导航:首页 > 净水问答 > 离子交换法提取谷氨酸流程

离子交换法提取谷氨酸流程

发布时间:2021-02-24 00:06:46

『壹』 离子交换法提取谷氨酸为什么当 ph 达 2.5-3.2 时,ga 含量最高

中最重要的一条是根据分离要求和分离环境保证分离目的物与主要杂质对树脂的内吸
附力有足够的差异容。当目的物具有较强的碱性和酸性时,宜选用弱酸性弱碱性的树脂。
这样有利于提高选择性,并便于洗脱。如目的物是弱酸性或弱碱性的小分子物质时,
往往选用强碱、强酸树脂。如氨基酸的分离多用强酸树脂,以保证有足够的结合力,便于分步洗脱。对于大多数蛋白质,酶和其它生物大分子的分离多采用弱碱或弱酸性树脂,以减少生物大分子的变性,有利于洗脱,并提高选择性

『贰』 如何设计合适的培养基,发酵条件,生产精制谷氨酸

目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短内杆菌、黄容色短杆菌、噬氨短杆菌等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。谷氨酸的生物合成包括糖酵解作用(EMP途径)、磷酸戊糖途径(HMP途径)、三羧酸循环(TCA循环)、乙醛酸循环和丙酮酸羧化支路等。生物合成谷氨酸的主要方式是α-酮戊二酸的还原性氨基化作用。谷氨酸的生物合成受机体内复杂机制的调控。影响谷氨酸发酵过程的参数有很多,谷氨酸发酵过程主要受种子质量,培养基组成,温度,pH以及供氧速率等因素控制。提取谷氨酸常用的工艺为等电点法和离子交换法

『叁』 味精(谷氨酸钠)是怎样从粮食中提取出来的

谷氨酸提取的方法有等电点法、离子交换法、金属盐法、盐酸水解-等电点法、离子交换膜电渗析法等。提取后经精制而得到符合国际标准的谷氨酸钠。成品为无色或白色柱状结晶性粉末。

易溶于水,微溶于酒精,对光、热较稳定。具有很强的肉类鲜味,稀释3000倍仍能尝到其鲜味。与食盐并用可增强其鲜味作用,以1克食盐加入0.1-0.15克谷氨酸钠呈味效果最佳;与肌苷酸和鸟苷酸配合使用,可使鲜味提高4-6倍。

强力味精即为与上述物质混合配制而成。适用于家庭、饮食业及食品加工业,一般用量为0.1-0.5%。

(3)离子交换法提取谷氨酸流程扩展阅读:

味精发展三大阶段:

第一阶段:1866年德国人H·Ritthasen博士从面筋中分离到氨茎酸,他们称谷氨酸,根据原料定名为麸酸或谷氢类(因为面筋是从,小麦里提取出来的)。

1908年日大东京大学池田菊苗试验,从海带中分离到L一谷氨酸结晶体,这个结晶体和从蛋白质水解得到的L一谷氨酸是司样的物质,而且都是有鲜味的。

第二阶段:以面药或大豆粕为原料通过用酸水解的方法生产味精.在1965年以前是用这种方法生产的。这个方法消耗大,成本高,劳动强度大,对设备要求高,需耐酸设备。

第三阶段:随着三科学的进步及生物技术的发展,使味情生产发生了革命性的变化。自1965年以后我国味精都采主以粮食为顷料(玉米淀粉、大米、小麦淀粉、甘薯.定粉)通过微生物发酵、提取、精制而得到符合国京标准的谷氨酸钠,为市场上增加了一种安全又富有营养的调味品,用了它以后使菜肴更加鲜美可口。

『肆』 L-谷氨酸的合成方法

1.可以采用蛋白质水解法和合成法生产谷氨酸,但发酵法是生产谷氨酸的主要方法。发酵生产谷氨酸的碳源是薯类、玉米、木薯淀粉、椰子树淀粉等淀粉的水解糖或糖蜜,也可以是乙酸、液态石蜡(C16石蜡最好)及其他石油化工产品,碳源用以构成微生物细胞和代谢产物中的碳架和能源的营养物质。氮源是铵盐、尿素等,氮是构成菌体细胞蛋白质和核酸等的主要元素,氮也是构成发酵产品谷氨酸氨基的主要组成元素。其他辅助原料为无机盐类,维生素等,例如微生物需要适宜的磷浓度,镁是刺激菌体生长的无机激活剂,钾盐促进产酸,玉米浆提供生物素和有机氮源。此外还包括各种促进剂和添加剂。生产菌是短杆菌(Brevibacterium)、北京棒杆菌(Corynebacterium pekinensis)等。于大型发酵罐中,通气搅拌发酵,温度30-34℃,pH>7-8,经30-40h发酵后,除去细菌,将发酵液中谷氨酸提取出来,精制后即为成品,上述流程中采用等电点法提取,也可采用离子交换法、盐酸盐法、直接浓缩法(以乙酸为原料时)等。发酵法生产的产品为左旋谷氨酸,含量大于98%。每吨谷氨酸消耗淀粉(80%)4000kg,菌种25kg。合成法的优点是不消耗粮食,但生产过程需要高压(约20MPa)、高温(120℃以上),采用有毒原料,设备投资比发酵法高出一倍,得到的消旋谷氨酸还要进拆分,生产工艺复杂。按生产1t 99%的谷氨酸钠(味精)计算,合成法消耗丙烯腈640kg,年产量在5000t以上时,生产成本与发酸法接近。
2.发酵法
3.化学合成法
4.本品主要用发酵法生产。以糖蜜或淀粉为原料,用谷氨酸棒杆菌或小球菌或节杆菌作菌种,以尿素为氮源,在30~32℃下进行发酵,发酵完毕,将发酵液分离出菌体后,用盐酸调节ph值至3.0时,作等电点提取,经分离得谷氨酸结晶,母液中的谷氨酸再经732离子交换树脂提取,经结晶、烘干,得成品。
5. 烟草:BU,22;FC,21;左旋体可由动植物蛋白质经水解后再经脱色、浓缩、结晶而得。也可由糖或淀粉用发酵法制得。外消旋体可用丙烯腈为原料合成。
以淀粉或糖蜜为原料,经发酵、提纯而得。所用菌种主要有产谷氨酸小球菌(Micrococcusglutamicus),以及棒状杆菌属、短杆菌属、小杆菌属和节杆菌属等。
以面筋为原料,经酸水解得L-谷氨酸,再经盐酸盐化,得L-谷氨酸盐酸盐,用L-谷氨酸盐酸盐与苯胺中和反应得粗产物,经过滤、干燥得产品。

『伍』 谷氨酸棒状杆菌怎样提取

就是这样 1、15n稳定性同位素标记l-谷氨酸的生产工艺 2、l-谷氨酸产生菌和生产l-谷氨酸的方法 3、l-谷氨酸的制备方法 4、l-谷氨酸发酵新工艺 5、γ-聚谷氨酸及其盐的制备方法 6、编码青霉素结合蛋白的基因和生产l-谷氨酸的方法 7、产l-谷氨酸棒状细菌及生产l-谷氨酸的方法 8、产l-谷氨酸细菌和生产l-谷氨酸的方法 9、从等电点结晶母液中回收谷氨酸的新工艺 10、从发酵液中提取谷氨酸的方法 11、从谷氨酸发酵液中分离菌体的方法 12、从谷氨酸发酵液中回收谷氨酸及相关物质的方法 13、从谷氨酸发酵中回收二氧化碳的方法 14、发酵产生l-谷氨酸的方法 15、发酵生产l-谷氨酸的方法 16、发酵生产l-谷氨酸的方法2 17、甘氨酰甘氨酰天冬氨酰谷氨酸 18、高纯度n-(4-[n,n-二(2-碘乙基)氨基]苯氧羰基)-l-谷氨酸 19、谷氨酸发酵液等电点提取的前处理方法 20、谷氨酸发酵液两步凝聚除菌体方法 21、谷氨酸钠制备方法 22、含锌谷氨酸发酵废液的脱锌处理 23、聚-γ-谷氨酸产生菌及生产聚-γ-谷氨酸的方法 24、离子交换法回收谷氨酸的洗脱新工艺 25、连续发酵生产l-谷氨酸的方法 26、连续提取谷氨酸的方法 27、流加等电结晶与离子交换耦合的提取谷氨酸新工艺 28、柠檬酸、谷氨酸和赤霉酸的固体发酵设备 29、凝聚除菌体提取谷氨酸的方法 30、浓缩含菌体发酵液提取谷氨酸的方法 31、全母液离子交换法回收谷氨酸工艺 32、生产l-谷氨酸、l-脯氨酸或l-精氨酸的细菌和方法 33、生产l-谷氨酸的方法 34、生产l-谷氨酸的方法 35、生产l-谷氨酸的方法 36、生产l-谷氨酸的细菌和生产l-谷氨酸的方法 37、生产l-谷氨酸的细菌和生产l-谷氨酸的方法 2 38、生产谷氨酸的方法 39、提高植物谷氨酸含量的方法以及具有较高谷氨酸含量的植物 40、通过伴随有沉淀的发酵生产l-谷氨酸的方法 41、通过补加糖生产高浓度聚谷氨酸的方法 42、通过发酵生产l-谷氨酸的方法 43、通过发酵生产l-赖氨酸及l-谷氨酸的方法 44、通过发酵制备l-谷氨酸的方法 45、通过发酵制备l-谷氨酸的方法 46、味精生产中谷氨酸等电母液综合利用治理方法 47、锌盐法提取谷氨酸无锌排放新工艺 48、新的谷氨酸衍生物的制备方法 49、絮凝气浮法除菌后提取谷氨酸的方法 50、一水合谷氨酸一钠晶体的结晶方法 51、一种n-苄氧羰基谷氨酸的生产方法 52、一种从发酵液中提取谷氨酸的方法 53、一种调味液及提取谷氨酸的生产方法 54、一种谷氨酸提取方法 55、一种净化谷氨酸发酵液的方法 56、一种利用碱性离子交换树脂提取谷氨酸的方法 57、一种提取谷氨酸的方法 58、一种味精废水谷氨酸一次离心分离回收的方法和设备 59、一种以淀粉为原料的微生物谷氨酸高糖发酵控制工艺 60、一种制备n-芳酰基-l-谷氨酸的方法 61、以双酶法制糖生产谷氨酸钠 62、以糖蜜为原料生产谷氨酸高浓度废液治理工艺 63、应用分离膜超滤谷氨酸发酵液提高提取收率的方法 64、由对硝基苯甲酰谷氨酸还原为对氨基苯甲酰谷氨酸新工艺 65、玉米粗淀粉制糖并进行谷氨酸发酵生产工艺 66、制备l-谷氨酸的方法 67、制备l-谷氨酸的方法2 68、制备谷氨酸一纳的方法 69、制备结晶的谷氨酸及其盐的方法

『陆』 氯碱工业中用离子交换膜法电解制碱的主要生产流程示意图如图1所示;氯碱工业中用离子交换膜法电解制碱的

(1)由图示可知电源负极产生了氢氧化钠溶液,所以溶液的pH值升高;
(2)加入的试回剂与硫酸根离子答反应生成硫酸钡沉淀,加入的试剂必须是可溶性的钡盐,还不能引入新的阴离子,如果用硝酸钡就会引入硝酸根离子了,所以用氯化钡试剂;
(3)根据除去钙离子用碳酸根离子进行沉淀,除去镁离子用氢氧根离子进行沉淀,除去硫酸根离子用钡离子沉淀,过量的钡离子需要用碳酸根离子除去,加入Na2CO3的顺序必须在加入钡离子的后面即可,所以b正确;
(4)根据循环图,可以循环使用的物质是氯化钠;
(5)因为氯化钠的溶解度随温度变化不大,所以可以采用蒸发溶剂结晶再进行过滤的方法,除去氢氧化钠中的氯化钠.
故答案为:(1)升高;(2)c;(3)b;(4)淡盐水(NaCl);(5)过滤.

『柒』 离子交换法提取生物碱的原理

氨基酸为两性化合物,含有可形成正离子的氨
基和可形成负离子的羧基。因此,应用阳离子交换回树脂和阴离子交换树脂均可对其进行分离和纯化。天然氨基答酸主要来源于蛋白质水解液或微生物发酵液,随其来源不同,体系中氨基酸的含量与半生杂质的类型也有所区别,因而提取分离工艺也不尽相同。用于离子交换树脂从蛋白质水解液中提取分离氨基酸的工艺如下图:
而自然界中尚存在大量的非蛋白氨酸,具有药用价值的就有40余种。如美舌藻中的海人草酸、使君子种子中的使君子氨酸和南瓜子中的南瓜子氨酸,均具有驱蛔虫作用的中草药有效成分,均可用温水、乙醇或乙酸的水溶液提取,再用强酸性阳离子交换树脂进行富集和纯化而得到高纯度的产品。
混合氨基酸一般在阳离子交换树脂上分离纯氨基酸组分,其分离原理是基于树脂对不同氨基酸的选择性。选择性大小的顺序为:碱性氨基酸>中性氨基酸>酸性氨基酸。当解吸时,氨基酸流出顺序正好相反,酸性氨基酸最先流出树脂柱。决定氨基酸流出顺序的另外一个因素是氨基酸侧链的疏水性。
~~~

『捌』 微生物发酵产物离子交换提取法原理

90、稳态:神经系统、体液和免疫系统调节下,内环境的相对稳定
温度、pH、渗透压,水、无机盐、血糖等化学物质含量
血浆 7.35—7.45 缓冲对 NaHCO3/H2CO3 Na2HPO4/NaH2PO4
2/3细胞内液 组织液

91、65%体液 1/3细胞外液 血浆 淋巴
(内环境) 不是血液 血液>血浆>血清
食物 排尿
92、体内水来源 饮水 水排出途径 出汗 皮肤
代谢水(有氧呼吸)面虫、骆驼 呼气 肺
(氨基酸脱水缩合) 排遗 消化道
93、K不吃也排 不经过出汗排
肾上腺分泌醛固酮(固醇) 保Na排K
高温工作、重体力劳动、呕吐、腹泻→→应特别注意补充足够的水、Na(食盐)
细胞外液渗透压下降,出现四肢发冷、血压下降、心率加快
K对细胞内液细胞渗透压起决定作用,维持心肌紧张、心肌正常兴奋性 K心
94、血糖三来源(食物、分解、转化) 三去向
糖的主要功能:供能
胰岛素 唯一降血糖激素;增加糖的去路,减少糖的来源 胰高血糖素、 肾上腺素 升血糖
胰高血糖素促进胰岛素分泌,胰岛素却抑制胰高血糖素分泌
血 糖 升 高
↓ ↑ ↑
下丘脑某区域→胰岛B细胞 胰高血糖素↑ 肾上腺素↑
↓ ↑ ↑
胰岛素↑ 胰岛A细胞 肾上腺髓质
↓ ↑ ↑ 下丘脑另一区域
血 糖 降 低
<50-60 低早 <45 低晚 >130高 >160-180糖尿
一次性摄糖过多,暂时尿糖 持续糖尿不一定糖尿病,如肾炎重吸收不行
糖尿病 血糖高且有糖尿 验尿验血 三多一少症状?
不吃少吃多吃含膳食纤维多的粗粮和蔬菜
95、营养物质:
蛋白质不足:婴幼儿、儿童、少年生长发育迟缓、体重过轻 成年人浮肿
提供能量
营养物质功能 提供构建和修复机体组织的物质
提供调节机体生理功能的物质
维生素:维持机体新陈代谢、某些特殊生理功能

VA:夜盲症
维生素 VB:脚气病
VC:坏血病
VD:佝偻病、骨软化病、骨质疏松症
96、温度感受器分为冷觉感受器和温觉感受器(分布皮肤、粘膜、内脏器官)
体温来自代谢释放热量(不是ATP提供),体温恒定是产热量,散热量动态平衡结果
寒冷 炎热
↓ ↓
皮肤冷觉感受器 温觉感受器 血管
↓传入神经 ↓ 立毛肌
下丘脑体温调节中枢 下丘脑 骨骼肌
传出神经 ↓ 汗
皮肤血管收缩 骨骼肌战粟(产能特多) 血管舒张
皮肤立毛肌收缩 皮肤立毛肌收缩 汗液分泌增多
↓鸡皮疙瘩 肾上腺素↑
缩小汗毛孔 甲状泉激素↑
减少散热 增加产热 散热量增加 不能减少产热
调节水分、血糖、体温
97、下丘脑 分泌激素:促激素释放激素 抗利尿激素
感受刺激:下丘脑渗透压感受器
传导兴奋:产生渴觉
第一道防线:皮肤、粘膜等
非特异性免疫(先天免疫)第二道防线:体液中杀菌物质、吞噬细胞
98、免疫 特异性免疫(获得性免疫) 第三道防线:体液免疫和细胞免疫
在特异性免疫中发挥免疫作用的主要是淋巴细胞
淋巴细胞的起源和分化:胸腺—T 骨髓—B
免疫细胞:B、T
免疫系统的物质基础 免疫器官:扁桃体、淋巴结、脾
免疫物质:抗体、淋巴因子(白介素、干扰素)
99、抗原特点:①一般异物性 但也有例外:如癌细胞、损伤或衰老的细胞
②大分子性
③特异性 抗原决定簇(病毒的衣壳)
100、体液免疫: 记忆细胞
↓ ↓再次受相同抗原刺激
抗原→→吞噬细胞→→T细胞→→B细胞→→→效应B细胞→→→抗体
↑ (摄取处理) (呈递) (识别)
感应阶段 反应阶段 效应阶段
效应B细胞产生:抗体(免疫球蛋白)、抗毒素、凝集素
效应T细胞产生:淋巴因子、干扰素、白细胞介素
识别抗原:B细胞、效应T细胞、记忆B/T
效应B细胞获得有三途径(直接、间接、记忆)
记忆细胞受相同抗原再次刺激后引起的二次免疫反应:更迅速、更强
再次接受过敏原(概念)
过敏反应 抗体分布 细胞表面
组织胺:体液调节
101、免疫失调引起的疾病 自身免疫疾病:风湿…类风湿…系统性红斑狼疮
先天性:先天性胸腺发育不全
免疫缺陷病 获得性:艾滋病、肺炎、气管炎
(人类免疫缺陷病毒) HIV↓攻击T细胞
(AIDS) 获得性免疫缺陷综合症
102、色素吸收、传递、转换光能 色素不能储存光能
蛋白质、氨基酸也不能储存
少数特殊状态叶绿素a 最终电子供体:水
高能量、易失电子 光能→ 电能 最终电子受体:NADP+
103、C4植物:玉米、高梁、甘庶、苋菜
既C3又C4 CO2固定能力强 先CO2+C3→C4
C3、C4叶肉细胞都含正常叶绿体
选修 C3维管束鞘细胞无叶绿体
图 C4维管束鞘细胞含无基粒的叶绿体 不进行光反应
(P29) C4植物花环型结构 里圈:维管束鞘细胞 外圈:部分叶肉细胞
降低呼吸消耗 增加净光合量
104、提高产量 延长光合作用时间 光:光质、强度、长短
提高农作物对 增大光合作用面积 温度:影响酶的活性
光能利用率 提高光合作用效率 水
矿质元素 N、P、K、Mg
CO2 农家肥、CO2发生器
105、生物固氮:N2 → NH3
根瘤菌的特异性:蚕豆根瘤菌侵入蚕豆、菜豆、豇豆;大豆根瘤菌侵入大豆。
N素
根瘤菌 有机物 豆科植物 异养需氧
共生固氮菌 根瘤 薄壁细胞 愈伤组织
固氮菌 自生≠自养 根瘤菌拌种 豆科植物绿肥
自生固氮菌:圆褐固氮菌(固氮+激素)
生物固氮(主:根瘤菌) 工业固氮 高能固氮
106、N循环 硝化、反硝化、氨化作用
反硝化:氧气不足NO3-→N2
自生固氮菌的分离原理:无氮培养基对固氮菌的选择生长
物质基础:线粒体、叶绿体中的DNA(质基因)
…线粒体
107、细胞质遗传 典型代表 …叶绿体 花斑植株→三种
特点 母系遗传(受精卵中的细胞质几乎全来自卵细胞)
后代性状不出现一定分离比
(形成配子时,质基因不均等分配)
编码区:编码蛋白质 连续的
原核细胞 非编码区 编码区上游:RNA聚合酶结合位点
基因结构 调控 编码区下游
108、基因的结构 真核细胞 非编码区
基因结构 编码区 内含子:非编码序列
外显子:能编码蛋白质内含子>外显子
原核基因无外显子内含子之说
主要分布于微生物
剪刀:限制性内切酶 特异性(专一性)
(200多种) 获得粘性末端
109、基因的操作工具 针线:DNA连接酶:扶手(磷酸二脂键)不是踏板(氢键)
条件①复制保存②多切点③标记基因
种类:质粒、病毒
运输工具:运载体 ①染色体外小型环状DNA
②存在于细菌、酵母菌
质粒特点 ③质粒是常用的运载体
④最常用:大肠杆菌
⑤对宿主细胞的生存无
基因工程 (基因拼接技术、DNA重组技术、转基因技术) 决定性作用
直接分离 常用鸟枪法
提取目的基因 人工合成(反转录法、根据已知AA序列合成DNA)
目的基因与运载体结合 同一种限制酶
110、基因操作步骤 将目的基因导入受体细胞→细菌、酵母菌、动植物
CaCl2处理细胞壁 ( 受精卵好 繁殖速度快)
目的基因的检测和表达:标记基因、目的基因是否表达?
逆转录 碱基互补配对
mRNA 单链DNA 双链DNA
推测 推测 合成
氨基酸序列 mRNA序列 DNA碱基序列 目的基因
药(胰岛素、干扰素、白细胞介素、乙肝疫苗)
111、基因工程的成果 治病:基因诊断与基因治疗(基因替换)
新品种(转基因) 食品工业(食物)
环境监测(DNA分子杂交 探针)
生物固氮、基因诊断、基因治疗、单细胞蛋白(微生物菌体本身)、
单克隆抗体、生物导弹(单抗+抗癌药物)
112、 间接联系 核心 核膜
高尔基体 内质网 细胞膜
线粒体膜
间接(具膜小泡) (内吞外排说明双向)
分泌蛋白:抗体、蛋白质类激素、胞外酶(消化酶)等分泌到细胞外
粗面内质网上的核糖体 内质网运输加工 高尔基体加工 成熟蛋白质 胞外
113、生物膜系统(不等于生物膜):细胞膜、核膜及由膜围绕而成的细胞器
离体→营养物质+激素 适宜温度+无菌
植物组织培养 离体→愈伤组织→根芽(胚状体)→植物体
选无病毒 尖(生长点) 紫草素
114、植物细胞工程 两种不同→杂种细胞→新植物体
植物体细胞 去掉细胞壁→原生质体→杂种细胞→新植物体
杂交 种间存在生殖隔离 不能有性杂交
好处:克服远源杂交不亲和障碍 培育新品种
是其它动物细胞工程技术的基础
动物细胞培养 液体培养基:动物血清
115、 动 取自动物胚胎或出生不久的幼龄动物的器官或组织
物 用胰蛋白酶处理
细 原代培养→传代培养(细胞株→细胞系 遗传物质发生改变)
胞 灭活的病毒做诱导剂+物理、化学方法
工 动物细胞融合 最重要用途:制备单克隆抗体
程 理论基础:细胞膜的流动性
单克隆抗体→指单个B淋巴细胞经克隆形成的细胞群产生的化学性质单一、特异性强的抗体(优点:特异性强、灵敏度高)。每一个B淋巴细胞只分泌一种特异性抗体(共百万种) *杂交瘤细胞 *生物导弹
116、微生物包含了除植物界和动物界以外的所有生物
质粒(小型环状DNA)控制抗药性、固氮、抗生素生成
核区(大型环状DNA)控制主要遗传性状 有的细菌有荚膜、芽孢、鞭毛
碳源:无机/有机碳源 自养/异养
117、 微生物生长 氮源:加不加额外的氮源
所需的营养物质 生长因子:(维生素、氨基酸、碱基→构成酶和核酸)
水:
无机盐:
固体培养基:分离、鉴定、计数
物理性质 半固体培养基:运动、保藏菌种
液体培养基:工业生产
118、培养基 天然培养基:工业生产
化学性质 合成培养基:分类鉴定
选择培养基 青霉素→选出酵母菌、霉菌等真菌
用途 NaCl:金黄色葡萄球菌
鉴定培养基:伊红美蓝→大肠杆菌→深紫色和金属光泽
自己设计实验:把混合在一起的圆褐固氮菌、硝化细菌、大肠杆菌区分开,并筛选纯种。

酶合成的调节 诱导酶:基因和诱导物控制
119、微生物代谢调节 酶活性的调节 结构改变 可逆 快速 准确
必需物质,一直产生 氨基酸、核苷酸、维生素
初级代谢产物 无种的特异性 多糖、脂类
120、代谢产物 非必需物质,一定阶段 抗生素、毒素
次级代谢产物 有种的特异性 四素 色素、激素
121、微生物群体生长曲线: 3

2 4
1

(1)调整期:代谢活跃,开始合成诱导酶 初级代谢产物收获的最佳时期
(2)对数期:形态和生理特性稳定,代谢旺盛;科研用菌种,接种最佳时期
(3)稳定期:次级代谢产物收获最佳时期,芽孢生成(种内斗争最剧烈)
及时补充营养物质,可以延长稳定期
(4)衰亡期:多种形态,出现畸形,释放次级代谢产物 生存环境恶劣
与无机环境斗争最激烈的是4衰亡期。
营养物质消耗有害代谢产物积累PH不适宜导致3.4时期的出现。
注意:前三个时期类似“S”型增长曲线,但是多了衰亡期
122、影响微生物生活的环境因素
PH值:影响酶的活性、细胞膜的稳定性,从而影响微生物对营养物质的吸收
温度:影响酶和蛋白质的活性
O2浓度:产甲烷杆菌
123、高压蒸汽灭菌法:1/5、1/2、2/3、75% 由里向外、细密、不重复
溶化后分装前必须要 调节pH
细菌培养的过程:培养基的配制→灭菌→搁置斜面→接种→培养观察
实例:谷氨酸发酵(黄色短杆菌、谷氨酸棒状杆菌)
概念:
菌种选育:诱变育种、基因工程、细胞工程
培养基的配制:成分、比例,pH适宜
124、发酵工程 内容 灭菌:去除杂菌
扩大培养和接种:菌种多次培养达到一定数量
发酵过程:(中心阶段)控制各种条件,生产发酵产品
分离提纯 菌体:过滤、沉淀(单细胞蛋白即微生物菌体本身)
代谢产物:蒸馏、萃取、离子交换
应用 医药工业:生产药品和基因工程药品
食品工业:传统发酵产品、食品添加剂、单细胞蛋白等
125、 C/N=4/1 菌体大量繁殖但产生的谷氨酸少(P79)
记住 C/N=3/1 菌体繁殖受抑制,但谷氨酸的合成量大增
溶氧不足: 产生乳酸或琥珀酸
pH呈酸性: 产生乙酰谷氨酰胺(P95)
专家提供:

『玖』 如何从味精中提取氨基酸(谷氨酸)

在一个透明的玻璃杯中放入小半杯水,向其中加入味精,用筷子搅拌,使味精溶内解,一直加到容味精无法溶解的时候停止,将杯中的味精溶液倒入另一个玻璃杯中,并向其中缓慢加入白醋,(一定要缓慢加入)边加边搅拌,你会发现杯中出现了一些白色沉淀,这就是氨基酸的一种(谷氨酸)。

『拾』 谷氨酸提取过程和方法

高中生物貌似讲过
培养黄色短杆菌或谷氨酸棒状杆菌
用蒸馏或萃取的方法
这是教材理讲的 很粗浅

阅读全文

与离子交换法提取谷氨酸流程相关的资料

热点内容
液相用溶剂过滤器 浏览:674
纳滤水导电率 浏览:128
反渗透每小时2吨 浏览:162
做一个纯净水工厂需要多少钱 浏览:381
最终幻想4回忆技能有什么用 浏览:487
污水提升器采通 浏览:397
反渗透和不发渗透净水器有什么区别 浏览:757
提升泵的扬程 浏览:294
泽德提升泵合肥经销商 浏览:929
饮水机后盖漏水了怎么办 浏览:953
小型电动提升器 浏览:246
半透膜和细胞膜区别 浏览:187
废水拖把池 浏览:859
十四五期间城镇污水处理如何提质增效 浏览:915
怎么测试空气净化器的好坏 浏览:519
提升泵是干嘛的 浏览:744
布油做蒸馏起沫咋办 浏览:252
广州工业油烟净化器一般多少钱 浏览:204
喜哆哆空气净化器效果怎么样 浏览:424
油烟净化器油盒在什么位置 浏览:582