2)
(2)取代反应(烷烃及“三苯)
CH4+Cl2→CH3Cl+HCl(催——光)
2、引入羟基
(1)加成反应
CH2=CH2 + H2O →CH3CH2OH(催)
CH3CHO + H2 → CH3CH2OH (Ni)
(2)水解反应
CH3CH2Cl + H2O →CH3CH2OH + HCl(NaOH水溶液)
CH3COOCH3+H2O→CH3COOH+CH3OH(酸或碱)
(3)氧化反应
2CH3CHO+O2→2CH3COOH+2H2O(Cu)
C6H5-CH3+KMnO4→C6H5COOH
(4)分解反应
C6H12O6(葡萄糖)→2C2H5OH + 2CO2↑(催)
3、引入双键
(1)加成反应
(2)消去反应
CH3CH2Cl CH2=CH2 + HCl
4、引入醛基或羰基
练习:以淀粉为原料制备乙酸乙酯。
* 有机反应中碳链的改变——增长、缩短、成环
一、碳链的增长
1、加聚反应
高聚(“三烯”为主、乙炔最新的高聚、甲醛生成人造象牙)
低聚(以乙炔为代表的炔的低聚)
2、缩(合)聚反应
酯化反应类型(如:HO-CH2-COOH自身、乙二醇与乙二酸)
氨基酸缩合类型(如:甘氨酸缩合)
其他类型的缩合(如:H2N—CH2— COOH)
甲醛与苯酚(酚醛树脂)
二、减少碳链的反应
1、脱羧反应:
CH3COONa + NaOH——→Na2CO3 + CH4
用类似方法制备苯、CH3CH3、R-H
2、氧化反应: (燃烧、烯、炔的部分氧化、丁烷直接氧化乙酸、苯的同系物氧化成苯甲酸等)
RCH=CH2
3、水解反应:
(酯、蛋白质、多糖等)
4、裂化反应:
C4H10→CH4 + C3H6
三、有机成环反应规律——五元、六元环比较稳定
1、低聚反应
2、分子内(间)脱水——羧酸、醇、酯化、生成酰胺键
3、其他的信息类型
(一)通常由产物逆推到所给原料,采取键的“切割”法。
练习1 由溴乙烷合成1,2-二溴乙烷(无机试剂任选)
练习2 从乙烯合成乙醚
练习3以CH2=CH2和H—18OH为原料,并自选必要有机试剂,合成CH3CO18OC2H5,用化学方程式表示最合理的反应步骤。
练习4 以 对—二甲苯、乙烯、食盐、氧化剂、水为原料合成涤纶树脂
(二)信息给予合成题。
(认真审题、使已有知识与给予知识有机结合)
练习1 以乙烯为初始原料制取正丁醇(CH3CH2CH2CH2OH)。已知:
*有机推断方法:
一、 根据性质推断
物理性质
1.密度比水大的液体有机物 2、密度比水小的液体有机物
3.能发生水解反应的物质 4.不溶于水的有机物
5.常温下为气体的有机物
化学性质
1.能发生银镜反应的物质 2.能使高锰酸钾酸性溶液褪色的物质
3.能使溴水褪色的物质 4.能被氧化的物质
5.显酸性的有机物 6.能使蛋白质变性的物质
7.既能与酸又能与碱反应的有机物8.能与NaOH溶液发生反应的有机物
9、有明显颜色变化的有机反应
有特殊性质的有机物归纳:
(1)含氢量最高的有机物是:CH4
(2)一定质量的有机物燃烧,耗氧气量最大的是:CH4
(3) 完全燃烧时生成等物质的量的 CO2和H2O的:烯烃、环烷烃、饱和一元醛、酮、酸、酯;(符合通式CnH2nOx 的物质,x= 0,1,2…
(4) 使FeCl3溶液显特殊颜色的:酚类化合物;
(5) 能水解的:酯、卤代烃、糖类(单糖除外)、肽类(包括蛋白质);
(6) 含有羟基的:醇、酚、羧酸、糖类 (能发生酯化反应,有些可与Na作用生成H2);
(7) 能与Na2CO3作用生成CO2的:羧酸类;
(8) 能与NaOH发生中和反应的:羧酸和酚类等。
二、根据转化关系推断
重要的转化关系
(1) 双键的加成和加聚:双键之一断裂,加上其它原子或原子团或断开键相互连成链。
(2) 醇的消去反应:总是消去和羟基所在碳原子相邻的碳原子上的氢原子,若没有相邻的碳原子(如 CH30H)或相邻的碳原子上没有氢原子[如(CH3)3CCH20H]的醇不能发生消去反应。
(3) 醇的催化氧化反应:和羟基相连的碳原子上若有二个或三个氢原子,被氧化为醛;若有一个氢原子被氧化为酮;若没有氢原子,一般不被
氧化。
(4) 酯的生成和水解及肽键的生成和水解
(5) 有机物成环反应:
a.二元醇脱水, b.羟酸的分子内或分子间酯化
c.氨基酸脱水 d.二元羧酸脱
三、 根据数据推断
这类题目同时考查考生的计算能力和推断能力。
解此类题的依据是:①有机物的性质, ②有机物的通式。
解此类题的步骤是: (1).由题目所给的条件求各元素的原子个数比,
(2).确定有机物的实验式(或最简式),
(3).根据分子量或化学方程式确定分子式,
(4).根据化合物的特征性质确定结构式。
其程序可概括为: 原子个数比----实验式----分子式----结构式。
重要的数据关系
1.不饱和键数目的确定
①一分子有机物加成一分子H2(或Br2)含有一个双键;
②加成两分子H2(或Br2)含有一个叁键或两个双键;
③加成三分子H2含有三个双键或一个苯环。
④一个双键相当于一个环。
2.符合一定碳氢比(物质的量比)的有机物
C:H=1:1的有乙炔、苯、苯乙烯、苯酚等
C:H=1:2的有甲醛、乙酸、甲酸甲酯、葡萄糖、果糖、单烯烃等。
C:H=1:4的有甲烷、甲醇、尿素等
M[C(n+1)H2(n+1)+2O]=M[CnH2nO2]
3.式量相同的有机物和无机物(常见物质)
①式量为28的有:C2H4、N2、CO
②式量为30的有:C2H6、NO、HCHO
③式量为44的有:C3H8、CH3CHO、C02、 N20
④式量为46的有:C2H50H、HCOOH,NO2
⑤式量为60的有:C3H70H、CH3COOH、 HCOOCH3、 SiO2
⑥式量为74的有:C4H9OH、C2H5COOH、 C2H5OC2H5、Ca(OH)2、HCOOC2H5、CH3COOCH3
⑦式量为100的有:CaCO3、KHCO3
⑧式量为120的有:C9H12(丙苯或三甲苯或甲乙苯)、MgS04、NaHS04、KHS03、CaS03、 NaH2PO4、MgHP04、FeS2。
⑨式量为128的有:C9H20(壬烷)、C10H8 (萘)
够不够?
⑦ 塑料的种类有几种
常用塑料的种类有:
①聚氯乙烯(PVC) ②聚乙烯(PE) ③聚丙烯(PP) ④聚苯乙烯(PS) ⑤ABS塑料
⑧ 分离与富集
铼的分离与富集常采取蒸馏、共沉淀、离子交换与吸附、溶剂萃取、液膜分离等方法进行。
62.5.2.1 蒸馏分离法
利用R2O7(或HReO4)的易挥发性,在200~220℃滴加氢溴酸或盐酸于高沸点酸如高氯酸、硫酸或磷酸溶液中,或滴加硝酸于硫酸溶液中可将铼蒸馏出来。用饱和碳酸钠溶液为吸收液,部分As3+、Se4+、Se6+、Te4+和Hg,及大部分Sb3+、Sb5+、Os、Cr、Sn、Ge、Tl+和少量钼随铼一并进入蒸馏液中。蒸馏时以水蒸汽、二氧化碳、氮气或空气为载气。如利用水蒸汽通入硫酸溶液,在270~290℃下蒸馏铼,仅Se4+、Se6+、As3+及Re-一并进入蒸馏液中,而Hg、Mo、Bi及Te只有很少量被蒸馏出来。
62.5.2.2 共沉淀分离法
(1)以砷(Ⅲ)为聚集剂
在4mol/LHCl或3mol/LH2SO4中,以砷(Ⅲ)为聚集剂,通入硫化氢可使微量铼与之共沉淀,生成的棕褐色Re2S7易溶于含过氧化氢的氢氧化铵或氢氧化钠溶液中。
(2)高铼酸亚铊
在pH4~6的乙酸盐溶液中,高铼酸(ReO-4)与铊(Ⅰ)生成高铼酸亚铊沉淀,可与铜、锌、镉、钴、镍、铝、锰、钙、镁等分离,钼酸与铊(Ⅰ)也生成沉淀,可用柠檬酸掩蔽(10mg柠檬酸可掩蔽16mg钼)。
(3)氯化四苯(TPAC)
在5mol/LHCl至6mol/LNH4OH中均可用TPAC定量地沉淀ReO-4。Hg2+、Bi3+、Pb2+、Ag+、Sn2+、VO2+,以及MnO-4、ClO-4、IO-4、I-、Br-、F-和SCN-等离子干扰测定。VO3-4及WO2-4无干扰。如在含有0.6mol/L酒石酸盐的氨性介质中且调节pH8~9的溶液中进行沉淀,则可与Hg2+、Bi3+、Ni2+、Fe3+、Pb2+、Ag+、Sn2+、VO2+、Zn2+、Cu2+、SO2-4、PO3-4、AsO3-3、VO3-4、MoO2-4、WO2-4、BO3-3等分离,MnO-4与铼同时沉淀。
(4)高氯酸四苯(TPAP)
微克量铼可在酸性、中性或碱性溶液中定量地与TPAP生成沉淀,MoO2-4不沉淀。在碱性溶液中(约2mol/LNaOH)进行沉淀,铼可与大量MoO2-4、WO2-4、AsO3-3、AsO3-4、ZnO2-2、AlO-2、CrO2-4、VO2-3、SeO2-3、NO-3、PO3-4等分离,析出的沉淀溶于热水后用2mol/LHClO4或过量高氯酸处理以交换出高铼酸离子,可用于光度法测定辉钼矿中的铼。
在pH<7.5,以铁(Ⅲ)共沉淀钼,ReO-4留在溶液中。
在pH3.5~7.5的乙酸盐缓冲溶液中,8-羟基喹啉可沉淀钼而铼留于溶液中。
在冷的(1+9)硫酸或盐酸溶液中,在Fe3+存在下,用Th4+、Rb2+或AsO3-4为聚集剂,铜铁试剂可定量地沉淀钼,残余的铜铁试剂用三氯甲烷萃取除去,铼留于水溶液中。
62.5.2.3 离子交换与吸附法
(1)纸色层析分离
以异丙醇-浓硝酸-水(7+2+2)的混合溶液为展开剂,使铼与钨、钼分离。Rf值分别为0.90、0.33和0。此法可分离10倍~100倍钨及钼存在下的1μg的铼。
(2)阳离子交换树脂
在pH1.5~5.0的盐酸中,钼以MoO2-4形式与大多数金属(铁、铜、镍、锰、铝等)一并被树脂吸附,而ReO-4进入淋洗液中,可使铼与钼分离。
(3)阴离子交换树脂
阴离子交换树脂分离富集情况及其他树脂交换分离富集铼,见表62.16、表62.17。
表62.16 阴离子交换树脂分离富集情况
续表
表62.17 其他树脂交换分离富集铼
(4)活性炭吸附
常温下(25℃),活性炭在pH8.2~9.0时,对铼、钼的吸附率分别为E(Re):96.1%~93.0%,E(Mo):0.7%~0.001%。此条件能成功分离铼和钼。
62.5.2.4 溶剂萃取法
(1)萃取分离钼
a.羟基喹啉-氯仿。在pH1.5~5.6的乙酸-乙酸铵缓冲溶液中,1g/L8-羟基喹啉/氯仿可萃取钼及钨,铼不被萃取。
b.铜铁试剂-氯仿。在1mol/LH2SO4中,用10g/L铜铁试剂-氯仿可定量萃取分离钼,铼不被萃取。
c.乙基黄原酸钾-三氯甲烷。在2mol/LHCl或pH9~11的溶液中,钼与乙基黄原酸钾生成配合物定量地被三氯甲烷萃取,铼不被萃取,适用于分离含铜的钼精矿中的铼。
d.N-苯甲酰苯胲-氯仿。在0.752~2mol/LH2SO4或pH3的盐酸介质中,钼定量地被N-苯甲酰苯胲-氯仿萃取,可从微克量的铼中分离毫克量的钼。
e.磷钼杂多酸-乙酸戊酯。在0.52~0.7mol/LHCl中,钼作为磷钼杂多酸定量地被乙酸戊酯萃取,铼不被萃取。
(2)萃取分离铼
a.喹啉。在4mol/LNaOH溶液中,ReO-4定量地被喹啉萃取,可与50mg的Mo6+,100mgW6+、V5+、Se4+、As3+、As5+分离,蒸发除去喹啉或用水和四氯化碳反萃取使铼转入水相。
b.丁酮。在5mol/LNaOH溶液中,ReO-4可被丁酮萃取(3次萃取几乎接近定量)。可与Au、Ag、Bi、Cd、Fe2+、Ga、Mo6+、Pb、Pt4+、Sb3+、W、Zn等分离,用水和氯仿(7+10)反萃取,铼进入水相。
c.甲基异丁酮。在4mol/LH2SO4中,微克量ReO-4定量地被甲基异丁酮萃取,可与Mo(Ⅵ)(<0.18%)等分离,铼可用稀氢氧化钠反萃取。
d.8-巯基喹啉-三氯甲烷。在5~11.5mol/LHCl中,铼的8-巯基喹啉配合物被三氯甲烷萃取。
e.三辛胺/三壬胺-二甲苯/三氯甲烷。在1~6.0mol/LH2SO4中,ReO-4定量地被三辛胺、三壬胺的二甲苯或三氯甲烷萃取,可与Zn、Cd、Co、Ni、Mn2+、Cr3+、Fe、In、Bi、Cu、Al、Ca、Mg、V5+、W5+、Mo6+等分离,被萃取的微量钼可用饱和草酸溶液洗除,加入草酸钠或硫酸钠有利于抑制微量钼的萃取,萃取的铼可用50~100g/L的氢氧化钠、碳酸钠、氢氧化铵溶液反萃取。
f.三丁胺-氯仿。在pH1~6.5HCl介质中,ReO-4定量地被三丁胺-氯仿萃取,可与60倍的Mo6+,600倍的Fe3+,6000倍的Ni,7000倍的Co、Pb,10000倍的Ag、Cu,12000倍的Cd等分离,被共萃取的微量Mo6+,可用饱和草酸钠溶液洗除。
g.N-苄替苯胺-氯仿。在3.5~4.5mol/LH2SO4中,ReO-4定量地被N-苄替苯胺(C6H5CH2NHC6H5)/氯仿萃取,可与Cu、Cd、As3+、Bi、Fe3+、Sb3+、Cr3+、Co、Ni、Ga、In、Ce3+、Ca、Mg、Sr、Se4+、Te4+、Ag、Hg2+、Tl3+等分离,Pd2+、Pt4+、V5+、Fe3+、Cr6+、Os6+、Ru6+、Ti4+、Ce4+与ReO-4同时被萃取,但除Pd2+、Pt4+以外的其他元素加入抗坏血酸后均不被萃取,U6+和Th也部分被共萃取,柠檬酸、酒石酸、草酸、抗坏血酸对萃取ReO-4无影响。有机相中的铼可用反萃取。
h.氯化四苯-三氯甲烷或二氯乙烷。在pH8~9且含用酒石酸或柠檬酸盐的溶液中,ReO-4与氯化四苯离子生成的缔合物可定量地被三氯甲烷或二氯乙烷萃取。当溶液中钼与铼之比为106∶1可定量分离钼。20mg的Se4+、Ni、Fe3+、Pb、Zn、Cu2+、AsO2-3、AsO3-4、WO2-4、SiO2-3、SO2-4、PO3-4不被萃取。有机相中的铼可用浓盐酸反萃取,也可在有机相直接测定铼。或将萃取液蒸干后,用水浸取并通过Dowex-50阴离子交换树脂(H+型),四苯离子被树脂交换吸附,ReO-4进入洗脱液中。
i.其他溶剂萃取。见表62.18。
表62.18 其他溶剂萃取
62.5.2.5 液膜分离法
以二苯并-18-冠-6(DBC)-L113B-(CCl4+n-Hrxance)-NaClO4溶液组成的液膜体系。在下列条件下:膜相,DBC-L113B-(CCl4+n-Hrxance)体积比为7+4+89;内相,0.2mol/LNaClO4溶液,油内比为1+1;外相2mol/LH2SO4介质,乳水比为20+100;室温(15~36℃),搅拌速度250r/min;富集时间8min。200μgRe(Ⅶ)的迁移率(回收率)达99.5%~100.5%。50mgMo6+、W6+、Fe3+、Al3+、Cu2+、Ni2+、Mn2+、Sr2+、Ba2+、Zn2+、Mg2+、Sn4+、La3+、Y3+、Cr3+、Bi3+、K+、Na+、Li+、NH+4、Cd2+、Cs+,20mgCa2+、Pb2+,5mgPt4+、Pd2+等(均为最大限量),大量Cl-、SO2-4、NO-3、SO2-4、PO3-4等,都不被迁移富集或不影响富集铼。K+存在下,对迁移铼极为有利。富集方法用于钼精矿、多金属矿和合金中铼的硫脲光度法测定,效果较佳。