❶ 废水生物脱氮除磷什么原理
废水生物脱氮抄的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将 转化为 和 。在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将 (经反亚硝化)和 (经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。
该过程可分为三步:
第一步是氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。(在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施)
第二步是硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐,然后再在硝酸菌的作用下进一步氧化成硝酸盐。
三步是反硝化作用,即在缺氧或厌氧的条件下,硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。
❷ 污水处理中脱氮原理反硝化、硝化的顺序,不明白,(我是个外行)
在污水处理中按脱氮原理,或者说要达到脱氮的目标,顺序是先硝化细菌在好氧环境下进行硝化作用,把污水污泥中的氮转化为硝酸盐和亚硝酸盐,然后在缺氧条件下反硝化细菌进行反硝化反应,把硝酸盐和亚硝酸盐氮转化为氮气,以达到脱氮的目的。
但是,污水处理中,不仅要脱氮,而且还要除磷,而磷在好氧条件下才聚磷,厌氧和缺氧要在好氧之前。但这对脱氮影响不大,因为污水处理中的经过好氧处理的大部分污泥还要回流利用,所以厌氧——缺氧——好氧是个循环的过程,经过循环过程,氮在缺氧去除,磷在好氧去除。
(2)污水脱氮的基本原理是什么扩展阅读:
A2/O工艺(AAO工艺、AAO法:厌氧-缺氧-好氧),是一种很常用的二级污水处理工艺,具有脱氮除磷的作用,用于二级污水处理或者三级污水处理,后续增加深度处理后,可作为中水回用,具有良好的脱氮除磷效果。
首先,污水与回流污泥进入厌氧池进行混合,经一定时间厌氧分解作用,去除部分BOD,并使部分含氮化合物转化成氮气(反硝化作用)而释放,回流污泥中的聚磷微生物(聚磷菌等)释放出磷,满足细菌对磷的需求。
然后,污水流入缺氧池,池中的反硝化细菌以污水中的含碳有机物为碳源,将好氧池内通过内循环回流进来的硝酸根和亚硝酸根还原为氮气而释放。
接下来,污水流入好氧池,水中的氨氮进行硝化反应生成硝酸根或亚硝酸根,同时水中的有机物氧化分解供给吸磷微生物能量,微生物从水中吸收磷,则磷富集在微生物内,最后经沉淀分离后以富磷污泥的形式从系统中排出。
网络:A2O
❸ 污、废水为什么要脱氮除磷叙述污、废水脱氮、除磷的原理。
氮、磷是营养元素,工业废水和生活污水中的氮、磷大量进入水体后,水生生物特别是藻类将大量繁殖,大量死亡的水生生物被微生物分解,分解过程中消耗大量的溶解氧,水中的溶解氧浓度急剧下降,从而影响了鱼类等水生生物的生存。城市污水厂的活性污泥法脱氮除磷的原理是:利用微生物分解有机氮,再转化为硝酸盐,之后反硝化成氮气得以去除;除磷则是利用聚磷菌放磷后,更大量的吸收磷,使磷富集在污泥中,通过排放剩余污泥去除磷。
❹ 废水生物脱氮除磷什么原理
生物脱氮一般采用好氧和厌氧联合的方式,好氧将氨氮转化为硝态氮,厌氧将硝态氮转化为氮气,实现脱氮,一般厌氧放在好氧之前,所以要求由部分的消化液回流。除磷主要靠嗜磷菌的过量吸收和排泥来实现,脱氮除磷的机理相对较复杂不是一两句话能说清楚的,如果您有兴趣的话可以查阅一些相关的书籍。希望对你有帮助!
❺ 生物法脱氮除磷的基本原理,影响因素及基本流程有哪些
氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而,我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物降解,大部分的可溶性含碳有机物被去除。
同时产生NH3-N 、 和和,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的 和 ,但对N、P等营养物只能去除10%~20%,其结果远不能达到二级排放标准。因此研究开发经济、高效的,适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。
生物脱氮除磷机理
生物脱氮机理
污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将 转化为 和 。在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将 (经反亚硝化)和 (经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。
废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分。主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮。硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮。其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从 或 的氧化反应中获取能量。其中硝化的最佳温度在纯培养中为25-35℃,在土壤中为30-40℃,最佳pH值偏碱性。反硝化作用是反硝化菌(大多数是异养型兼性厌氧菌,DO<0.5mg/L)在缺氧的条件下,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,将硝酸盐氮还原为N2或NO2-同时降解有机物。
生物除磷原理
磷在自然界以2种状态存在:可溶态或颗粒态。所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。废水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生利用废水中简单的溶解性有机基质所需的能量,称该过程为磷的释放。进入好氧环境后,活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。将这些摄取大量磷的微生物从废水中去除,即可达到除磷的目的。
厌氧释放磷的过程
聚磷菌在厌氧条件下,分解体内的多聚磷酸盐产生ATP,利用ATP以主动运输方式吸收产酸菌提供的三类基质进入细胞内合成PHB。与此同时释放出于环境中。
好氧吸磷过程
聚磷菌在好氧条件下,分解机体内的PHB和外源基质,产生质子驱动力将体外的输送到体内合成ATP和核酸,将过剩的聚合成细胞贮存物:多聚磷酸盐(异染颗粒)。
❻ 污水生物脱氮的原理是什么
首先你要明确反硝化的原理:硝态氮——亚硝态氮——no——n20——n2,因为你无法得到回亚氮之答后的数据,所以你可以间接的以亚氮的数据去分析n2o的数值。
但从你得到的数据来看,想把你原来的课题讲清楚看来是很难的,参照你现在得到的实验数据你可以和你老是商量下,分析反硝化过程中亚氮积累对反硝化的影响还是可以说清楚的,比如讲你的亚氮很低,这就说明反硝化过程没有亚氮的积累,说明反硝化效果是好的,如果你的亚氮比较多,说明你反硝化的进程不好,存在抑制因素。
我只提下我的建议,希望有帮助。还有,本科答辩不比过多再议,能把事情说清楚就可以了,没要必要非做出来什么效果。
❼ 环保工程师专业知识:生物脱氮
1.生物脱氮的基本原理
废水生物脱氮利用自然界氮素循环的原理,在水处理构筑物中营造出适宜于不同微生物种群生长的环境,通过人工措施,提高生物硝化反硝化速率,达到废水中氮素去除的目的,一般由三种作用组成:氨化作用、硝化作用和反硝化作用。
⑴氨化作用
未经处理的城市污水中的有机氮主要有蛋白质、氨基酸、尿素、胺类、氰化物和硝基化合物等。有机氮化合物在好氧菌和氨化菌的作用下被分解转化为氨态氮。
⑵硝化反应
生物硝化反应是亚硝化菌、硝化菌将氨氮氧化成亚硝酸盐氮和硝酸盐氮,是由一群自养型好氧微生物通过两个过程完成的:第一步先由亚硝酸菌将氨氮转化为亚硝酸盐,称为亚硝化反应,第二步由硝酸菌将亚硝酸盐氧化成硝酸盐。
⑶反硝化反应
生物反硝化反应是在缺氧状态下,将硝化过程中产生的硝酸盐或亚硝酸盐还原成气态氮或氮氧化物的过程,它是一群异氧型微生物通过同化作用和异化作用来完成的。异化作用就是将亚硝酸盐和硝酸盐还原成氮气和氮的氧化物等气体物质,主要是氮气。而同化作用是反硝化菌将亚硝酸盐和硝酸盐还原成氨氮供新细胞合成之用。
2.生物硝化过程的主要影响因素
影响生物硝化过程的环境因素主要有基质浓度、温度、溶解氧浓度、pH值、以及抑制物质的含量等。
⑴碳氮比
对于硝化过程,碳氮比影响活性污泥中硝化细菌所占的比例,过高的碳氮比将降低污泥中硝化细菌的比例。
⑵温度
温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性,亚硝化菌最佳的生长温度为35℃,硝化菌的.最佳生长温度为 35~42℃。生物硝化反应的最佳温度范围为20~30℃,15℃以下硝化反应速率下降,5℃时反应基本停止。反硝化适宜的温度范围为20~40℃,15℃以下反硝化反应速率下降。
⑶溶解氧
硝化反应必须在好氧条件下进行,所以溶解氧的浓度也会影响硝化反应速率,一般建议硝化反应中溶解氧的质量浓度大于 2mg/L。
⑷pH值
在硝化反应中,每氧化1g氨氮需要7.14g碱度(以碳酸钙计),如果不补充碱度,就会使pH值下降。硝化菌对pH值的变化十分明显,硝化反应的最佳pH值范围为7.5~8.5,当pH值低于7时,硝化速率明显降低,低于6和高于10.6时,硝化反应将停止进行。
⑸抑制物质
许多物质会抑制活性污泥过程中的硝化作用,例如:过高浓度的氨氮、重金属、有毒物质以及有机物。对硝化反应的抑制作用主要有两个方面:一是干扰细胞的新陈代谢,二是破坏细菌最初的氧化能力。
⑹泥龄
硝化过程的泥龄一般为硝化菌最小世代时间的2倍以上,生物脱氮过程泥龄宜为12~25d。
3.生物脱氮的典型工艺
生物脱氮的典型工艺主要有Sp工艺、氧化沟工艺和厌氧/好氧工艺(即A/O工艺)等,下面介绍一下A/O工艺。
⑴工艺流程
污水先进入缺氧池,再进入好氧池,同时将好氧池的混合液与部分二沉池的沉泥一起回流到缺氧池,确保缺氧池和好氧池中有足够数量的微生物,同时由于进水中存在大量的含碳有机物,而回流的好氧池混合液中含有硝酸盐氮,这样就保证了缺氧池中反硝化过程的顺利进行,提高了氮的去除效果。
⑵工艺特点
①流程简单、构筑物少,基建费用低;②反硝化池不需外加碳源,降低了运行费用;③好氧池在缺氧池之后,可以使反硝化残留的有机污染物得到进一步的去除,提高出水的水质,而缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷。
⑶影响因素
主要有水力停留时间、BOD5浓度、温度、pH值、溶解氧、有机碳源及混合液回流比等。
❽ 生物脱氮的基本原理是什么
生物来脱氮原理
生物脱氮是利用自自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:
一、硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。
二、反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。
❾ 污、废水为什么要脱氮除磷叙述污、废水脱氮、除磷的原理。
因为污废水中的N、P等物质排放到地表水体中,会导致水体的富营养化,从而破坏水体的而生态平衡。
含磷废水
在厌氧的条件下,聚磷菌释放自身的磷,以造成饥恶效应;
在好氧条件下,处于饥饿状态的聚磷菌会大量的吸收废水中的磷,吸收的量要大于其在厌氧阶段释放量。
含氮废水
在好氧条件下,硝化细菌和亚硝化细菌把含氮有机物转化为NO3-和NO2-,最终都转化为NO3-的过程;
在厌氧条件下,反硝化细菌把含氮物质转化为N2,从而降低污染。