㈠ 豆腐废水发臭了怎么净化
(1)AF工艺:AF处理豆制品废水的填料主要采用软性和半软性材料,处理规模变化大,对豆制品废水具良好的去除效果。有研究指出,采用半软性的盾式填料在处理过程中不易堵塞,生物膜均匀,处理效果优于软性填料。
(2)AFB:中温条件下,AFB处理豆制品废废水的最大去除负荷率达1810kgCOD•m-3d-1,当COD负荷率保持于1010kg•m-3d-1时,COD的去除效果最好,达90%以上。该工艺对污染物的降解彻底,SS的去除率高,抗pH冲击能力强,产气率高。
(3)UASB[12~14]:这种工艺处理豆制品废水时启动过程快,易于形成颗粒化的活性污泥;稳定行时,COD去除率保持在80%的最大容积负荷率达20kgm-3d-1,产气率达到1016m3m-3d-1,生产性规模运行时;在HRT2d,温度30~32℃条件下,容积负荷率可达515~715kgm-3d-1,COD的总去除率达9715%,其抗冲击负荷和低pH的能力也很强。UASB处理豆制品废水有处理效率高、三相分离效果好、污泥沉降性好的优点。
㈡ 豆制品污水处理/豆腐污水好处理吗
豆制品食品厂在我国分布十分广泛,由于生产工艺简单,水污染不严重,豆制品的污水处理一直不被重视。但是,由于越来越现代化的密集型生产,导致豆制品企业排放的污水也开始对环境造成危害了,因此,豆制品污水处理设备也渐渐被人们所熟知。豆制品污水设备原理并不复杂,了解豆制品污水处理设备,就要先了解豆制品生产工艺以及排污情况。
豆制品的主要生产原料是大豆。晒干后的大豆经筛选去除杂质后,用水浸泡、淘洗去除灰份,漂洗至洁净,使其充分吸水膨胀,然后用打浆机磨碎,用水调成豆浆。豆浆蒸煮后,根据不同的产品,加人不同量的卤水,搅拌均匀,压滤脱水后,可制成各种豆腐制品。
豆制品废水处理设备豆腐生产工艺:风选一水洗一浸泡一煮浆一点卤一压滤一成品豆腐生产过程中的废水排放废水水量在豆腐生产的过程中,产生大量的废水,废水主要来源于水洗、浸泡和压滤过程,另有部分冲洗水废水。各股废水的水量和浓度会随着生产工艺、产品类别、生产习惯等的不同而不同。
我国的豆腐产量大,由豆腐生产而排放大量的废水,废水中的有机物污染物浓度高,对水环境污染严重,现在还没有很好的、专门化的处理技术,对此进行厌氧技术。采用厌氧为主的技术,处理豆腐废水,COD去除率高,操作管理简便,运行费用低,将是一种处理豆腐废水的首选技术。豆腐生产废水属于豆制品废水,豆制品废水处理方法有氧生物处理、好氧处理、厌氧-氧结合处理等。
豆制品废水处理设备厌氧生物处理豆制品废水处理的厌氧生物处理工艺有:厌氧滤床(AF)、厌氧流化床(AFB)、上流式厌氧污泥床(UASB)、折流板反应器(ABR)、两相厌氧处理工艺等。
当前的豆制品污水处理设备多数是一体化的复合型设备,体积小、结构简单,便于维护是豆制品污水处理设备的主要特点,由于其造价低廉,被行业内很多豆制品企业采购和使用。
采购豆制品污水处理设备http://www.nmgjlscl.com/Item/Show.asp?m=1&d=3080
㈢ 污水处理菌种怎样培养
污水处理厂活性污泥的培养,就是为形成活性污泥的微生物提供一定的生长条件,在这种条件下,经过一段时间,就会有活性污泥形成,并且在数量上逐渐增长,并最后达到处理废水所需的污泥浓度。
为达到污水中污染物质降解的目的,遴选、培养、组合针对污水特别降解能力的微生物菌形成菌群,成为专门的污水处理菌种,是目前污水处理技术中最先进的几种方式之一。
菌种源自于大自然,加以人工培育驯化,最终回归大自然,担任修复水体氮循环的使命,符合无毒、无公害、无二次污染、对人体无害的原则。能有效去除氨氮、BOD、COD、SS、硝酸根、硫酸根、色度、臭味、毒性物质、化合污染物等,而不需化学混凝、助凝的过程。
第一代的生物处理技术利用污水或污泥中的自发性细菌进行硝化与反硝化作用将有机污染物降解,使水体恢复氮循环的自净能力,由于菌种不全或数量不足,已经应付不了现代化高浓度与高复杂的污水;
第二代生物处理技术则是利用专业的微生物菌剂结合好氧、缺氧、厌氧等各种手段与设施来处理特定污水,由于环境适应能力与配方不全,不易全面解决污水中的高复杂污染成分与顽劣性的污水;
第三代污水处理菌技术是新一代的复合性微生物菌群,结合污水处理菌微生物研发经验与全球先进微生物基因工程培植技术,遴选萃取多种微生物中对水体污染物具有优秀降解性的菌种基因。
培育成新一代更具降解污染能力的微生物,经过严格的筛选与驯化,再运用专用配方将多种微生物构成生物链,最终驯养成为专治复杂污水的复合菌群,使能处理各种高难度的废水。
(3)豆制品污水处理cod标准是多少扩展阅读:
好氧性微生物污水处理菌种利用水中的溶氧(DO),将有机污染物质分解成水和二氧化碳,或转化为污水处理微生物的营养物质,并利用这些养分进行繁殖,其过程正好可以降解污染物质,达到除污除臭的目的,此种处理法称为好氧性处理,利用最多的就是活性污泥法。
通用厌氧性污水处理微生物是在没有溶氧的环境下将硝酸盐还原(利用硝酸盐中的氧),进行脱氮反应,使其产生氮气,此种方广泛运用于含有氮气的废水处理。而酸生成菌(通用厌氧性微生物)常用于绝对厌氧微生物污水处理工法中的前期酸化反应。
硝化反硝化复合菌种:具备硝化和反硝化双重作用的复合菌种,在污水处理环境日益复杂的情况下,单一使用硝化或反硝化菌种越来越难达成菌种平衡,硝化反硝化的配比多数企业对污此的掌握也并非准确,造成大量菌种资源浪费或不足,难以达成理想的污水处理效果。复合菌种可根据水质情况自我扩繁,达到菌种平衡,让污水处理工作更简单、高效。
㈣ 大型豆腐厂排放的污水有什么危害
豆制品生产具有较好经济效益拦型激,但其生产过程中会产生大量的弱酸性高浓度有机污水,公司排放的豆制品生产污水会造成水体富营养化、缺氧、yu虾绝迹、水质恶化、发臭,严重污染地表地下水。
高浓度有机污水不治理会对环境造成严重危害,影响当地居民的生活质量和影响附近环境质量。为了保护环境,经济的可持续性的发展,国家要求对此污水进行彻底治理,使其达到相关标准后外排,建设一套简袜新的污水治理工艺是控制污染的有效手段,也是为了从事豆制品加工行业的公司长远发展总体规划的实施,并树立良好的企业形象,豆制品加工污水处理设备在企业长远发展中发挥着至关重要的作用。
豆制品废水特点;
该豆制品废水具有两大特点,一是PH偏酸性,二是蛋白含等有机物含量高容易腐化水质。一般豆制品废水可生化性好BOD/COD比值0.6~0.7,除了pH值比较低外,有毒有害物租历质少,适合用生物法进行处理。
豆制品加工污水关键来自泡豆水、蒸煮豆浆水、清洗水等,另外,豆制品加工过程归属于间歇生产方式,排污时间较集中化,水量水质不匀称;厌氧标准下易在污水处理表层产生浮渣层;豆制品污水处理污染物关键是颜色、多糖、蛋白质和维生素物等物质所构成整体上可生物化性比较好,便于生物化溶解。污水处理中包括各类微生物,包括致病微生物,污水处理易腐败发臭;而且此类污水处理中还包括大量对人类身体健康有害的微生物。如不经过处理立即排放,会对水环境导致严重污染,对人畜身体健康造成不良影响。
㈤ 豆制品生产污水处理方法
豆制品加工过程中产生的废水主要包括洗豆水、泡豆水、浆渣分离水、压滤水、各生产工艺容器的洗涤水、地面冲洗水以及生产厂区生活水等。根据不同程度的机械化生产,日废水排放量约为30至50立方米每吨大豆。生产废水中的CODCr浓度可高达2万至3万毫克/升,水温在40至50摄氏度之间,水量约占废水总排放量的20%。而大豆浸泡、洗涤及工作人员的生活污水,CODCr浓度为1500至2500毫克/升,水量约占整个废水排放量的80%。这些废水的主要污染物包括高浓度的碳水化合物、蛋白质、脂肪等,还含有少量的食用油、辣椒、食盐和食品添加剂等。大部分污染物能够通过生物降解,BOD/COD比值在0.6至0.7之间,且有毒有害物质较少,除了pH较低外,非常适合污水处理所需的微生物生长。
本项目计划年生产豆制品5000吨,由此可推算年消耗大豆或黄豆约3000吨,每日消耗量为10吨左右。因此,日污水排放量预计在300吨左右,本方案将基于日污水排放量300吨进行设计。
第二章,污水处理工艺说明:处理水量设定为300立方米/日。高浓度废水的BOD5浓度为12000毫克/升,悬浮固体SS为10000毫克/升,CODcr浓度为25000毫克/升,氨氮NH3-N浓度为50毫克/升,pH值范围为4.5至6,水温在40至50摄氏度之间。中低浓度废水的BOD5浓度为1500至2500毫克/升,悬浮固体SS为1000至2000毫克/升,CODcr浓度为2000至3000毫克/升,氨氮NH3-N浓度为10至20毫克/升,pH值范围为6至7,水温在20至30摄氏度之间。
针对这些特点,本方案采用预处理、生物处理和深度处理相结合的技术路线。预处理阶段包括格栅、沉淀池等设施,去除大颗粒悬浮物和部分有机物。生物处理阶段则采用厌氧消化、好氧曝气等方法,实现有机物的降解和氮磷的去除。深度处理阶段通过过滤、吸附、膜技术等手段,进一步去除微量污染物,确保出水水质达到排放标准要求。
通过综合运用上述处理技术,本项目能够有效降低豆制品加工产生的污水对环境的影响,保障水资源的可持续利用,实现绿色生产目标。
㈥ 豆制品废水出水水质变黄是什么原因,但出水的cod含量依然很高,请各位大师帮忙。
1. 豆制品废水的氨氮、SS都不低,还有部分油份,所以在进生化池之前,必要的预处理少不了,建版议生权化池前设置气浮池;考虑你们是建成的项目,增加这种占地面积不大的气浮池(钢制成套设备)是可行的;
2. A/O工艺应为缺氧-好氧工艺,要控制好缺氧池的DO;
3. O池的硝化液必须设置回流,以提高氨氮去除效率等。
另外,O池污泥解絮的原因需要具体查明,建议从中毒、PH、曝气量太多等方面因素予以查明。
总体好氧40h的停留时间不短了。
㈦ 豆制品生产污水处理方法
去网络文库,查看完整内容>
内容来自用户:蒋先芳
武威市黄羊镇豆制品加工项目污水处理方案
第一章、项目概述
豆制品加工废水主要有洗豆水、泡豆水、浆渣分离水、压滤水、各生产工艺容器的洗涤水、地面冲洗水、生产厂区生活水等,根据机械化程度不同,废水排放量一般为30~50
m3/吨大豆。豆制品加工过程中产生的生产废水一部分浓度很高,CODCr往往高达2万~3万mg/L,水温在40—50℃,水量较小,约占废水总排放量的20%;另一部分废水来自于大豆浸泡、洗涤及工作人员的生活污水,
CODCr在1500
mg/L—2500mg/L,水量约占整个废水排放量的80%。废水中的主要污染物为高浓度的碳水化合物、蛋白质、脂肪等,还含有少量的食用油、辣椒、食盐和食品添加剂等。废水中大部分污染物均可以生物降解,BOD
/COD高达0.
6~0.
7,且有毒有害物质很少,除了pH较低外,非常适合污水处理所需微生物生长。
本项目年生产豆制品5000吨,据此可测算年消耗大豆(或黄豆)3000吨左右,日消耗大豆(或黄豆)10吨左右。因此,日污水排放量在300吨左右。本方案即按日污水排放量在300吨进行设计。
第二章污水处理工艺说明
2.1水量、水质及排放标准
处理水量:300m3/d
污水水质见下表:(单位:mg/l)
项目|水量|BOD5|SS|CODcr|NH3-N|PH|温度|
高浓度污水|60m3/d|12000|10000|25000|50|4.5—6|40—50|
中低浓度污水|第
㈧ 污水处理菌种的培养方法有哪些
培菌方法:
1、所谓活性污泥培养,就是为活性污泥的微生物提供一定的生长繁殖条件,即营养物,溶解氧,适宜温度和酸碱度。
(1)营养物:即水中碳、氮、磷之比应保持100∶5∶1。
(2)溶解氧:就好氧微生物而言,环境溶解氧大于0.3mg/l,正常代谢活动已经足够。但因污泥以絮体形式存在于曝气池中,以直径500µm活性污泥絮粒而言,周围溶解氧浓度2mg/l时,絮粒中心已低于0.1mg/l,抑制了好氧菌生长,所以曝气池溶解氧浓度常需高于3-5mg/l,常按5-10mg/l控制。调试一般认为,曝气池出口处溶解氧控制在2mg/l较为适宜。
(3)温度:任何一种细菌都有一个最适生长温度,随温度上升,细菌生长加速,但有一个最低和最高生长温度范围,一般为10-45ºC,适宜温度为15-35ºC,此范围内温度变化对运行影响不大。
(4)酸碱度:一般PH为6-9。特殊时,进水最高可为PH 9-10.5,超过上述规定值时,应加酸碱调节。
2、培菌法:
(1)生活污水培菌法:在温暖季节,先使曝气池充满生活污水,闷曝(即曝气而不进污水)数十小时后,即可开始进水。引进水量由小到大逐渐调节,连续运行数天即可见活性污泥出现,并逐渐增多。为加快培养进程,在培菌初期投加一些浓质粪便水或米泔水等,以提高营养物浓度。特别注意,培菌时期(尤其初期)由于污泥尚未大量形成,污泥浓度低,故应控制曝气量,应大大低于正常期曝气量。
(2)干泥接种培菌法:最好取水质相同已正常运行的污水系统脱水后的干污泥作菌种源进行接种培养。一般按曝气池总溶积1%的干泥量,加适量水捣碎,然后再加适量工业废水和浓粪便水。按上述的方法培菌,污泥即可很快形成并增加至所需浓度
(3)数级扩大培菌法:根据微生物生长繁殖快的特点,仿照发酵工业中菌种→种子罐→发酵罐数级扩大培菌工艺,分级扩大培菌。如某工程设计为三级曝气池,此时可先在一个池中培菌,在少量接种条件下,在一个曝气池内培菌,成功后直接扩大至二三级。
(4)工业废水直接培菌法:某些工业废水,如罐头食品、豆制品、肉类加工废水,可直接培菌;另一类工业废水,营养成分尚全,但浓度不够,需补充营养物,以加快培养进程。所加营养物品常有:淀粉浆料、食堂米泔水、面汤水(碳源);或尿素、硫氨、氨水(氮源)等,具体情况应按不同水质而定。
(5)有毒或难降解工业废水培菌:有毒或难降解工业废水,只能先以生活污水培菌,然后再将工业废水逐步引入,逐步驯化的方式进行。
(6)直接引进种菌种培菌:有些特殊水质菌种难于培养,还可利用当地科研力量,利用专业的工业微生物研究所培养菌种后再接种培养,如PVA(聚乙烯醇)好氧消化即有专门好氧菌。此法,投资大,周期长,只有特殊情况才用。
3、驯化:在培菌阶段后期,将生活污水和外加营养物量,逐渐减少,工业废水比例逐渐增加,最后全部转为受纳工业废水,这个过程称为驯化。理论上讲,细菌对有机物分解必须有酶参与,而且每种酶都要有足够数量。驯化时,每变化一次配比时,需要保持数天,待运行稳定后(指污泥浓度未减少,处理效果正常),才可再次变动配比,直至驯化结束。
运行管理:
1、巡视:指每班人员必须定时到处理装置规定位置进行观察、检测,以保证运行效果。
2、二沉池观察污泥状态:主要观察二沉池泥面高低、上清液透明程度,有无漂泥,漂泥粒大小等。上清液清澈透明¬----运行正常,污泥状态良好;上清液混浊¬----负荷高,污泥对有机物氧化、分解不彻底;泥面上升¬----污泥膨胀,污泥沉降性差;污泥成层上浮¬----污泥中毒;大块污泥上浮¬----沉淀池局部厌氧,导致污泥腐败;细小污泥漂浮¬----水温过高、C/N不适、营养不足等原因导致污泥解絮。
3、曝气池观察:曝气池全面积内应为均匀细气泡翻腾,污泥负荷适当。运行正常时,泡沫量少,泡沫外呈新鲜乳白色泡沫。曝气池中有成团气泡上升,表明液面下有曝气管或气孔堵塞;液面翻腾不均匀,说明有死角;污泥负荷高,水质差,泡沫多;泡沫呈白色,且数量多,说明水中洗涤剂多;泡沫呈茶色、灰色说明泥龄长或污泥被打破吸附在泡沫上,应增加排泥;泡沫呈其它颜色,水中有染料类物质或发色物污染;负荷过高,有机物分解不完全,气泡较粘,不易破碎。
4、污泥观察:生化处理中除要求污泥有很强的“活性“,除具有很强氧化分解有机物能力外,还要求有良好沉降凝聚性能,使水经二沉池后彻底进行“泥”(污泥)“水”(出水)分离。
(1)污泥沉降性SV30是指曝气池混合液静止30min后污泥所占体积,体积少,沉降性好,城市污水厂SV30常在15-30%之间。污泥沉降性能与絮粒直径大小有关,直径大沉降性好,反之亦然。污泥沉降性还与污泥中丝状菌数量有关,数量多沉降性差,数量少沉降性好。
(2)污泥沉降性能还与其它几个指标有关,它们是污泥体积指数(SVI),混合液悬浮物浓度(MLSS)、混合液挥发性悬浮浓度(MLVSS)、出水悬浮物(ESS)等。
(3)测定水质指标来指导运行:BOD/COD之值是衡量生化性重要指标,BOD/COD≥0.25表示可生化性好,BOD/COD≤0.1表示生化性差。进出水BOD/COD变化不大,BOD也高,表示系统运行不正常;反之,出水的BOD/COD比进水BOD/COD下降快,说明运行正常。出水悬浮物(ESS)高,ESS≥30mg/l时则表示污泥沉降性不好,应找原因纠正,ESS≤30mg/l则表示污泥沉降性能良好。
5、曝气池控制主要因素:
(1)维持曝气池合适的溶解氧,一般控制1-4mg/l,正常状态下监测曝气池出水端DO 2mg/l为宜。
(2)保持水中合适的营养比,C(BOD)׃N׃P=100:5:1
(3)维持系统中污泥的合适数量,控制污泥回流比,依据不同运行方式,回流比在0-100%之间,一般不少于30-50%。
㈨ 污水处理 生物滤塔
生物滤塔也叫塔式生物滤池,是第三代的生物滤池污水处理设施,属好氧生物处理方法,它具有以下特点:水力负荷和有机物负荷高,能承受较高的冲击负荷;采用自然通风,节省供氧的能耗;占地面积小,管理方便,运行费用低;与活性污泥法比较,产生剩余污泥量少等。 近年来在滤料方面有很大改进,出现了空隙率,表面积很大,耐腐蚀,高强度的滤料,更充分发挥塔式生物滤池的优越性。
基本工作原理
污水在与滤料接触的过程中,其中的有机物会被微生物同化,并在滤料的表面上形成生物膜,生物膜是微生物高度密集的物质,是由好氧菌﹑厌氧菌﹑兼性菌﹑真菌﹑原生动物和较高等动物组成的生态系。生物膜首先吸附着于水层中的有机物,然后由生物膜外侧的好氧菌将其分解。生物膜的内外进行着多种物质的传送,其过程为:空气中的氧溶于流动水层中,并通过附着水层传给生物膜,供微生物呼吸用,污水中的有机物则由流动水层传送给附着水层,再进入生物膜被降解;微生物的代谢产物沿着相反的方向排出。溶解于水中的有机污染物,通过微生物的代谢作用,将其吸附,氧化分解,达到净化的目的。主要用途
高浓度的有机废水处理,如制革﹑酿造﹑鱼类加工﹑豆制品加工﹑苎麻﹑蚕茧脱胶废水﹑印花﹑漂染等废水,一般说来,高浓度废水(COD1000mg/l以上),经过一级处理很难达到排放标准,根据废水的性质,采用本设备,配上其它处理方法,可将高浓度废水处理达到排放标准。